光学电磁第一章光的电磁理论基础2015

电磁感应计算题精选

3. 如图所示,两根光滑的金属导 计。斜面处在一匀强磁场中,磁场方向垂直于斜面向上。质量为m,电阻可不计的金属棒 直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。在这过程中 A. 作用于金属捧上的各个力的合力所作的功等于零 B. 作用于金属捧上的各个力的合力所作的功等 于mgh与电阻R上发出的焦耳热之和 C. 恒力F与安培力的合力所作的功等于零 ab,在沿着斜面与棒垂 4. 两根光滑金属导轨平行放置在倾角为0=30。的斜面上,导轨左端接 有电阻R=10 / Q,导轨自身电阻忽略不计。匀强磁场垂直于斜面向上,磁感强度B=0.5T。质量Y 为m=0.1kg ,电阻可不计的金属棒ab静止释放,沿导轨下滑。如图所示,设导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属棒下滑h=3m时,速度恰好达到最大速度,求此(1)最大速度(2)从开始到速度达到T h 』 第12讲法拉第电磁感应定律4----能量问题1 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一 种能力。自然界存在着各种不同形式的能,如; ■-动能 机械能:重力势能 I弹性势能(弹簧) ?热能 1. 如图16-7-6所示,在竖直向上B=0.2T的匀强磁场内固定一水平无电阻的光滑U形金属导轨,轨距50cm。 金属导线ab的质量m=0.1kg,电阻r=0.02 Q且ab垂直横跨导轨。导轨中接入电阻 F=0.1N拉着ab向右匀速平移,贝U (1) ab的运动速度为多大? (2 )电路中消耗的电功率是多大? (3)撤去外力后R上还能产生多少热量? 图16-7-6 2. 相距为d的足够长的两平行金属导轨(电阻不计)固定在绝缘水平面上,导轨间有垂直轨道平面的匀强磁 场,磁感强度为B,导轨左端接有电容为C的电容器,在导轨上放置一金属棒并与导轨接触良好,如图所 示。现用水平拉力使金属棒开始向右运动,拉力的功率恒为P,在棒达到最大速度之前,下列叙述正确的是 R=0.08 Q,今用水平恒力 A.金属棒做匀加速运动 B.电容器所带电量不断增加 C.作用于金属棒的摩擦力的功率恒为P D.电容器a极板带负电

1利用电磁感应定律计算感应电动势-推荐下载

1.利用电磁感应定律计算感应电动势 电磁感应定律适用于一切电磁感应现象,作为电磁感应定律的应用之一,是依据这一定律计算感应电动势。 由于穿过闭合电路的磁通量发生变化(或某段导线做切割磁感线运动),在闭合电路中(或在导线中)就产生感应电动势,基于电动势的存在,可视为一电源,做切割磁感线运动的导线,或磁通量发生变化的闭合电路内部,即为电源内部——内电路,和该内电路相连接的那部分电路为外电路。不难看出,在这种情况下,问题便归结为闭合电路的计算问题, 2.运用ε=Blvsinθ应注意的问题 (1)表达成ε=BLvsinθ中的L不是导体的实际长度,而是导线做切割磁感线运动的有效长度,可以理解为产生感应电动势的导体两端点连接线,在切割速度v的垂直方向上投影的长度。 如图所示,导线皆在纸面内运动,磁感应强度为B的匀强磁场方向垂直纸面向里,各图中导线的有效长度L分别为:

有效长度L=0。 在图1(c)中,按v1方向运动,有效长度L=a/2;a(a为等边三角 方向运动,有效长度 形之边长)按v2方向运动,有效长度L=a/2;按v3 (2)表达式ε=BLvsinθ中,θ为运动速度v与磁感强度B之间的夹角。若θ=kπ(k=c,±1,±2…)时,即运动速度方向与磁感强度B的方向平行时,ε=BLvsinθ=0,尽管导体运动,但没有感应电动势产生。

(3)在运用表达式ε=BLvsinθ解题时,往往遇到磁场方向、导体运动方向、感应电流方向、安培力方向、外力方向比较复杂的空间立体图。此时,应将复杂的空间图形简化为单向视图。 例如,在图2中,导线AB中通以电流,电流方向由B→A,边长为d的正方形闭合线框abcd绕着OO’轴以角速度ω匀速转动,轴OO’与导线AB平行,二者相距为l,线框的电阻值为R,当线框转到与 AB、00’所在平面垂直时,ab、cd边所在处磁场的磁感应强度的大小均为B O ,求此时,线框中感应电流的大小和方向。 分析可知,导线AB中的电流I O在空间所产生的磁场的方向与线框abcd运动的方向成一定的夹角,画出这样一个涉及电流磁场的方向、做切割磁感线运动的导线运动方向、感应电流方向的立体图形比较困难。但是,可将空间图形简化成一单向视图,如图3所示。

(完整版)法拉第电磁感应定律练习题40道

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级 姓名:_______________班级:_______________考号:_______________ 题号 一、选 择 题二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() 评卷人得分

A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大 D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

电磁感应中的动力学和能量问题计算题专练

电磁感应中的动力学和能量问题(计算题专练) 1、如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少? (2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大? (3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少? 解析(1)m1、m2运动过程中,以整体法有 m1g sin θ-μm2g=(m1+m2)a a=2 m/s2 以m2为研究对象有F T-μm2g=m2a(或以m1为研究对象有m1g sin θ-F T=m1a) F T=2.4 N (2)线框进入磁场恰好做匀速直线运动,以整体法有 m1g sin θ-μm2g-B2L2v R =0 v=1 m/s ab到MN前线框做匀加速运动,有 v2=2ax x=0.25 m (3)线框从开始运动到cd边恰离开磁场边界PQ时: m1g sin θ(x+d+L)-μm2g(x+d+L)=1 2 (m1+m2)v21+Q 解得:Q=0.4 J 所以Q ab=1 4 Q=0.1 J 答案(1)2.4 N (2)0.25 m (3)0.1 J 2、如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状 态时速率为v,此时整个电路消耗的电功率为重力功率的3 4 .已知 重力加速度为g,导轨电阻不计,求: (1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab 中的电流强度I; (2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导

电磁感应计算题复习

电磁感应计算题专题 计算题 (共15小题) 1. 如图13-17所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的中距离为L ,导轨上横放着两根导体棒ab 和cd.设两根导体棒的质量皆m ,电阻皆为R ,导轨光滑且电阻不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B 。开始时ab 和cd 两导体棒有方向相反的水平初速,初速大小分别为v 0和2v 0,求: (1)从开始到最终稳定回路中产生的焦耳热。 (2)当ab 棒的速度大小变为 4 v 时,回路中消耗的电功率。 2. 如图13-18所示,在空中有一水平方向的匀强磁场区域, 区域的上下边缘间距为h ,磁感强度为B 。有一宽度为b(b <h =、长度为L ,电阻为R 。质量为m 的矩形导体线圈紧贴磁场区域的上边缘从静止起竖直下落,当线圈的PQ 边到达磁场 下边缘时,恰好开始做匀速运动。求: (1)线圈的MN 边刚好进入磁场时,线圈的速度大小。 (2)线圈从开始下落到刚好完全进入磁场,经历的时间。 3. 水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图.(取重力加速度g=10m/s 2) (1)金属杆在匀速运动之前做什么运动? (2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少? 4. 如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触 图13-17 图13-18

工程光学习题参考答案第十章 光的电磁理论基础

第十章 光的电磁理论基础 解:(1)平面电磁波cos[2()]E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()] z Bx CEy t π π===??-+ 解:(1)215 cos[2()]10cos[10()]0.65E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?= -= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 320 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

解:∵ exp[()]E A i k r t ω=- x y z k r k x k y k z ?=?+?+? 0000000000 2,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=?+?+?=++=+ 6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试 求反射系数和透射系数。设玻璃折射率为1.5。 解:由折射定律 1 2211221122111122sin sin cos 1.5cos cos 0.3034cos cos 22cos 0.6966cos cos s s n n n r n n n t n n θθθθθθθθθθ= =∴=--∴==-+===+ 7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解: 22 2221 2 1112222221 22 111212sin sin 212111.54cos 4sin cos 30.8231cos sin () 2 cos 4sin cos 0.998cos sin ()cos ()() 0.91 2 s p s p n n ocs n n n n θθθθθθτθθθθθθτθθθθθτττ==∴=??= ?==+=?=+-+∴= = 8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反

电磁感应计算题

电磁感应计算题 1、如图所示,两根相距L平行放置的光滑导电轨道,与水平面的夹角为θ,轨道间有电阻R,处于磁感应强度为B、方向垂直轨道向上的匀强磁场中,一根质量为m 、电阻为r 的金属杆ab,由静止开始沿导电轨道下滑,设下滑过程中杆ab 始终与轨道保持垂直,且接触良好,导电轨道有足够的长度且电阻不计,求: (1)金属杆的最大速度就是多少; (2)当金属杆的速度刚达到最大时,金属杆下滑的距离为S,求金属杆在此过程中克服安培力做的功; (3)若开始时就给杆ab 沿轨道向下的拉力F使其由静止开始向下做加速度为a 的匀加速运动(a>gsinθ),求拉力F与时间t 的关系式? 2、如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d 为0、5 m,左端通过导线与阻值为2 Ω的电阻R 连接,右端通过导线与阻值为4 Ω的小灯泡L 连接,在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长为2 m,CDEF 区域内磁场的磁感应强度B 随时间变化如图所示,在t =0时,一阻值为2 Ω的金属棒在恒力F 作用下由静止开始从AB 位置沿导轨向右运动,当金属棒从AB 位置运动到EF 位置过程中,小灯泡的亮度没有发生变化,求: (1)通过小灯泡的电流强度; (2)恒力F 的大小; (3)金属棒的质量。 R B a b θ θ

3.如图甲所示,电阻不计的光滑平行金属导轨相距L=0.5m,上端连接R=0、5Ω的电阻,下端连接着电阻不计的金 属卡环,导轨与水平面的夹角θ=30°.导轨间虚线区域存在方向垂直导轨平面向上的磁场,其上、下边界之间的距离S =10m,磁感应强度的B -t 图如图乙所示。长为L 且质量为m=0.5kg 的金属棒ab 的电阻不计,垂直导轨放置于距离磁场上边界d =2.5m 处,与导轨始终接触良好.在t =0时刻棒由静止释放,滑至导轨底端被环卡住不动,g 取10m/s 2,求: (1)棒运动到磁场上边界的时间; (2)棒进入磁场时受到的安培力; (3)在0—5s 时间内电路中产生的焦耳热。 4如图所示,质量为M 的导体棒ab 的电阻为r ,水平放在相距为l 的竖直光滑金属导轨上.导轨平面处于磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场中.左侧就是水平放置、间距为d 的平行金属板.导轨上方与一可变电阻R 连接,导轨电阻不计,导体棒与导轨始终接触良好.重力加速度为g. (1)调节可变电阻的阻值为R 1=3r ,释放导体棒,当棒沿导轨匀速下滑时,将带电量为+q 的微粒沿金属板间的中 心线水平射入金属板间,恰好能匀速通过.求棒下滑的速率v 与带电微粒的质量m . (2)改变可变电阻的阻值为R 2=4r ,同样在导体棒沿导轨匀速下滑时,将该微粒沿原来的中心线水平射入金属板 间,若微粒最后碰到金属板并被吸收.求微粒在金属板间运动的时间t . 乙 t/s 1

电磁感应计算题专题

电磁感应计算题专题 命题人:蓝杏芳 学号________. 姓名________. 四.计算题 (共15小题) 1. 如图13-17所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的中距离为L ,导轨上横放着两根导体棒ab 和cd.设两根导体棒的质量皆m ,电阻皆为R ,导轨光滑且电阻不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B 。开始时ab 和cd 两导体棒有方向相反的水平初速,初速大小分别为v 0和2v 0,求: (1)从开始到最终稳定回路中产生的焦耳热。 (2)当ab 棒的速度大小变为4 0v 时,回路中消耗的电功率。 2. 如图13-18所示,在空中有一水平方向的匀强磁场区域,区域的上下边缘间距为h ,磁感强度为B 。有一宽度为b(b <h =、长度为L ,电阻为R 。质量为m 的矩形导体线圈紧贴磁场区域的上边缘从静止起竖直下落,当线圈的PQ 边到达磁场 下边缘时,恰好开始做匀速运动。求: (1)线圈的MN 边刚好进入磁场时,线圈的速度大小。 (2)线圈从开始下落到刚好完全进入磁场,经历的时间。 3. 水平面上两根足够长的金属导轨平行固定放置,问距为L , 一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图.(取重力加速度g=10m/s 2) (1)金属杆在匀速运动之前做什么运动? (2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少? 4. 如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触 图13-17 图13-18

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的??B t 叫 磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率 ??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==222ω, 故2 2 1l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。

电磁感应计算题

电磁感应计算题 1.如图所示,两根相距L平行放置的光滑导电轨道,与水平面的夹角为θ,轨道间有电阻R,处于磁感应强度为B、方向垂直轨道向上的匀强磁场中,一根质量为m、电阻为r的金属杆ab,由静止开始沿导电轨道下滑,设下滑过程中杆ab始终与轨道保持垂直,且接触良好,导电轨道有足够的长度且电阻不计,求:(1)金属杆的最大速度是多少; (2)当金属杆的速度刚达到最大时,金属杆下滑的距离为S,求金属杆在此过程中克服安培力做的功;(3)若开始时就给杆ab沿轨道向下的拉力F使其由静止开始向下做加速度为a的匀加速运动(a>gsinθ),求拉力F与时间t的关系式? 2.如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d为0.5 m,左端通过导线与阻值为2 Ω的电阻R连接,右端通过导线与阻值为4 Ω的小灯泡L连接,在CDEF矩形区域内有竖直向上的匀强磁场,CE长为2 m,CDEF区域内磁场的磁感应强度B随时间变化如图所示,在t=0时,一阻值为2 Ω的金属棒在恒力F作用下由静止开始从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化,求: (1)通过小灯泡的电流强度; (2)恒力F的大小; (3)金属棒的质量。 R B a b θθ

3.如图甲所示,电阻不计的光滑平行金属导轨相距L=0.5m ,上端连接R=0.5Ω的电阻,下端连接着电阻不计 的金属卡环,导轨与水平面的夹角θ=30°.导轨间虚线区域存在方向垂直导轨平面向上的磁场,其上、下边界之间的距离S =10m ,磁感应强度的B -t 图如图乙所示。长为L 且质量为m=0.5kg 的金属棒ab 的电阻不计,垂直导轨放置于距离磁场上边界d =2.5m 处,与导轨始终接触良好.在t =0时刻棒由静止释放,滑至导轨底端被环卡住不动,g 取10m/s 2,求: (1)棒运动到磁场上边界的时间; (2)棒进入磁场时受到的安培力; (3)在0—5s 时间内电路中产生的焦耳热。 4如图所示,质量为M 的导体棒ab 的电阻为r ,水平放在相距为l 的竖直光滑金属导轨上.导轨平面处于磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场中.左侧是水平放置、间距为d 的平行金属板.导轨上方与一可变电阻R 连接,导轨电阻不计,导体棒与导轨始终接触良好.重力加速度为g . (1)调节可变电阻的阻值为R 1=3r ,释放导体棒,当棒沿导轨匀速下滑时,将带电量为+q 的微粒沿金属板 间的中心线水平射入金属板间,恰好能匀速通过.求棒下滑的速率v 和带电微粒的质量m . (2)改变可变电阻的阻值为R 2=4r ,同样在导体棒沿导轨匀速下滑时,将该微粒沿原来的中心线水平射入 金属板间,若微粒最后碰到金属板并被吸收.求微粒在金属板间运动的时间t . 乙 t/s

电磁感应计算题精选

第12讲法拉第电磁感应定律4----能量问题1 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。自然界存在着各种不同形式的能,如; 动能 机械能重力势能 弹性势能(弹簧) 热能 1.如图16-7-6所示,在竖直向上B=0.2T的匀强磁场内固定一水平无电阻的光滑U形金属导轨,轨距50cm。 金属导线ab的质量m=0.1kg,电阻r=0.02Ω且ab垂直横跨导轨。导轨中接入电阻R=0.08Ω,今用水平恒力F=0.1N拉着ab向右匀速平移,则 (1)ab 的运动速度为多大? (2)电路中消耗的电功率是多大? (3)撤去外力后R上还能产生多少热量? 图16-7-6 2.相距为d的足够长的两平行金属导轨(电阻不计)固定在绝缘水平面上,导轨间 有垂直轨道平面的匀强磁场,磁感强度为B,导轨左端接有电容为C的电容器, 在导轨上放置一金属棒并与导轨接触良好,如图所示。现用水平拉力使金属棒开始向右运动,拉力的功率恒为P,在棒达到最大速度之前,下列叙述正确的是 A. 金属棒做匀加速运动 B. 电容器所带电量不断增加 C. 作用于金属棒的摩擦力的功率恒为P D. 电容器a极板带负电 3.如图所示,两根光滑的金属导轨,平行放置在倾角为θ斜角上,导轨的左端接有电阻R, 导轨自身的电阻可忽路不计。斜面处在一匀强磁场中,磁场方向垂直于斜面向上。质量为m,电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。在这过程中 A.作用于金属捧上的各个力的合力所作的功等于零 B.作用于金属捧上的各个力的合力所作的功等于mgh与电阻R上发出的焦耳热之和 C.恒力F与安培力的合力所作的功等于零 D.恒力F与重力的合力所作的功等于电阻R上发出的焦耳热 4.两根光滑金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R=10 Ω,导轨自身电阻忽略不计。匀强磁场垂直于斜面向上,磁感强度B=0.5T。质量 为m=0.1kg ,电阻可不计的金属棒ab静止释放,沿导轨下滑。如图所示,设导 轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属 棒下滑h=3m时,速度恰好达到最大速度,求此(1)最大速度(2)从开始到速度达到 最大,过程中R上产生的热量和通过R的电量?

物理光学第一章答案

第4章 光的电磁理论 1、计算由下式表示的平面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长,并求解该平面波所处介质的折射率,同时证明该平面波的横波性,该平面波是何种偏振态?(其中x 和y 分别为x 和y 方向上的单位矢量,式中所有数值均为国际单位制表示) ( )) 8223exp 610E x y i y t ??=- +++?? ? 答案: 由题意得到 ) ) 88 2exp 610610x y i y t i y t E E ???=-??? ? ?? ?=++?+??+?? 所以电矢量的振动方向为13 2O x y =- +,为线偏振态。 x 和y 方向的波数分别为)1x k m -=和() 11y k m -= ,所以平面波传播方向为 312 P x y =- -,总波数为()12k m -===。 ()4V m = 角频率为()8610rad s ω=?,所以频率为()83 102Hz ωυππ = =? 波长为()8831010c m s m Hz λπυπ ?== =? 相位速度为()88 1 6103102rad s v m s k m ω -?===? 该平面波所处介质的折射率为883101310c m s n v m s ?== =? 振动方向1322O x y =- +和传播方向3122 P x y =+的内积为

111102222???-?=-+= ? ????? 所以振动方向与传播方向垂直,平面波的横波性得证。 2、已知单色平面光波的频率为1410Hz υ=,在0z =平面上相位线性增加的情况如图所示,求空间频率x f 、y f 、z f 。 答案: 单色平面光波的波长814 310310c m s m Hz λμυ?===,空间频率61 11103 f m λ-==?。 从图中可以看到x 和y 方向上的波长为8x m λμ=、5y m λμ=,所以x 和y 方向上的空间频率()5111 1.25108x x f m m λμ-= = =?、() 5111 2105y y f m m λμ-===?。 由关系式2222x y z f f f f =++得到()512.3554910z f m -=≈?。 3、设一单色平面光波的频率为1410Hz υ=,振幅为1V m 。0t =时,在xOy 面(0z =)上的相位分布如图所示:等相位线与x 轴垂直(即与y 轴平行),0?=的等相位线坐标为5x m μ=-,?随x 线性增加,x 每增加4m μ,相位增加2π。

电磁感应计算题总结

电磁感应易错题 1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=Ω。导线框放置在匀强磁场中,磁场的磁感应强度B =,方向垂直导线框所在平面向里。金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。若金属棒以v=4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小; (2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。 2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。已知cd 边刚进入磁场时线框恰好做匀速运动。重力加速度为g 。 (1)求cd 边刚进入磁场时导线框的速度大小。 (2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。 (3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。 3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。现用一竖直向上的恒力F =向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。设 cd 边刚进入磁场时,线框恰好开始做匀速运动。(g 取10m /s 2 ) 求:(1 ) a b d c l

法拉第电磁感应定律同步练习一

第四节:法拉第电磁感应定律同步练习一 基础达标: 1、穿过一个电阻为R=1Ω的单匝闭合线圈的磁通量始终每秒钟均匀的减少2Wb ,则:( ) A 、线圈中的感应电动势每秒钟减少2V B 、线圈中的感应电动势是2V C 、线圈中的感应电流每秒钟减少2A D 、线圈中的电流是2A 2.下列几种说法中正确的是: ( ) A 、线圈中的磁通量变化越大,线圈中产生的感应电动势一定越大 B 、穿过线圈的磁通量越大,线圈中的感应电动势越大 C 、线圈放在磁场越强的位置,线圈中的感应电动势越大 D 、线圈中的磁通量变化越快,线圈中产生的感应电动势越大 3、长度和粗细均相同、材料不同的两根导线,分别先后放在U 形导轨上以同样的速度在同一匀强磁场中作切割磁感线运动,导轨电阻不计,则两导线:( ) A 、产生相同的感应电动势 B 、产生的感应电流之比等于两者电阻率之比 C 、产生的电流功率之比等于两者电阻率之比; D 、两者受到相同的磁场力 4、在理解法拉第电磁感应定律 t n E ??=φ 及改写形势 t B ns E ??=,t S nB E ??=的基础上(线圈平面与磁感线不平行),下面

叙述正确的为:( ) A 、对给定线圈,感应电动势的大小跟磁通量的变化率成正比 B 、对给定的线圈,感应电动势的大小跟磁感应强度的变化 B ?成正比 C 、对给定匝数的线圈和磁场,感应电动势的大小跟面积的平均变化率 t S ??成正比 D 、题目给的三种计算电动势的形式,所计算感应电动势的大小都是t ?时间内的平均值 5、如图1中,长为L 的金属杆在外力作用下,在匀强磁场中沿水平光 滑导轨匀速运动,如果速度v 不变,而将磁感强度由B 增为2B 。除电阻R 外,其它电阻不计。那么:( ) A 、作用力将增为4倍 B 、作用力将增为2倍 C 、感应电动势将增为2倍 D 、感应电流的热功率将增为4倍 6、如图2所示,固定于水平绝缘平面上的粗糙平行金属导轨,垂直于 导轨平面有一匀强磁场。质量为m 的金属棒cd 垂直放在导轨上,除电阻R 和金属棒cd 的电阻r 外,其余电阻不计;现用水平恒力F 作用于金属棒cd 上,由静止开始运动的过程中,下列说法正确的是: ( ) A 、水平恒力F 对cd 棒做的功等于电路中产生的电能

工程光学习题解答第九章_光的电磁理论基础

第九 章 光的电磁理论基础 1. 一个平面电磁波可以表示为14 0,2cos[210()],02 x y z z E E t E c π π==?-+ =,求(1)该 电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式? 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0By Bz == 814610[210()]2 z Bx CEy t c π π===??-+ 2. 在玻璃中传播的一个线偏振光可以表示215 0,0,10cos 10()0.65y z x z E E E t c π===-,试求(1)光的频率和波长;(2)玻璃的折射率。 解:(1)215 cos[2()]10cos[10( )]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 32 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

电磁感应计算题集(学生)

电磁感应最新计算题集(学生)

————————————————————————————————作者:————————————————————————————————日期:

电磁感应最新计算题集 1.如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。 ⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。 ⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。 2.如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示.(取重力加速度g =10m/s 2)求: (1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量. 3.如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。AC 端连有阻值为R 的电阻。若将一质量为M 、垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD 位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。求: (1)金属棒下滑过程中的最大速度。 (2)金属棒棒自BD 端出发又回到BD 端的整个过程中,有多少电能转化成了内能(金属棒及导轨的电阻不计)? F R B 图 t / 15 10 5 0 2 4 v(m/ 图 A B D C E F B s θ R

光的电磁理论习题

光的电磁理论习题

第四章 光的电磁波理论 4-1计算由8(22 3)exp (3610)i x y t ?? =-+++????? E i 表示的平 面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长。 解:由题意:) 81063(2t y x i e E x ?++-= ) 81063(32t y x i e E y ?++= ∴3 -=x y E E ∴振动方向为:j i 3+ - 由平面波电矢量的表达式: 3 =x k 1=y k ∴传播方向为: j i +3 平面电磁波的相位速度为光速: 8 103?=c m/s 振幅:4 )32()2(222 200 =+-=+=oy x E E E V/m 频率: 8810321062?=?==π ππωf Hz 波长:πλ==f c m 4-2 一列平面光波从A 点传到B 点,今在AB 之间插入一透明薄片,薄片的厚度mm h 2.0=,折射率n =1.5。假定光波的波长为550 =λ nm ,试计算 插入薄片前后B 点光程和相位的变化。 解:设AB 两点间的距离为d ,未插入薄片时光

束经过的光程为:d d n l ==01 插入薄片后光束经过的光程为:h n d nh h d n l )1()(0 2 -+=+-= ∴光程差为:mm h n l l 1.02.05.0)1(12 =?=-=-=? 则相位差为:π π λπδ6.3631.010 550226 =??= ?=- 4-3 试确定下列各组光波表示式所代表的偏振态: (1)) sin(0kz t E E x -=ω,) cos(0kz t E E y -=ω (2))cos(0kz t E E x -=ω,) 4/cos(0πω+-=kz t E E y (3)) sin(0kz t E E x -=ω,) sin(0kz t E E x --=ω 解:(1)∵) 2cos()sin(00π ωω- -=-=kz t E kz t E E x ∴2 π ?? ?= -=x y ∴ 为右旋圆偏振光。 (2)4 π ?? ?= -=x y ∴ 为右旋椭圆偏振光,椭圆长轴沿y =x (3)0 =-=x y ??? ∴ 为线偏振光,振动方向沿y =-x

法拉第电磁感应定律——感应电动势的计算

法拉第电磁感应定律——感应电动势的计算 教学目的: 1、理解感应电动势的概念,明确感应电动势的作用。 2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能与磁 通量的变化相区别。 3、理解感应电动势的大小与磁通变化率的关系,掌握法拉第电磁感 应定律及应用。 4、知道公式E=BLvsinθ是如何推导出的,知道它只适用于导体切 割磁感线运动的情况。会用它解答有关的问题。 5、通过法拉第电磁感应定律的建立,进一步揭示电与磁的关系,培 养学生空间思维能力和通过观察、实验寻找物理规律的能力。教学重点: 理解感应电动势的大小与磁通变化率的关系,掌握法拉第电磁感应 定律及应用 教学难点: 培养学生空间思维能力和通过观察、实验寻找物理规律的能力 教学方法: 实验+启发式 教学仪器: 投影仪、投影片、演示电流计、线圈、磁铁、导线等。 教学过程: 一、引入(复习): 1、产生感应电流的条件是什么? (学生思考并回答) 2、闭合电路中产生持续电流的条件是什么? (学生思考并回答) 在电磁感应中,有感应电流说明有感应电动势存在,让我们道德来研究感应电动势的产生。 二、讲授新课 (一)、感应电动势 产生感应电动势的那部分导体相当于电源。 (投影课本图17-4、17-5)生思考回答: 哪部分相当于电源?

教师提示: (1)在电磁感应现象中,不管电路是否闭合,只要穿过电路的磁通量发生变化,电路中就产生感应电动势。 (2)当电路闭合时,电路中才可能产生感应电流,其强弱取决于感应电动势的大小和闭合电路的电阻。 (3)当电路断开后,没有感就电流,但仍有感应电动势。 感应电动势的大小与哪些因素有关? 实验一:(图见课本图17-5) 将磁铁迅速插入和慢慢插入时,学生观察。 a)电流计偏转的角度有何不同?反映电流大小有何不同?感应电 动势大小如何? (学生思考并回答) b)将磁铁迅速插入和慢慢插入时,磁通量的变化是否相同? (学生思考并回答) c) 换用强磁铁,迅速插入,电流表的指针偏转如何?说明什么 以上现象说明什么问题? 小结: 1、磙量变化越快,感应电动势越大,在同一电路中,感应电流越大,反之,越小。 2、磁通量变化快慢的意义: (1)在磁通量变化△Φ相同时,所用的时间△t越少,即变化 越快;反之,则变化越慢。 (2)在变化时间△t一样时,变化量△Φ越大,表示磁通量越 快;反之,则变化越慢。 (3)磁通量变化的快慢,可用单位时间内的磁通量的变化,即 磁通量的变化率来表示。 实验二:(如图课本17-16) 磁通量的变化率也可以用导体切割磁感线的快慢(速度)来表示。(即速度大,单位时间内扫过的面积大) 导体ab迅速切割时,指针偏转角度大,反映感应电流大,感应电动势大;导体慢慢切割时,指针偏转角小,反映电流小,感应电动势小。 由两实验得:感应电动势的大小,完全由磁通量的变化率决定。

相关文档
最新文档