浅谈长度测量技术及其发展与展望

浅谈长度测量技术及其发展与展望
浅谈长度测量技术及其发展与展望

浅谈长度测量技术及其发展与展望

浅谈长度测量技术及其发展与展望

摘要:随着科技不断发展,传统长度测量方法不能满足当今工业生产需求。本文首先简要介绍了长度测量技术,简述了其发展史以及在生产生活中的应用以及未来长度测量技术的发展状况。

关键字:长度测量;发展;应用

长度测量技术是研究长度测量,使测量值与量化标准值单位统一的技术。长度计量也成为几何测量,包括距离、角度、表面粗糙度、圆度和直线度等以“米”为基本单位的几何量的测量。长度测量是将被测长度与已知长度比较,以确定被测长度量值的过程。机械制造中进行长度计量是为了保证工件的互换性和产品质量,一般以毫米和微米作为测量单位。长度计量的主要内容是研究和建立长度计量基准,实现长度计量的量值传递,研究孔径测量、角度测量、直线度测量、平面度测量、表面粗糙度测量、圆度测量、圆柱度测量、螺纹测量、齿轮测量、自动测量等方法和测量误差,以及测量结果的数据处理等。

一、长度测量发展简介

最初是以人的手、足等作为长度单位,对所要标记的物体进行长度测量,但由于手、足大小不一,不可避免在测量中遇到麻烦,于是便出现了以物体作为测量单位。在古代,人类为了测量田地等就已经开始了长度测量。商朝时候就出现了测量长度的象牙尺,以后出现了新莽铜卡尺等。长度测量发展迅速,1496 年和1760 年英国先后采用端面和线纹的码基准尺作为长度基准。1789 年法国提出建立米制,1799 年制成阿希夫米尺。

随后,在机械制造业出现了以机械原理的测长技术。1631 年发明游标细分原理,18 世纪中叶,出现用螺纹放大原理进行长度测量。光学原理的测长技术也慢慢走入人类生活,19 世纪末出现立式测长仪,20 世纪20 年代前后已应用自准直、望远镜、显微镜和光波干涉等原理测长,使工业测量进入不接触测量领域,解决了一些小型复杂形状工件。气动原理的测长技术是在20 世纪20 年代后期发展起

来的。它的测量效率高,对环境条件要求不高,适宜在车间使用,但其示值范围小,阻碍了它的发展;应用电学原理测长是在20 世纪30 年代初期发展起来的。首先出现的是应用电感原理的测微仪。后来由于电子技术的发展,电学原理的测长技术发展很快。它可以把微小误差放大到100 万倍,也就是说0.01 μm 的误差值可以用10 μm 的刻度间隔表示出来,并能实现各种演算和自动测量。20 世纪60 年代中期以后,在工业测量中逐步应用电子计算机技术。电子计算机具有自动修正误差、自动控制和高速数据处理的功能,为高精度、自动化和高效率测量开辟了新的途径,因而在长度测量中应用得越来越广泛。如今,现代测量技术已经发展成为精密机械、光、电和电子计算机等技术相结合的综合性技术。

二、现代长度测量技术应用

长度测量技术对于人们从事各领域的研究和促进科学进步有着

非常重要的意义。随着科学技术的发展,大到天文尺度,小到纳米尺度的长度测量技术都有了飞速的发展。

最初人们是采用三角视差法测量地球到月亮距离的,现在采用激光测距法。根据信号和返回信号之间的时间间隔推断测量目标的距离。自上个世纪70年代阿波罗号宇航员在月球上放置了激光反射器以后,测量精度不断提高。对于河外星系的距离测量主要采用哈勃红移法,根据哈勃定律,河外星系的光谱线都向红端移动,并且红移的大小与星系的距离成正比,可以对星系的光谱线进行分析,通过红移计算出河外星系的视向退行速度,进而得出天体距离。但是这种方法所要用到的哈勃常数并不容易准确取值。

超声波测距是靠超声在介质中传播,遇到障碍物时反射,然后由声波在介质中的传播速度和传播时间来确定距离。声波在介质中有固定的传播速度,从发射波到接收到反射波的时间可以确定,进而算出距离。超声在空气中传播速度受空气温度、湿度及压强等因素的影响,而受温度影响最大,在长度测量应用中受到限制。激光反射法测距跟超声波测距原理类似,但是激光传播速度受空气影响较小,在精度要求不高时可以忽略影响。现在激光测距能达到很高的测量精度,测量地月距离时达到的精度为±1 cm。

目前,微观尺度的长度量测量可分为电学测量技术、光学测量技术和显微镜测量技术等。电学测量技术有电涡流传感器测量、电容传感器测量等。光学测量法是伴随着激光全息等技术的发展而产生的方法,它具有非接触、材料适应范围广、测量精度高等特点。近二十年来随着电子技术和计算机技术的飞速发展,光学测量技术研究也取得了很多成果并应用到了工业生产领域。按使用的光学原理不同,光学测量技术可分为激光干涉法、光杠杆法、光栅尺测量技术等。

三、长度测量技术发展展望

随着科学的发展,天体距离的测量精度将会更高,将来能够得到更加准确,用哈勃红移法得到的距离精度也会越来越高。微观长度测量领域,随着制造加工技术的发展和激光源质量提高,势必给微位移测量带来新的发展。显微镜测量仪器会趋于微型化,这种高精度的纳米级位移测量技术不久就会走出实验室真正应用到生产中去。

参考文献:

[1] 刘爽,王勇,李郝鹏. 长度计量技术的发展[J]. 计量天地, 2012.

[2] 张彩红. 浅谈长度测量技术[J]. 计量技术, 2012.

[3] 赵曦,贾曦,黄荐渠. 现代长度测量方法综述[J]. 自动化仪表, 2007.

------------最新【精品】范文

显示技术发展与研究现状

显示技术发展与研究现状 目前显示器主要分为阴极射线管(CRT)和平板显示器(FPD)两大类。FPD 类主要包括液晶显示器(LCD)、有机致电发光(OLED)、等离子显示器(PDP)等。本文综述了各类显示技术的特点和发展趋势,总结了其发展前景。 标签:CRT;LCD;OLED;PDP 随着近些年光电子技术的发展,要求显示器向数字化和多功能方向发展。近几年显示技术发展迅速,多媒体终端显示器在显示性能方面应具有大屏幕、高分辨率、高亮度、高密度、全色化等高性能。在当今工业生产、社会生活和军事领域中,显示产业在信息产业中起着重要作用,因此对显示技术和显示器件提出了越来越高的要求。 显示器主要分为阴极射线管(CRT)和平板显示器(FPD)两大类。FPD类主要包括液晶显示器(LCD)、有机有机致电发光(OLED)、等离子显示器(PDP)、以及场致发射显示器(FED)、发光二极管(LED)等一些新型的显示技术等。 1 阴极射线管技术(CRT) CRT是一种利用高能电子束轰击荧光屏而发光的技术,发展至今已有100多年的历史。这种技术具有显示品质好、亮度高、性能稳定可靠、色度均匀、寻址方式简单、全视角且可以长期连续使用、价格便宜等特点。但同时,CRT有着不可克服的固有缺点:电压高、体积大、辐射强、功耗大、像素密度不高等。这些不足使得CRT技术不能向更广的显示领域发展。针对这些缺点以及为了满足市场需求,CRT器件也开始向平面化、小体积、低功耗等方面发展。但CRT 显示技术经过一百多年的发展,已经十分成熟,很困难取得较大的技术突破。时至今日,CRT唯一的价格优势也逐渐消失,一些公司相继放弃CRT产业,严重制约了CRT技术的发展,虽然有些企业正在大力研发适合市场需求的新型CRT,但其固有缺陷限制了它在未来军事领域的应用,无法满足显示技术向高密度、数字化、节能化、集成化方向发展的要求,CRT难逃持续衰落的困境。 2 平板显示技术(FPD) 平板显示(FPD,FlatPanelDisplay)技术诞生于20世纪60年代。FPD与CRT相比具有体积小、耗电省、辐射小、电磁兼容性好、质量轻等优点。随着技术的不断发展,平板显示器在视角、亮度、全彩色等方面已经不弱于CRT显示器。平板化是显示器技术发展的趋势,FPD已经逐步取代CRT。2008年FPD 全球产值达1034亿美元,CRT为182亿美元,预计到2016年FPD将逐步占据显示市场全部份额,而CRT届时将推出市场。FPD技术是采用平板显示器件借助逻辑电路来实现的,平板显示器件包括液晶显示器(LCD)、发光二极管(LED)、等离子显示器(PDP)、有機电致发光器件、场致发射器件(FED)、数字光处理投影器、液晶硅显示器等。目前主流的显示技术是LCD、PDP和OLED技术,

电子封装技术发展现状及趋势

电子封装技术发展现状及趋势 摘要 电子封装技术是系统封装技术的重要内容,是系统封装技术的重要技术基础。它要求在最小影响电子芯片电气性能的同时对这些芯片提供保护、供电、冷却、并提供外部世界的电气与机械联系等。本文将从发展现状和未来发展趋势两个方面对当前电子封装技术加以阐述,使大家对封装技术的重要性及其意义有大致的了解。 引言 集成电路芯片一旦设计出来就包含了设计者所设计的一切功能,而不合适的封装会使其性能下降,除此之外,经过良好封装的集成电路芯片有许多好处,比如可对集成电路芯片加以保护、容易进行性能测试、容易传输、容易检修等。因此对各类集成电路芯片来说封装是必不可少的。现今集成电路晶圆的特征线宽进入微纳电子时代,芯片特征尺寸不断缩小,必然会促使集成电路的功能向着更高更强的方向发展,这就使得电子封装的设计和制造技术不断向前发展。近年来,封装技术已成为半导体行业关注的焦点之一,各种封装方法层出不穷,实现了更高层次的封装集成。本文正是要从封装角度来介绍当前电子技术发展现状及趋势。

正文 近年来,我国的封装产业在不断地发展。一方面,境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,拉动了封装产业规模的迅速扩大;另一方面,国内芯片制造规模的不断扩大,也极大地推动封装产业的高速成长。但虽然如此,IC的产业规模与市场规模之比始终未超过20%,依旧是主要依靠进口来满足国内需求。因此,只有掌握先进的技术,不断扩大产业规模,将国内IC产业国际化、品牌化,才能使我国的IC产业逐渐走到世界前列。 新型封装材料与技术推动封装发展,其重点直接放在削减生产供应链的成本方面,创新性封装设计和制作技术的研发倍受关注,WLP 设计与TSV技术以及多芯片和芯片堆叠领域的新技术、关键技术产业化开发呈井喷式增长态势,推动高密度封测产业以前所未有的速度向着更长远的目标发展。 大体上说,电子封装表现出以下几种发展趋势:(1)电子封装将由有封装向少封装和无封装方向发展;(2)芯片直接贴装(DAC)技术,特别是其中的倒装焊(FCB)技术将成为电子封装的主流形式;(3)三维(3D)封装技术将成为实现电子整机系统功能的有效途径;(4)无源元件将逐步走向集成化;(5)系统级封装(SOP或SIP)将成为新世纪重点发展的微电子封装技术。一种典型的SOP——单级集成模块(SLIM)正被大力研发;(6)圆片级封装(WLP)技术将高速发展;(7)微电子机械系统(MEMS)和微光机电系统(MOEMS)正方兴未艾,它们都是微电子技术的拓展与延伸,是集成电子技术与精密

大数据技术进展与发展趋势

大数据技术进展与发展趋势 在大数据时代,人们迫切希望在由普通机器组成的大规模集群上实现高性能的以机器学习算法为核心的数据分析,为实际业务提供服务和指导,进而实现数据的最终变现。与传统的在线联机分析处理OLAP不同,对大数据的深度分析主要基于大规模的机器学习技术,一般而言,机器学习模型的训练过程可以归结为最优化定义于大规模训练数据上的目标函数并且通过一个循环迭代的算法实现,如图4所示。因而与传统的OLAP相比较,基于机器学习的大数据分析具有自己独特的特点[24]。图4 基于机器学习的大数据分析算法目标函数和迭代优化过程(1)迭代性:由于用于优化问题通常没有闭式解,因而对模型参数确定并非一次能够完成,需要循环迭代多次逐步逼近最优值点。(2)容错性:机器学习的算法设计和模型评价容忍非最优值点的存在,同时多次迭代的特性也允许在循环的过程中产生一些错误,模型的最终收敛不受影响。(3)参数收敛的非均匀性:模型中一些参数经过少数几轮迭代后便不再改变,而有些参数则需要很长时间才能达到收敛。这些特点决定了理想的大数据分析系统的设计和其他计算系统的设计有很大不同,直接应用传统的分布式计算系统应用于大数据分析,很大比例的资源都浪费在通信、等待、协调等非有效的计算上。传统的分布式

计算框架MPI(message passing interface,信息传递接口)[25]虽然编程接口灵活功能强大,但由于编程接口复杂且对容错性支持不高,无法支撑在大规模数据上的复杂操作,研究人员转而开发了一系列接口简单容错性强的分布式计算框架服务于大数据分析算法,以MapReduce[7]、Spark[8]和参数服务器ParameterServer[26]等为代表。分布式计算框架MapReduce[7]将对数据的处理归结为Map和Reduce两大类操作,从而简化了编程接口并且提高了系统的容错性。但是MapReduce受制于过于简化的数据操作抽象,而且不支持循环迭代,因而对复杂的机器学习算法支持较差,基于MapReduce的分布式机器学习库Mahout需要将迭代运算分解为多个连续的Map 和Reduce 操作,通过读写HDFS文件方式将上一轮次循环的运算结果传入下一轮完成数据交换。在此过程中,大量的训练时间被用于磁盘的读写操作,训练效率非常低效。为了解决MapReduce上述问题,Spark[8] 基于RDD 定义了包括Map 和Reduce在内的更加丰富的数据操作接口。不同于MapReduce 的是Job 中间输出和结果可以保存在内存中,从而不再需要读写HDFS,这些特性使得Spark能更好地适用于数据挖掘与机器学习等需要迭代的大数据分析算法。基于Spark实现的机器学习算法库MLLIB 已经显示出了其相对于Mahout 的优势,在实际应用系统中得到了广泛的使用。近年来,随着待分析数据规模的迅速扩

长度测量工具的发展

长度测量工具发展 工具简介 将被测长度与已知长度比较,从而得出测量结果的工具,简称测量工具。长度测量工具包括量规、量具和量仪。习惯上常把不能指示量值的测量工具称为量规;把能指示量值,拿在手中使用的测量工具称为量具;把能指示量值的座式和上置式等测量工具称为量仪。 智能之前 工具简史 最早在机械制造中使用的是一些机械式测量工具,例如角尺、卡钳等。 角尺卡钳 16世纪,在火炮制造中已开始使用光滑量规。1772年和1805年,英国的J.瓦特和H.莫兹利等先后制造出利用螺纹副原理测长的瓦特千分尺和校准用测长机。 瓦特千分尺新型测长机19世纪中叶以后,先后出现了类似于现代机械式外径千分尺和游标卡尺的测量工具。19世纪末期,出现了成套量块。 112块成套量块 继机械测量工具出现的是一批光学测量工具。19世纪末,出现立式测长仪,20世纪初,出现测长机。

新式测长仪测长机 到20年代,已经在机械制造中应用投影仪、工具显微镜、光学测微仪等进行测量。1928年出现气动量仪,它是一种适合在大批量生产中使用的测量工具。 浮标式气动量仪 电学测量工具是30年代出现的。最初出现的是利用电感式长度感应器制成的界限量规和轮廓仪。 界限量规轮廓仪 50年代后期出现了以数字显示测量结果的坐标测量机。60年代中期,在机械制造中已应用带有电子计算机辅助测量的坐标测量机。 三坐标测量机

至70年代初,又出现计算机数字控制的齿轮量仪,至此,测量工具进入应用电子计算机的阶。 计算机数字控制的齿轮量仪 工具分类 测量工具通常按用途分为通用测量工具、专类测量工具和专用测量工具3类。测量工具还可按工作原理分为机械、光学、气动、电动和光电等类型。这种分类方法是由测量工具的发展历史形成的。但一些现代测量工具已经发展成为同时采用精密机械、光、电等原理并与电子计算机技术相结合的测量工具,因此,这种分类方法仅适用于工作原理单一的测量工具。 通用测量工具 可以测量多种类型工件的长度或角度的测量工具。这类测量工具的品种规格最多,使用也最广泛,有量块、角度量块、多面棱体、正弦规、卡尺、千分尺、百分表(见百分表和千分表)、多齿分度台、比较仪、激光干涉仪、工具显微镜、三座标测量机等。 专类测量工具 用于测量某一类几何参数、形状和位置误差(见形位公差)等的测量工具。它可分为:①直线度和平面度测量工具,常见的有直尺、平尺、平晶、水平仪、自准直仪等;②表面粗糙度测量工具,常见的有表面粗糙度样块、光切显微镜、干涉显微镜和表面粗糙度测量仪等(见表面粗糙度测量);③圆度和圆柱度测量工具,有圆度仪、圆柱度测量仪等(见圆度测量);④齿轮测量工具,常见的有齿轮综合检查仪、渐开线测量仪、周节测量仪、导程仪等(见齿轮测量);⑤螺纹测量工具(见螺纹测量)等。 专用测量工具 仅适用于测量某特定工件的尺寸、表面粗糙度、形状和位置误差等的测量工具。常见的有自动检验机、自动分选机、单尺寸和多尺寸检验装置(见自动测量)等。

大数据核心技术培训

大数据核心技术培训 你学或者不学,大数据依旧在发展;你从事或者不从事,大数据的前景你都应该了解。时代的前进方向,未来的领先技术,作为时代的年轻人,你不知道就真的会被社会所淘汰的。大数据的发展前景怎么样?未来大数据的发展趋势如何? 近年来,科技的快速发展推动了企业在数据生成、储存等多方面的需求增长。所以在企业爆炸式的大数据时代下,剧增了原有数据存的储存压力,所以大数据人才需求量将会与日俱增。所以大数据在未来就业前景一定非常广阔,在此千锋教育带大家了解大数据的发展趋势。 数据分析成为大数据技术的核心 大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息。要想逐步实现这个功能,就必须对数据进行分析和挖掘。而数据的采集、存储、和管理都是数据分析步骤的基础,通过进行数据分析得到的结果,将应用于大数据相关的各个领域。 云数据分析平台将更加完善 近几年来,云计算技术发展迅猛,与此相应的应用范围也越来越宽。云计算的发展为大数据技术的发展提供了一定的数据处理平台和技术支持。云计算为大

数据提供了分布式的计算方法、可以弹性扩展、相对便宜的存储空间和计算资源,这些都是大数据技术发展中十分重要的组成部分。随着云计算技术的不断发展和完善,发展平台的日趋成熟,大数据技术自身将会得到快速提升,数据处理水平也会得到显著提升。 开源软件的发展成为推动大数据发展的新动力 开源软件是在大数据技术发展的过程中不断研发出来的。这些开源软件对各个领域的发展、人们的日常生活具有十分重要的作用。开源软件的发展可以适当的促进商业软件的发展,以此作为推动力,从而更好地服务于应用程序开发工具、应用、服务等各个不同的领域。 由于大数据行业快速发展,人才需求急剧增加。目前,据某招聘网站平台数据,目前大数据人才的供给量远远低于行业人才需求。所以大数据培训应运而生,作为连接人才与企业的窗口,千锋大数据培训成为了为企业提供大数据人才强而有力的保障。 千锋大数据培训讲师经过多年的培训经验,结合学员的学习曲线,设计合理的项目进阶课程,让学员逐渐掌握做项目的方法方式,培训真正的项目经验。不

微电子导论论文--发展及历史

中国微电子技术发展现状及发展趋势 论文概要: 介绍了中国微电子技术的发展现状,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。 一.我国微电子技术发展状况 1956年7月,国务院科学专业化规划委员会正式成立,组织数百各科学家和技术专家编制了十二年(1965—1967年)科学技术远景规划,这个著名的《十二年规划》中,明确地把发展计算机技术、半导体技术、无线电电子学、自动化和遥感技术放到战略的重点上,我国半导体晶体管是1957年研制成功的,1960年开始形成生产;集成电路始于1962年,于1968年形成生产;大规模集成电路始于70年代初,80年代初形成生产。但是,同世界先进水平相比较,我们还存在较大的差距。在生产规模上,目前我国集成电路工业还没有实现高技术、低价格的工业化大生产,而国外的发展却很快,美国IBM 公司在日本的野洲工厂生产64K动态存贮器,1983年秋正式投产后,每日处理硅片几万片,月产量为上百万块电路,生产设备投资约8000万美元。日本三菱电机公司于1981年2月开始动土兴建工厂,1984年投产,计划生产64K动态存贮器,月产300万块,总投资约为1.2亿美元。 此外,在美国和日本,把半导体研究成果形成工业化生产的周期也比较短。在美国和日本,出现晶体观后,形成工业生产能力是3年;出现集成电路后形成工业生产能力是1—3年;出现大规模集成电路后形成工业生产能力是1—2年;出现超大规模集成电路后形成工业生产能力是4年。我国半导体集成电路工业长期以来也是停留在手工业和实验室的生产方式上。近几年引进了一些生产线,个别单位才开始有些改观,但与国外的差距还是相当大的。 从产品的产值和产量方面来看,目前,全世界半导体与微电子市场为美国和日本所垄断。这两国集成电路的产量约占体世界产量的百分之九十,早期是美国独占市场,而日本后起直追。1975年美国的半导体与集成电路的产值是66亿美元,分离器件产量为110多亿只,集成路为50多亿块;日本的半导体与集成电路的产值是30亿美元,分离器件产量为122亿只,集成电路为17亿块。1982年美国的半导体与集成电路的产值为75美元,分离器件产量为260多亿只,集成电路为90多亿块;日本的半导体与集成电路的产值为38亿美元,分离器件产量300多亿只,集成电路40多亿块。我国集成电路自1976年至1982年,产量一直在1200万块至3000万块之间波动,没有大幅度的提高,1982年我国半导体与集成电路的产值是0.75亿美元,产量为1313万块,相当于美国1965年和日本1968年的水平。(1965年美国的半导体与集成电路的产值是0.79亿美元,产量为950万块;1968年日本的半导体与集成电路的产值为0.47亿美元,产量为1988万块)。 在价格、成本、劳动生产率、成品率等方面,差距比几十倍还大得多,并且我国小规模集成电路的成品率比国外低1—3倍;中规模集成电路的成品率比国外低3—7倍。目前中、小规模集成电路成品率比日本1969年的水平还低。从经济效益和原材料消耗方面考虑,国外一般认为,进入工业生产的中、小规模集成电路成品率不应低于50%,大规模集成电路成品率不应低于30%。我国集成电路成品率的进一步提高,已迫在眉睫,这是使我国集成电路降低成本,进入工业化大生产、提高企业经济效益带有根本性的一环。从价格上来看,集成电路价格是当前我国集成电路工业中的重大问题,产品优质价廉,市场才有立足之地。我国半导体集成电路价格,长期以来,降价较缓慢,近两三年来,集成电路的平均价格为每块10元左右,这种价格水平均相当于美国和日本1965

论雷达技术的发展与应用及未来展望

论雷达技术的发展与应用及 未来展望 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

论雷达技术的发展与应用及未来展望 摘要:雷达是用无线电的方法发现目标并测定它们的空间位置的装置。雷达的发展与使用过程,正是电子技术在军事中应用的缩影,而雷达的未来,更与电子技术息息相关。本文介绍了雷达的发展与应用的历史,重点介绍了相控阵雷达与激光孔径雷达两类雷达的原理与特点,并指出雷达的弱点及未来发展方向关键词:雷达;发展;实战应用;种类;弱点;未来

雷达主要用于对远距离物体的方位、距离、高度做精确检测,可以说是现代军事电子技术的代表。随着不断的发展,雷达在战区的警戒、各种新式武器威力的发挥、协同作战的指挥中的地位愈发重要。 1雷达的发展与应用 雷达的基本工作原理是靠发射探测脉冲和接受被照射目标的回波发现目标。百年的时间里,随着新技术的发展和应用,雷达也在不断发展。 1.1雷达的发展史 下面是雷达出现前夜相关理论的一系列突破: 1842年多普勒(Christian Andreas Doppler)率先提出利用多普勒效应的多普勒式雷达。 1864年马克斯威尔(James Clerk Maxwell)推导出可计算电磁波特性的公式。 1886年赫兹(Heinerich Hertz)展开研究无线电波的一系列实验。 1888年赫兹成功利用仪器产生无线电波。 1897年汤普森(JJ Thompson)展开对真空管内阴极射线的研究。 这些与电磁波相关的科技是雷达的最基本理论。1904年克里斯蒂安?豪斯梅耶(Christian Hulsmeyer)宣称他的“电动镜”可以传输音频,并能够接受到运动物体的回应。可以说,就是这位德国人奠定了这项技术。然而,在一战期间,德国军官们所注意的是无线电通讯。 接下来雷达的出现就显得顺理成章了。1933年,鲁道夫?昆德(Rudolf Kunhold)提出毫米波长可能可以探测出水面船只及飞船的位置。两年后,威廉?龙格(Wilhelm Runge)已经能够根据飞机自身所发出的信号计算出50公里以外的飞机位置所在,即使是在夜晚或者有雾的时候。 第二次世界大战中的不列颠战役成为雷达正式登场的舞台。法国的迅速陷落,使希特勒有理由相信只需通过空袭便能征服英国。在这一大规模的空战中,纳粹德国空军拥有的飞机数量远远超过了英国皇家空军——2670架对1475架。而英国在雷达方面有优势。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。1938年,为保卫英格兰,用七部雷达组成"Chain Home"雷达网,雷达频率30兆赫。雷达网使德国轰炸机还没到达英吉利海峡即被发现,英国也因此取得了英伦空战的胜利。这场胜利也是第二次世界大战中较大的转折点之一。 之后四十年人们更加意识到雷达的重要作用,雷达也因此得到了不断发展,也分出了不同种类。本节余下部分将有选择地概括各个年代的重大进展。 1.1.1四十年代 四十年代初期(在二次大战期间),由于英国发明了谐振腔式磁控管,从而在先驱的VHF雷达发展的同时,产生了微波雷达发展的可能性。它开拓了发展L波段(23q厘米波长)和S波段(10厘米波长)大型地面对空搜索雷达和X波段(3厘米波长)小型机载雷达的美好前景。1941年苏联最早在飞机上装备预警雷达。两年后美国麻省理工学院研制出机载雷达平面位置指示器,预警雷达。时至今日,雷达已成为各式飞机不可缺少的组成部分,是实施精确打击和自身防护的必要手段。 1.1.2五十年代

浅谈机械电子技术的未来发展趋势

浅谈机械电子技术的未来发展趋势 摘要:机械电子技术融合了机械、电子以及计算机等多方面的专业技术和知识,通过协调配合形成了机电一体化。在实际的工作中,利用计算机把集成控制、数 据检测分析以及数据处理等功能集中到轻便的机械配件中,这样一来解改善了传 统机械操作复杂笨重的缺点。另外应用电子技术还可以实现一部分自动化,使机 械能够在程序的控制下自动完成一些任务,这样可以高效率地完成批量生产,提 升生产配件的标准化,节省大量的人力与时间,促进了企业经济效益的提升,有 利于企业在市场中取得竞争优势。 关键词:机械电子技术;基本现状;发展趋势 1机械电子技术 机械电子技术也称之为机电一体化,是指在机械生产活动过程中运用的电机 技术,实现电子技术和机械生产的有效结合,对于提高生产效率和质量具有重要 意义。我国对于机械电子技术研究起步比较晚,只能够应用在狭小范围之内,但 是随着技术水平提升,机械电子技术获得了创新,覆盖范围在不断扩大,而且纳 入了多种学科,综合型的技术体系慢慢形成。在机械控制、操作以及动力系统等 方面获得大大提高,更加具体、全面分配电子技术功能,有利于促进机械设备结 构优化,提高资源利用率,创造出巨大经济效益。 2机械电子技术特征 相比较于传统机械,机械电子技术在设计产品的时候,会体现出灵活性的特点,而且操作起来非常快捷方便。同时要具有一定的创新性,可以满足多元化需求,不断拓展市场领域,获得更好的发展机遇。在自动化系统控制下,机械电子 技术只需要只需要按照规定就可以完成生产活动,过程中不会受到人为主观因素 影响,大大提高了产品质量。由此可见,机械电子技术功能是非常强大的,代表 着先进生产水平,可以适应发展的需求。 3机械电子技术的应用 3.1质量检测 科技发展有效提高了信息的流动性,并且也产生了大量高性能材料,此材料 逐渐代替传统工业材料,所以投入及重视程度在不断提高。设备机械化要满足现 代工业生产需求,传统根据人工检测技术已经无法满足科技高精度需求,所以目 前所发展的高精度设备就是机械电子技术的重要展现。 3.2农业方面 在信息化时代不断发展的过程中,农业发展进程要求有效实现现代化的进程,从而支撑国民经济的发展。农业现代化发展能够有效解决低效率、低品质及低产 量等问题,和其具有密切关系的农业机械具有重要的作用。利用现代化机械电子 信息技术融入,能够使农业机械效率得到提高,促进现代化农业的持续发展。 3.3电子产品 在机械生产过程中,为了使设备重量及体积得到降低,使部分零件通过电子 部件进行代替,以此使设备灵活性得到提高。电子产品制造中的机械微电子技术 相关全新的纳米技术能够精准掌握部件内部结构,并且还能够实现合理科学改造。 3.4工业制造 将微电子技术应用到产品制造中,使行业市场竞争力得到进一步的提高,从 而有效实现企业经济效益持续发展。比如,将微电子技术应用到汽车制造行业中,能够使防盗系统及监控系统性能得到进一步提高。在汽车电子引擎系统中使用微

(完整版)《长度和时间的测量》教学设计

《测量长度和时间》教学设计 【教材分析】: 本节的主要目标是让学生知道学习物理要做些什么。教材在学生初步认识了物理学后,通过安排学生人人动手的小实验,让每个学生都感受到奇妙、有趣的物理现象就在身边,让学生从动手做实验的过程中学会测量长度和时间的一些基本方法。其目的就是让学生知道学习物理就需要仔细观察、认真动手实验和进行测量。 【学情分析】: 学生刚刚接触物理,具有学习物理的浓厚兴趣,还没有良好的科学素养,学生由感性认识向理性认识的转化能力弱。学生乐于动手实际操作,缺乏对规范操作规程的掌握,培养学生科学素养是重点。 【教学目标】: 1、知识与技能 (1) 会使用适当的工具测量时间和长度 (2) 知道测量有误差,误差和错误有区别 2、过程与方法 (1) 体验通过日常经验或自然现象粗略估计时间和长度的方法。 (2) 体验探究长度间接测量的探究过程。 3、情感、态度与价值观 认识计量时间和长度的工具及其发展变化的过程,培养对科学技术的热爱。 【教学理念】: 突出新科学课程的理念,培养学生的探究能力和分析能力,引导学生在探究过程中寻找答案,获得知识;倡导学生主动参与,乐于探究,勤于动手,体现个性化的教育思想和情感教育思想、学习的个体化。 本节的重点在于:(1)认识常用的计时工具和长度测量工具。(2)用刻度尺测量物体长度。 本节的难点在于:误差和错误的区别 鉴于本节课的重点难点,建议采用的教学方法:演示法、观察法、实验与讨论 【教学过程】: 一、新课引入 师:上节课我们已经进入了物理学的世界,现在我们先来做几个有趣的实验: 1、隔掌吸钉 2、纹丝不动 3、成像奥秘 (教师演示实验,引导学生仔细观察)

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

光电技术应用及发展展望

光电技术应用及发展前景 43年前,世界上第一台红宝石激光器诞生。那是的人们可能还没有意识到,由这台激光器引发、孕育出的光电技术将会给人类的生活带来翻天覆地的变化。随着光电子技术的发展,当今社会正在从工业社会向信息社会过渡,国民经济和人们生活对信息的需求和依赖急剧增长,不仅要求信息的时效好、数量大,并且要求质量高、成本低。在这个社会大变革时期,光电子技术已经渗透到国民经济的每个方面,成为信息社会的支柱技术之一。总之,光电子技术具有许多优异的性能特征,这使得它具有很大的实用价值。而今天,光电子产业已经成为了21世纪的主导产业之一,光电子产业的参天大树上也结出了丰富的果实,它们包括但不限于光通信、光显示、光存储、影像、光信号、太阳能电池等,也可以简单地把现在的光电子产业分为信息光电子(光纤光缆、光通讯设备等)、能量光电子(激光器、激光加工成套设备、测控仪表、激光医疗设备等)和娱乐光电子(VCD、DVD等)等方面。而本文将介绍光电子技术在以下几个领域的应用前景: 光通信: 目前,光通信网络行业进入高速发展期,以光纤为技术基础的网络通信现在已经覆盖了许多地区,我国的光通信技术也走在世界前沿。2011年,武汉邮科院在北京宣布完成“单光源1-Tbit/s LDPC 码相干光OFDM 1040公里传输技术与系统实验”,这一传输速率是目前国内商用最快速率(40Gb/s)的25倍。十年发展,光通信商用水平的最高单通道速率增长16倍,最大传输容量增长160倍。2005年,邮科院实现了全球率先实现在一对光纤上4000万对人同时双向通话。2011年7月29日,该院在全球率先实现一根光纤承载30.7Tb/s信号的传输,可供5亿人同时在一根光纤上通话,再次刷新了世界纪录。而正在研制中的科技开发项目,有望在2014年实现12.5亿对人同时通话。这一技术打破了美国在该领域保持的单光源传输世界纪录。在2012年的中国光博会上,新技术新产品层出不穷。随着“宽带中国”上升为国家战略,中国得天独厚的优势将使光通信制造企业信心十足。通过对各技术分支专利的分析看出,光传输物理层PHY和光核心网OCN已相对成熟和大规模商用,PHY作为各类网络传输技术的基础,既有相对成熟、淡出主流研究视野的部分,也有业界正致力于寻求最佳方案的技术点;无光源网络PON技术作为世界普遍应用的接入网技术,在“光纤到户”、“三网融合”等概念家喻户晓的今天,已成为各国基础设施建设投资中不可或缺的一部分;分组传输网PTN既是新兴技术,又得到了相对广泛的商用,其在移动回传中的应用使其成为下一代移动通信网络建设中的一种较优的可选方案,同时相应技术标准正在争议中发展,其技术发展将带来难以估量的商机;智能交换光网络ASON技术和全光网AON技术是光通信网络技术中的前沿技术,目前处于研发的活跃期。 此外,复旦大学近期研发的可见光通讯技术也是光通信的发展前景之一,通过给普通的LED 灯泡加装微芯片,使灯泡以极快的速度闪烁,就可以利用灯泡发送数据。而灯泡的闪烁频率达到每秒数百万次。通过这种方式,LED灯泡可以快速传输二进制编码。但对裸眼来说,这样的闪烁是不可见的,只有光敏接收器才能探测。这类似于通过火炬发送莫尔斯码,但速度更快,并使用了计算机能理解的字母表。使用标准的LED照明灯,哈斯与他的同事戈登·波维创建的研究小组已经达到了两米距离的130兆比特每秒的传输速度。随着白炽灯、荧光灯逐渐退出市场并被LED取代,未来任何有光的地方都可以成为潜在的LiFi数据传输源。想象一下这样的场景:在街头,利用路灯就可以下载电影;在家里,打开台灯就可以下载歌曲;在餐厅,坐在有[4]灯光的地方就可以发微博;即便是在水下,只要有灯光照射就可以上网。LiFi另一个巨大的好处是在任何对无线电敏感的场合都可以使用,比如飞机上、手术室里等。光显示:

未来20年汽车电子技术发展趋势

收稿日期:2009-08-02 作者简介:高成(1937-),男,陕西人,教授级高工,主要从事汽车电子发展方向的评估和规划. 未来20年汽车电子技术发展趋势 高 成1,邱 浩2 (1. 深圳市航盛电子股份有限公司,广东 深圳; 2. 深圳职业技术学院 汽车与交通学院,广东 深圳 518055) 摘 要:安全性、节能、减排和舒适娱乐性是汽车电子未来发展的主要方向,全球各大汽车电子研发团队争相加大对这4个方面的研发力度.本文介绍了全球最具影响力的来自欧洲、美洲和亚洲的6个专业汽车电子研发公司的最新研究进展,主要集中在汽车安全、动力性、环保、车载通讯、信息娱乐、半导体技术和微控制器的开发上.分析结果表明,未来20年内汽车电子工业发展的重点将转移到第三世界国家,汽车性能的提高更多地依赖于电子技术的提升,电动汽车将不可阻挡地占据重要地位. 关键词:汽车电子;安全;环保;半导体 中图分类号:TK9;TN3 文献标识码:A 文章编号:1672-0318(2010)01-0033-07 在过去10年里,汽车工业发生了2个显著变化,一是增长的基点正在从经欧美市场向以亚洲国家为主的发展中地区市场转移[1].数据显示,2007-2012年亚洲和欧洲将会主导全球汽车产量的89%;二是在市场成熟的欧美国家,汽车的性能的提高更多地依赖于电子技术.有研究表明,1989年至2010年,电子设备在整车制造成本所占比例,由16%增至40%以上.目前每部新车的IC 成本约在310美元左右,估计到2015年将增长到400美元左右.无论是市场重心向发展中国家转移,还是技术重心向电子技术倾斜,都将势必影响到汽车电子发展的方向[2].而且,其技术本身也将面临着来自性能、安全以及环保法规多方面的苛刻要求.今后10年,电子技术在汽车工业中扮演着多大的作用,它又应该如何承担起汽车电子化的重任?本文就全球一些专业的汽车主体厂商和零配件厂商进行专业分析,展望未来20年汽车电子方向的发展趋势. 1 德尔福:绿色、安全和通讯是 汽车电子的未来 德尔福通过对推动全世界新技术、产品和市 场发展的全球趋势全面的调查和研究,发现汽车电子行业的未来就是绿色性环保性、安全性和连通通讯. (1)环保型.全球汽车行业最主要的发展趋势就是倾向于发展高效燃料、低碳排放量的发动机[3].目前有许多选择方案,其一就是先进的柴油发动机和电子控制系统,在公路驾驶时,其燃料经济性比汽油发动机提高30%~40%;其二就是电动动力系统或混合动力汽车(HEV ).混合动力汽车技术应用有许多结构,但都涉及一个小型电池组、一个电子控制器及一个可以使汽车发动机在停车时自动关闭并在发动机自动重起前对汽车进行再次电动加速的电动机.混合动力汽车系统可以提高汽车的燃油经济性达30%~40%,并降低碳排放达60%.纯电动汽车的研发工作仍在继续,而且范围已拓展至电动汽车或插入式混合动力汽车.这些汽车采用更大的电池组,可以在纯电动驱动的情况下,行驶更长的距离.最后,供应商和汽车制造商正在开发气缸压力传感和均质充量压燃燃烧(HCCI )等系统,以在经济性和汽油发动机排放方面取得更大的进展.所有这些动力系统的创新技术都将在未来的5~15年里为全世界的汽车增加大量电子内容. (2)安全性.汽车电子发展的第二大趋势是安 2010年第1期 Journal of Shenzhen Polytechnic No.1, 2010 深圳职业技术学院学报

身份认证技术的发展与展望

身份认证技术的发展与展望 Internet迅猛发展带来了信息共享与安全这对矛盾共同体,加强网络安全建设、保障网络的安全运行成为网络存在的根本之道。网络身份认证技术发展到今天已经成为信息管理系统中必不可少的一部分,扮演着网络系统“看门人”的角色。 针对不同的安全威胁,目前存在多种主机安全技术和相关安全产品,如防病毒技术、个人防火墙、安全应用程序(如文件加密程序)、安全操作系统等。这些技术和产品在一定程度上满足人们的安全需求,却没有很好地解决以下两个问题: (1)系统访问,即开机时的保护问题,目前普遍采用的是基于口令的弱身份认证技术,很容易被攻破而造成泄密; (2)运行时保护,即在合法用户进入系统后因某种原因暂时离开计算机,此时任何人员均可在此系统之上进行操作,从而造成泄密。

将密码写在记事本上挂在电脑旁边,这样的事情相信很多公司的员工都曾经为之。出于安全的要求,现在公司的安全策略普遍要求员工的登陆密码要定期更换,而且不能重复,这使得想出一个自己能记住的长串密码成为一件让员工头疼的事情。为了便于记忆,员工往往会选择常用词或者号码作为密码,如果攻击者使用“字典攻击法”或者穷举尝试法来破译,很容易被穷举出来。传统的账号加密码的形式,账号基本上都是公开的,密码容易被猜中,容易忘记,也容易被盗。据统计,一个人平均下来要记15到20个密码。静态密码的隐患显而易见,尤其是在证券、银行等行业,轰动一时的“银广夏盗卖案”早就为业界敲响了警钟。 为了解决静态密码的安全问题,一种方式是同一个人员使用不同的密码进入不同的应用系统,避免所有的鸡蛋都在一个篮子里面的问题,然而需要记忆多个密码;第二种方式,采用软件VPN方式,登陆前先要使用VPN连接,这样可以面向一部分机器开放,但是第一次使用时下载VPN软件,每次访问

第三章 长度尺寸测量工具

第三章长度尺寸测量工具 一、简易量具 1、钢直尺 1)钢直尺结构与规格 钢板尺俗称钢尺或直尺,如图1所示,是用来测量长度的一种最常用的简单量具,可直接测量工件尺寸。尺边平直,尺面有米制或英制的刻度,可以用来测量工件的长度、宽度、高度和深度。有时还可用来对一些要求较低的工件表面进行平面度检查。 图1钢板尺 钢板尺测量范围基本取决于钢尺的长度。测量范围主要有:0~150 mm、0~200 mm、0~300 mm、0~500 mm等规格,其测量范围就是所能测定的最大长度。钢板尺最小刻度一般为0.5 mm或l mm。 2)使用方法 要根据被测件的形状和尺寸大小灵活掌握使用钢板尺的方法。应根据测量尺寸的大小,选择恰当长度的钢板尺。实际测量工件时,应将钢板尺拿稳,用拇指贴靠工件。图2(a)所示为正确的测量方法;图2(b)所示为错误的测量方法。手指位置不对,易使钢板尺不稳定,造成测量不准确。读数时,应使视线与钢板尺垂直,而不应倾斜,否则会影响测量的准确度。 钢板尺起始端是测量的基准,应保持其轮廓完整,以免影响测量的准确度。如果钢板尺端部已经磨损,应以另一刻度线作为基准。 (a)正确 (b)不正确 图2钢板尺测量工件 2、卡钳 卡钳是一种间接测量的简单量具,不能直接读出测量数值,必须与钢板尺或其他带有刻度的量具一起使用才尺或其他带有刻度的量具一起使用才行。 1)卡钳的种类 卡钳还分为普通卡钳和弹簧卡钳。普通卡钳结构简单,是用铆钉或螺钉连接两个卡脚的;弹簧卡钳是用弹簧连接两个卡脚的,通过调整螺母来限制卡脚张开的大小,如图3所示。

图3 卡钳 1—卡钳 2—铆钉或螺钉 3—弹簧 4—螺钉 5—调整螺母卡钳分外卡钳和内卡钳,外卡钳是由两个弧形卡脚连接起来的,两个钳口是相对的,可用来测量外尺寸,如外圆直径、厚度、宽度等。内卡钳是由两个直形卡脚连接起来的,两个钳口是向外的,可用来测量内尺寸,如内孔、沟槽等。 卡钳适合用来测量铸、锻件毛坯。 在精加工过程中,卡钳应与千分尺配合使用,对某一加工尺寸,用预先调整好的卡钳进行测试,可提高测量精度和工作效率。 2)卡钳的调整方法 普通卡钳的调整 卡钳卡脚张开的大小,称为卡钳的开度。调整普通卡钳的开度时,先用两手进行大致调整,开度接近需要的大小时,用手捏住连接处,轻轻敲击卡脚,使它微微张大或缩小来进行细微调整。图4(a)、(b)是轻敲卡脚的外边(图示箭头为敲击方向),使它由大调小;图4(c)、(d)是轻敲卡脚的内边,使它由小调大。 (a)(b) (c)(d)

微电子技术的发展

什么是集成电路和微电子学 集成电路(Integrated Circuit,简称IC):一半导体单晶片作为基片,采用平面工艺,将晶体管、电阻、电容等元器件及其连线所构成的电路制作在基片上所构成的一个微型化的电路或系统。 微电子技术 微电子是研究电子在半导体和集成电路中的物理现象、物理规律,病致力于这些物理现象、物理规律的应用,包括器件物理、器件结构、材料制备、集成工艺、电路与系统设计、自动测试以及封装、组装等一系列的理论和技术问题。微电子学研究的对象除了集成电路以外,还包括集成电子器件、集成超导器件等。 集成电路的优点:体积小、重量轻;功耗小、成本低;速度快、可靠性高; 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向; 衡量微电子技术进步的标志要在三个方面:一是缩小芯片器件结构的尺寸,即缩小加工线条的宽度;而是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功一这种组件为基础的混合组件; 1958年美国的杰克基尔比发明了第一个锗集成电路。1960年3月基尔比所在的德州仪器公司宣布了第一个集成电路产品,即多谐振荡器的诞生,它可用作二进制计数器、移位寄存器。它包括2个晶体管、4个二极管、6个电阻和4个电容,封装在0.25英寸*0.12英寸的管壳内,厚度为0.03英寸。这一发明具有划时代的意义,它掀开了半导体科学与技术史上全新的篇章。 1960年宣布发明了能实际应用的金属氧化物—半导体场效应晶体管(metal-oxide-semiconductor field effect transistor ,MOSFET)。 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路; 由于MOS电路在高度集成和功耗方面的优点,70年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费事和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 微电子发展状态与趋势 微电子也就是集成电路,它是电子信息科学与技术的一门前沿学科。中国科学院王阳元院士曾经这样评价:微电子是最能体现知识经济特征的典型产品之一。在世界上,美国把微电子视为他们的战略性产业,日本则把它摆到了“电子立国”的高度。可以毫不夸张地说,微电子技术是当今信息社会和时代的核心竞争力。 在我国,电子信息产业已成为国民经济的支柱性产业,作为支撑信息产业的微电子技术,近年来在我国出现、崛起并以突飞猛进的速度发展起来。微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 1.微电子发展状态 1956年五校在北大联合创建半导体专业:北京大学、南京大学、复旦大学、

浅析大数据的特点及未来发展趋势

浅析大数据的特点及未来发展趋势 摘要:随着二十一世纪的到来,人们已经进入了信息化的时代。计算机技术水平越来越先进,给人们的生活带来了极大的便利。在信息化的时代,人们每天接触的信息量成千上万。获取有用的数据,不仅可以有效缩短时间,而且可以满足具体需求。大数据技术正是适应现代社会的发展,从数据量巨大、结构复杂、类型众多的数据中,快速获取有价值的信息。因此本篇文章主要分析了大数据的特点,通过进一步探讨,并对其未来的发展趋势进行展望。 关键词:大数据;特点;发展趋势 大数据是继互联网、云计算技术后世界又一热议的信息技术,近几年来发展十分迅速。大数据技术的出现,给人们的生活带来了极大的便利。我们将生活中的东西数据化之后,就可以采用数据的格式对其进行存储、分析,从而获得更大的价值。 一、大数据技术的特点分析 1)开源软件得到广泛的应用 近几年来,大数据技术的应用范围越来越广泛。在信息化的时代,各个领域都趋向于智能化、科技化。大数据技术研发出来的分布式处理的软件框架Hadoop、用来进行挖掘和可视化的软件环境、非关系型数据库Hbase、MongoDb 和CounchDB等开源软件,在各行各业具有十分重要的意义。这些软件的研发,与大数据技术的发展是分不开的。 2)不断引进人工智能技术 大数据技术主要是从巨大的数据中获取有用的数据,进而进行数据的分析和处理。尤其是在信息化爆炸的时代,人们被无数的信息覆盖。大数据技术的发展显得十分迫切。实现对大数据的智能处理,提高数据处理水平,需要不断引进人工智能技术,大数据的管理、分析、可视化等等都是与人密切相关的。现如今,机器学习、数据挖掘、自然语言理解、模式识别等人工智能技术,已经完全渗透到了大数据的各个程序中,成为了其中的重要组成部分。 3)非结构化的数据处理技术越来越受重视 大数据技术包含多种多样的数据处理技术。非结构化的处理数据与传统的文本信息存在很大的不同,主要是指图片、文档、视频等数据形式。随着云计算技

相关文档
最新文档