数学建模课后答案

数学建模课后答案
数学建模课后答案

数学建模课后答案 Revised by Jack on December 14,2020

第一章

4.在节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。f 和g 都是连续函数。椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。不妨设0)0(,0)0(g >=f 。当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。这样,改变椅子的位置使四只脚同时着地。就归结为证明如下的数学命题:

已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===?f g a g a f a 且,0)π/2(,0)0(>>g f 。证明存在0a ,使0)()(00==a g a f

证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则,

由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,

必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f

因为0)()(00=?a g a f ,所以0)()(00==a g a f

8

第二章

10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章

5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)(

(1)k 是产量增加一个单位时成本的降低 ,

销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2)

收入等于销售量乘以价格p :px x f =)( (3)

利润)()()(x q x f x r -= (4)

将(1)(2)(3)代入(4)求出

当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为

6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。销售量与价格二者呈线

性关系0,,>-=b a bp a x .

利润)()()(x q x f x u -=.假设前一半销售量的销售价格为1p ,后一半销售量的销

售价格为2p 。

前期利润 dt bp a t q p p u T ))](([)(12/011--=?

后期利润 dt bp a t q p p u T T ))](([)(22/22--=?

总利润 )()(21p u p u U += 由0,02

1=??=??p U p U 可得到最优价格: 前期销售量 dt bp a T )201?-、(

后期销售量 dt p a T

T )(2/2?-

总销售量 0Q =)(221p p bT aT +- 在销售量约束条件下U 的最大值点为

8~01T bT Q b a p β--= ,8

~02T bT Q b a P β+-= 7.

(1)雨水淋遍全身,22.2)2.0*5.12.0*5.05.0*5.1(*2)(2m ac bc ab s =++=++= 以最大速度跑步,所需时间s v d t m 2005/1000/min ===

(2)顶部淋雨量v bcdw Q /cos 1θ=

雨速水平分量 θsin u ,水平方向合速度 v u +θsin

迎面淋雨量 uv v u abdw Q /)sin (2+=θ

总淋雨量 21Q Q Q +=

当m v v =时,Q 最小,15.10≈=Q ,θL;L 55.1Q 30≈=,。

θ (3)合速度为|sin |v u -α总淋雨量

???????>+-=-+≤-+=-+=ααααααααααsin ,)sin cos ()sin (cos sin ,)sin cos ()sin (cos u v v av a c u u bdw v u v a cu u

bdw u v v av a c u u bdw v v u u cu u bdw Q 若0sin cos <-ααa c ,即a c /tan >α,则αsin u v =时Q 最小,

否则m v v =时Q 最小,当。30=α,L Q s m v 24.0,/2,15/2tan ≈=>α最小

(4)雨从背面吹来,满足)。6.7,2.0,5.1(/tan >==>ααm c m a a c ,αsin u v =,Q 最小,

人体背面不淋雨,顶部淋雨。

(5)侧面淋雨,本质没有变化

第四章

1.(1)设证券A B C D E 的金额分别为 54321,,,,x x x x x

(2)由(1)可知,若资金增加100万元,收益增加百万元,大于以%的利润借到100万元资金的利息,所以应该借贷。投资方案需要将上面模型第二个约束右端改为11,求解得:证券A ,C ,E 分别投资百万元,百万元,百万元,最大税后收益为百万元。

(3)由(1)可知,证券A 的税前收益可增加%,若证券A 的税前收益增加为%,投资不应改变。证券C 的税前收益可减少%,故若证券C 的税前收益减少为%,投资应该改变。

6.设1,1z y 分别是产品A 是来自混合池和原料丙的吨数,22,z y 分别是产品B 中是来自混合池和原料丙的吨数;混合池中原料甲乙丁所占的比例分别为421,,x x x ,优化目标是总利润最大,

7.记b=(290,315,350,455)为4种产品的长度,n=(15,28,21,30)为4种产品的产品的需求量,设第i 种切割模式下每根原料钢管生产4种产品的数量分别为,,,,4321r r r r 该模式使用i x 次,即使用该模式切割i x 根原料钢管(i=1,2,3,4)且切割模式次序是按照使用频率从高到低排列的。

第五章

1、(1)SIR 模型???????=-==-=00)0(,)0(,s s si dt

ds i i i si dt di λμλ,s(t)曲线单调递减。 若σ1

0>s ,当01

s s <<σ时,

0>dt di ,i(t)增加; 当σ1=s 时,

0=dt

di ,i(t)达到最大值; 当σ1

di ,i(t)减少,且0=∞i (2)若)(,0,10t i dt di s <<σ单调递减至0 9.(1)提倡一对夫妻只生一个孩子:总和生育率1)=t (β;(2)提倡晚婚晚育:生育模式111,)()()(1r r e r r r h r r >Γ-=---αθαθα取2

,2n ==αθ,得21-+=n r r c ,1r 意味着晚婚,n 增加意味着晚育,这里的c r r ,1增大(3)生育第二胎的规定:1)(>t β,生育模式)(r h 曲线更加扁平。

数学建模作业

郑重声明: 本作业仅供参考,可能会有错误,请自己甄别。 应用运筹学作业 6.某工厂生产A,B,C,D四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示,设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。问:如何安排生产,才能使月利润最大?又如A,B,C,D四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 1234 四种产品的数量,则得目标函数: Max=(200?150)x1+(130?100)x2+(150?120)x3+(230?200)x4 =50x1+30x2+30x3+30x4 生产四种产品所用时间: (0.3+0.9+0.7+0.4)x1+(0.5+0.5+0.5+0.5)x2+(0.2+0.7+0.4+ 0.8)x3+(0.4+0.8+0.6+0.7)x4≤25×8 即:2.3x1+2.0x2+2.1x3+2.5x4≤200 又产品数量不可能为负,所以:x i≥0(i=1,2,3,4) 综上,该问题的线性规划模型如下: Max Z=50x1+30x2+30x3+30x4 S.T.{2.3x1+2.0x2+2.1x3+2.5x4≤200 x i≥0(i=1,2,3,4) 下求解目标函数的最优解: max=50*x1+30*x2+30*x3+30*x4; 2.3*x1+2.0*x2+2.1*x3+2.5*x4<200; Global optimal solution found. Objective value: 4347.826 Total solver iterations: 0 Variable Value Reduced Cost X1 86.95652 0.000000 X2 0.000000 13.47826 X3 0.000000 15.65217

数学建模作业

数学建模作业 姓名:李成靖 学号:1408030311 班级:计科1403班 日期:2015.12。30

1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队? 如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57”5,组成接力队的方案是否应该调整? 名队员4种泳姿的百米平均成绩 ij 若参选择队员i 加泳姿j 的比赛,记x i j=1, 否则记xi j=0 目标函数: 即m in=66.8*x11+75.6*x12+87*x13+58.6*x14+57。2*x21+66*x22+66.4*x 23+53*x24+78*x31+67.8*x32+84。6*x33+59.4*x34+70*x 41+74。2*x42+69.6*x 43+57。2*x44+67。4*x51+71*x52+83。8*x53+62.4*x54; 约束条件: x 11+x12+x13+x14〈=1; x 21+x22+x23+x 24〈=1; x 31+x32+x33+x34<=1; x 41+x42+x 43+x44〈=1; x 51+x52+x53+x54<=1; x11+x 21+x31+x41+x51=1; x 12+x22+x32+x42+x52=1; x13+x 23+x33+x43+x53=1; x14+x24+x 34+x44+x54=1; 甲 乙 丙 丁 戊 蝶泳 1′06"8 57”2 1′18” 1′10” 1′07"4 仰泳 1′15"6 1′06" 1′07”8 1′14"2 1′11" 蛙泳 1′27” 1′06"4 1′24"6 1′09"6 1′23"8 自由泳 58"6 53” 59”4 57”2 1′02”4 ∑∑=== 415 1j i ij ij x c Z Min

数学建模竞赛C题解答

数学建模竞赛C题解答

————————————————————————————————作者:————————————————————————————————日期:

2010高教社杯全国大学生数学建模竞赛C 题解答 问题1:如图1,设P 的坐标为 (x , y ), (x ≥ 0,y ≥ 0),共用管道的费用为非共用管道的k 倍,模型可归结为 2222)()()(),(min y b x l y a x ky y x f -+-+-++= 只需考虑21<≤k 的情形(不妨假设b a ≤)。对上述二元费用函数求偏导,令 ()()()()()()()()??? ? ??? =-+----+--==-+----+=0 ,0,22222222 y b x l y b y a x y a k y x f y b x l x l y a x x y x f y x (*) 结合图1,将(*)式改写为 ?? ?=+=-k βαβαsin sin 0 cos cos ,易知: 2 4cos cos ,2 sin sin 2 k k -= ===βαβα 所以 2 4tan tan k k -= =βα,故经过AP 和BP 的直线方程分别为: x k k a y 2 4-- =- ① ()l x k k b y --= -24 ② 联立①、②解方程组得交点()()?? ? ???--+= ??? ?????--- =2 2 421,421k kl b a y a b k k l x

因为 x ≥ 0,y ≥ 0,所以 l 应满足: ()a b k k l --≥ 2 4 且()a b k k l +-≤2 4 (a )当 )(42 a b k k l --≤ 时,此时交点在y 轴上,将0=x 代入①式,可得),0(a P =,即交点P 与A 点重合(如图2)。 ka l a b f ++-=22min )( (b) 当)(4)(42 2 a b k k l a b k k +-< <--时,交点在梯形内(如图1) 。??? ? ? ?--+---=)4(21),(24222k kl b a a b k k l P , 因为 2 42cos cos cos k l l x l x BP AP -==-+= +α βα,所以模型简化为: 2 42),(min k l ky y x f -+ =, () l k k b a f 2min 4)(2 1 -++= (c) 当)(42 a b k k l +-≥ 时,此时交点在x 轴上,即无共用管线的情形(如图3) 。

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

数学建模范例

前两页空白且不编页码

从该页开始编页码摘要 本文在依照电力市场交易原则和输电阻塞管理原则的前提下,通过多元线性回归分析、目标规划等方法,对电力市场的输电阻塞管理问题进行了研究。 问题1中,通过对散点图进行分析,可以得到所有机组出力值都与各线路的有功潮流值存在线性关系。于是,我们利用多元线性回归分析模型,分别得到6条线路的有功潮流与8个机组出力的带有常数项的线性表达式,其中,模型中的参数用最小二乘法估计,并进行了检验,证明函数关系可行。 问题2中,通过分析可知,阻塞费用主要是包括两部分,分别是序内容量不能出力的部分和报价高于清算价的序外容量出力的部分。“公平对待”就理解为电网公司赔偿两者在交易中所有的收入损失,从而制定出了阻塞费用的计算规则和公式。 针对问题3,为了下一个时段各机组的出力分配预案,我们按照电力市场规则,以在各机组出力存在上下极限(受爬坡速率影响)和机组出力值之和必须满足预报负荷为约束条件,以购电费用最少为目标函数,建立线性规划模型。最终各机组的出力分配预案为: 机组1 机组2 机组3 机组4 机组5 机组6 机组7 机组8 150 79 180 99.5 125 140 95 113.5 按照此出力分配预案,清算价为303元/兆瓦小时,购电费用为74416.8元。 问题4中,把问题3的计算数据代入问题4,通过问题1所得函数关系的计算易知部分线路出现阻塞,需调整出力方案。于是,我们以在各条线路上的有功潮流的绝对值不超出限值,各机组出力在其上下极限范围内以及机组出力值之和必须满足预报负荷为约束条件,以阻塞费用最低为目标函数,建立非线性目标规划模型,得到调整之后的出力分配方案为: 机组1 机组2 机组3 机组4 机组5 机组6 机组7 机组8 150.1 88 228 82.3 152 95 70.1 117 此时,清算价为303元/兆瓦小时,购电费用为74416.8元,阻塞费用为4619元。 针对问题5,重复问题3、4的工作。但因其预报负荷较大,无法输电阻塞消除,需将安全裕度纳入考虑范围之内。于是,根据安全且经济的原则的原则,以各条线路上的有功潮流的绝对值不超出安全裕度上限,各机组出力在其上下极限范围内以及机组出力值之和必须满足预报负荷为约束条件,以每条线路上潮流的绝对值超过限值的百分比最小和阻塞费用最低为目标函数,建立双目标规划模型,并利用加权法进行求解。调整之后的方案为: 机组1 机组2 机组3 机组4 机组5 机组6 机组7 机组8 153 88 188.2 99.5 150 155 102.1 117 此时,清算价为356元/兆瓦小时,购电费用为93699.2元,阻塞费用为1310.2元。 关键词:多元线性回归分析;最优解;非线性规划;多目标规划

数学建模作业43508

数学建模作业

1、在甲乙双方的一场战争中,部分甲方部队被乙方部队包围长达4个月,乙方封锁了所有 水陆交通通道,因此被包围的甲方只能依靠空中交通维持补给,运送4个月的供给依此分别 需要2次、3次、3次、4次飞行,每次飞行编队由50架飞机组成,每架飞机都需要3名飞 行员,每架飞机每月只能飞行一次,每名飞行员每月也只能飞行一次,每次执行完运输飞行 任务后的返回途中有20%的飞机被乙方部队击落,导致机上的飞行员也牺牲或失踪。在第 一个月开始时,甲方拥有110架飞机和330名熟练的飞行员,每个月开始时,甲方可以招聘 新飞行员和购买新飞机,新飞机必须经过一个月的检查磨合后才可以投入使用,新飞行员也 必须在熟练飞行员的指导下经过一个月的训练才能成为熟练飞行员而投入飞行(作为教练的 熟练飞行员本月不能参与飞行任务),每名熟练飞行员作为教练每月指导20名飞行员(包括 自己在内)进行训练,每名飞行员在完成本月的飞行任务后必须有一个月的带薪休假,然后 返回待命可再次投入飞行,已知各项费用平均单价如下表所示(单位:千元)。 第一个月第二个月第三个月第四个月新飞机价格200 195 190 185 闲置的熟练飞行员报酬7 6.9 6.8 6.7 10 9.9 9.8 9.7 教练及飞行员报酬和训练 费用 执行飞行任务的飞行员报 9 8.9 9.8 9.7 酬 休假期的飞行员报酬 5 4.9 4.8 4.7 (1)为甲方安排一个总费用最小的飞行计划。 (2)如果每名熟练飞行员作为教练每月指导不超过20名飞行员(包括自己在内)进行训练, 相应的模型和安排将会发生怎样的改变? 解:(1) 设每月初购买飞机数量为d1,d2,d3,d4架,每月闲置飞机数量为 y1,y2,y3,y4架,每月教练与新飞行员总数量为a1,a2,a3,a4人,每月闲置熟练 飞行员的数量为b1,b2,b3,b4人。由于每月执行任务的飞行员和休假期的飞行员 的数量是固定的,即这部分的花费是固定的,所以在优化目标中可以不必考虑。 模型建立: 决策变量:设每月初购买飞机数量为d1,d2,d3,d4架,每月闲置飞机数量 为y1,y2,y3,y4架,每月教练与新飞行员总数量为a1,a2,a3,a4人,每月闲置熟 练飞行员的数量为b1,b2,b3,b4人。 目标函数:设总费用为z元,则由价格平均表可知: z=200d1+195d2+190d3+185d4+10a1+9.9a2+9.8a3+9.7a4+7b1+6.9b2+6.8b3+ 6.7b4 约束条件包括: (1)飞机数量限制:四个月中出去执行任务的飞机数量分别为100,150,150,200架次,每次安全返回的数量为80,120,120,160架次。 根据每个月的实际情况可得方程: 100+y1=110; 150+y2=80+y1+d1; 150+y3=120+y2+d2; 200+y4=120+y3+d3;

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

全国大学生数学建模竞赛论文--范例

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全 名):参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

眼科病床的合理安排 摘要 病床是医院的重要卫生资源,其使用情况是反映医院工作效率的重要指标,合理分配床位、提高病床使用率对于充分利用医疗资源、提高医院的两个效益有着十分重要的意义。 本题针对某医院眼科病床分配中存在的不合理现象,让我们建立一个合理的病床安排模型,以解决病床的最优分配问题,从而提高对医院资源的有效利用。 针对问题一,本文制定的指标评价体系包括门诊相关指标集(病人平均等待时间、门诊等待平均队长、病人平均满意度)和病床相关指标集(出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率)。为了能够全面地评价出模型的优劣,本文采用目前普遍使用的密切值法、TOPSIS法和RSR法等综合评价方法,并对应建立了三个评价模型,以得出更为科学合理的结论。 针对问题二,本文建立了以病床需求数为状态转移变量、以各类病人的病床安排数为决策变量的动态规划模型。模型中,充分考虑了观测期内病人平均等待时间、病床平均周转率、病床利用率和潜在流失率等指标,且在制定寻优策略时,引入了病人满意度量化函数和优先级函数,使得模型更加合理。通过Matlab 对该模型求解,得出了次日病床安排方案(结果见表4)。 综合评价模型时,以该医院目前的病床安排方案和我国医院通用的病床安排方法为比较对象,借助上述三种评价方法和模型,进行了综合评价比较,从综合评价结果来看,本文的模型相对较优(评价结果见表9)。 针对问题三,本文既充分考虑了如何缩短病人平均等待时间和提高病床利用率,又兼顾了公平原则,根据病症的不同和就诊病人到院的顺序制订了优先服务策略,给出了每个病人相应的入住时间区间(见P18)。 针对问题四,由于住院部周六和周日不安排手术,对某些类型病人的病床安排产生了一定的影响,因此我们对问题二中模型的优先级函数进行了相应的调整,并利用Matlab进行了求解(结果见表10)。 为了判断手术安排时间是否改变,本文根据问题一的评价方法和模型对修改后的模型进行了综合评价,从评价结果得知,手术安排时间应该做相应的调整。 针对问题五,为了使所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短,本文建立了以其为目标函数且带约束条件的非线性规划模型,并利用了Lingo 软件对其进行求解,得出的结论是:分配给外伤、白内障(双眼)、白内障(单眼)、青光眼、视网膜疾病等各类型病人的床位数依次为:8、16、12、21、22,分别占总床数的比例为:10.13%、20.25%、15.19%、26.58%、27.85%。 最后,本文对所建模型的优点和缺点进行了客观的评价,认为本文研究的结果在实际医院病床安排中有一定的参考价值。 关键词:病人平均等待时间;实际病床利用率;RSR 法;满意度量化函数;动态规划模型;非线性规划 1.问题重述 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,

数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

数学建模习题及答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模期末大作业

数学建模期末大作业论文 题目:A题美好的一天 组长:何曦(2014112739) 组员:李颖(2014112747)张楚良(2014112740) 班级:交通工程三班 指导老师:陈崇双

美好的一天 摘要 关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS

1 问题的重述 Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。 我主要是想请教一下各位大神: 1)明天我应该怎么安排路线才能够让花在坐车上的时间最少? 2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢? 3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~ 2 问题的分析 2.1 对问题一的分析 问题一要求安排路线使得坐车花费的时间最少。 对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。 2.2 对问题二的分析 问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。 对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。 2.3 对问题三的分析 问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。 对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

最新数学建模竞赛答案汇总

2010年数学建模竞赛 答案

输油管道的铺设设计 符号约定 m 炼油厂A 到铁路线L 的距离 n 炼油厂B 到铁路线L 的距离 b 炼油厂A 、B 间水平距离 F 输送管道的总费用 f 铺设管道的附加费用 W 铺设费用的权重系数 1k A 厂铺设非共用管线每千米的费用 2k B 厂铺设非共用管线每千米的费用 3k 共用管线每千米的费用 问题一分析与模型建立 最短路径的存在性论证 如图4.1,假设C 点为在铁路线上设计增建的车站,由费尔马问题的结论,在ABC ?中,存在费尔马点P ,使点P 与ABC ?三个顶点距离之和小于三角形二边之和,即有 PA+PB+PC∠ACB 时,费尔马点P 与C 点重合。 为此有如下结论:

①当0120<∠ACB 时,铺设公用管道PC 的输送费用比不铺设公用管道费用低; ②当0120>∠ACB 时,不需要铺设公用管道,即公用管道PC =0。 问题一分析与模型建立 如图4.1,以炼油厂A 、B 间铁路线所在直线为x 轴,以过炼油厂A 且垂直于铁路线L 直线为y 轴,建立平面直角坐标系。设 A(0,m), B(b,n),P(r,t),并设非公用管道的费用为每千米1个单位,公用管道的费用为每千米k 个单位(下同),根据实际意义易知21<≤k 。 根据参考文献[1],点P 不可能在A 的上方,故m t ≤≤0。 易得,A 点关于过点P 平行于x 轴的直线1L 的对称点'A (0,2t-m )。 由费尔马点的应用及平面几何对称性有 111F PB PA k PC BA k PC '=?+?+?>?+? 为此,得到铺设管道的最优模型 min 1F BA k PC '=?+? 4-1 问题一模型求解 对模型分两种管道费用相同与不同两种情形研究,并根据点A 、B 的坐标不同的取值,进行A 、B 不同位置时管道铺设设计。 1公用管道与非公用管道费用不同,即k <1时模型的求解 已知A 点关于1l 对称点'A (0,2t-m ) ()F t tk =

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

初中数学建模论文范文

初中数学建模论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 二、数学应用题如何建模 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力

数学建模习题指导

数学建模习题指导 第一章 初等模型 讨论与思考 讨论题1 大小包装问题 在超市购物时你注意到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。 (1)分析商品价格C 与商品重量w 的关系。 (2)给出单位重量价格c 与w 的关系,并解释其实际意义。 提示: 决定商品价格的主要因素:生产成本、包装成本、其他成本。 单价随重量增加而减少 单价的减少随重量增加逐渐降低 思考题2 划艇比赛的成绩 赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。各种艇虽大小不同,但形状相似。T.A.McMahon 比较了各种赛艇1964—1970年四次2000m 比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。建立数学模型解释比赛成绩与浆手数量之间的关系。 各种艇的比赛成绩与规格 γβα++=3 2w w C w w c γβα++=-3 123 431w w c γβ--='-3 2943 4w w c γβ+=''-

第二章 线性代数模型 森林管理问题 森林中的树木每年都要有一批砍伐出售。为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。被出售的树木,其价值取决于树木的高度。开始时森林中的树木有着不同的高度。我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。 思考: 试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。 练习: 将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存 达到3架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 第三章 优化模型 讨论题 1)最优下料问题 用已知尺寸的矩形板材加工半径一定的圆盘。给出几种加工排列方法,比较出最优下料方案。 2)广告促销竞争问题 甲乙两公司通过广告竞争销售商品,广告费分别为 x 和 y 。设甲乙公司商品的售量在两公司总售量中所占份额是它们的广告费在总广告费中所占份额的函数 又设公司的收入与售量成正比,从收入中扣除广告费后即为公司的利润。试构造模型的图形,并讨论甲公司怎样确定广告费才能使利润最大。 (1)令 (2)写出甲公司的利润表达式 对一定的 y ,使 p (x ) 最大的 x 的最优值应满足什么关系。用图解法确定这个最优值。 练习1 三个家具商店购买办公桌:A 需要30张,B 需要50张,C 需要45张。这些办公桌由两个工厂供应:工厂1生产70张,工厂2生产80张。下表给出了工厂和商店的距离(单位公里) , 857.0=n R ) (),(y x y f y x x f ++的示意图。。画出则)()()(,t f t f t f y x x t 11=-++= 。 )(t p

数学建模b题标准答案

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):北京大学 参赛队员(打印并签名) :1. 姚胜献 2. 许锦敏 3. 刘迪初 指导教师或指导教师组负责人(打印并签名):刘业辉 日期: 2011 年 9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 交巡警服务平台的设置与调度 摘要 本文通过建立整数规划模型,解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题;通过建立线性加权评价模型定量评价了某市现有交巡警服务平台设置方案的合理性,并根据各个区对服务平台需求量的不同,提出了重新分配全市警力资源的解决方案。在计算交巡警服务平台到各个路口节点的路程时,使用了图论里的floyd算法。 针对问题一的第一个子问题,首先假设交巡警服务平台对某个路口节点的覆盖度是二元的,引入决策变量,建立了0-1整数规划模型。交巡警出警应体现时间的紧迫性,所以选择平均每个突发事件的出警时间最短作为目标函数,运用基于MATLAB的模拟退火算法进行求解,给出了中心城区A的20个服务平台的管辖范围,求得平均每个案件的出警时间为1.013分钟。 针对问题一的第二个子问题,为了实现对中心城区A的13个交通要道的快速全封锁,以最短的封锁时间为目标,建立了0-1整数规划模型,利用lingo软件编程求解,给出了该区交巡警服务平台警力合理的调度方案,并求得对13个交通要道实现全封锁最短需要8.02分钟。 问题一的第三个子问题是交巡警服务平台的选址问题。考虑到建设新的服务平台需要投入更多的成本和警务资源,还需平衡各个服务平台的工作量。因此,以增加最少的服务平台数和服务平台工作量方差最小为目标,采用集合覆盖理论,建立了双目标0-1整数规划模型,用基于MATLAB的模拟退火算法求解出增加的服务平台数为4个,新增 的服务平台具体位置为A 28,A 40 ,A 48 ,A 88 ,并得到各个服务平台的工作强度方差为2.28。 针对问题二的第一个子问题,通过建立线性加权评价模型定量评价了该市现有交巡警服务平台设置方案的合理性,结果发现全市服务平台覆盖率较低且各个区的工作量不均衡,得出全市服务平台的布局存在明显的不合理的结论。并确定各区域人口密度、各区域公路总长度以及各区域平均每天总的发案率为各区域对交巡警需求的指标,然后根据各个区对服务平台需求量的不同,提出了较为合理的分配全市警力资源的解决方案。 对于问题二的第二个子问题,以围堵范围最小和调动警力最少的原则,通过分析案发后嫌疑犯可能到达的位置,给出了围堵方案。 关键词:交巡警服务平台 0-1整数规划模拟退火法

数学建模作业题

数学建模作业题 习题1第4题. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MATLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --=+-模拟美国人口从1790年至2000年的 变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 习题2第1题. 继续考虑第2.2节“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议? 习题2第2题. 一盘录像带,从头转到尾,时间用了184分钟,录像机计数器读数从0000变到6061. 表2.5是观测得到的计数器读数,图2.7是录像机计数器工作原理示意图. 请问当计数器读数为4580时,剩下的一段录像带还能否录下一小时的节目?

相关文档
最新文档