剖析细长轴类工件加工技巧

剖析细长轴类工件加工技巧
剖析细长轴类工件加工技巧

剖析细长轴类工件的加工技巧

【内容摘要】在细长轴类工件的加工过程中,经常会出现加工精度低、形状误差大等缺陷。本文通过对细长轴类工件在加工过程中的受力分析,就如何提高细长轴类工件加工精度,从装夹方法、加工方法、进给量、刀具几何角度选择等方面提出解决措施。

【关键词】细长轴;受力分析;加工技巧

【中图分类号】g710

在机械加工过程中,经常会碰到工件的长度与直径之比l/d>25,例如:印刷机的滚筒、粮油机械、传送机械等,通常把这类工件称之为细长轴,一般在车床上进行加工。这类工件在车削过程中,由于其刚性差,在切削力和切削热的作用下,很容易产生变形,这样就破坏了刀具和零件相对运动的准确性,使加工出来的细长轴中间粗、两头细,严重影响零件的加工精度。同时,细长轴产生变形后,还会引起工艺系统的振动,影响零件的粗糙度。现就产生变形的具体原因加以探讨,以便掌握其加工的技巧。

一、细长轴产生变形的原因分析

在车床上车削细长轴,产生的变形主要有弯曲变形和热变形两种,这与其装夹方法密切相关。传统的装夹方式主要有”一夹一顶式”和”两顶尖式”两种。

(一)细长轴的弯曲变形

轴类工件在车削过程中,产生的切削力可以分解为轴向切削力fx、径向切削力fy及切向切削力fz。不同的切削力对车削细长轴

细长轴车削时应注意的问题及方法

细长轴车削时应注意的问题及方法 摘要:由于细长轴的特点和技术要求,在车削加工时,易产生振动、多棱、竹节、圆柱度差和弯曲等。要想顺利地把它车好,必须注意加工过程中有可能出现的问题。 关键词:细长轴、车削、变形、消除方法 细长轴是指被加工工件长度与直径的比值大于20以上的轴类零件。因为工件较长,所以刚性较差,在切削过程中容易产生振动,也会因切削热而在长度方向产生变形,由于走完一刀的时间较长,导致刀具的磨损量较大,也致使工件的形位公差精度和表面粗糙度较难达到图纸要求。 1.细长轴的加工特点 (1) 车削时产生的径向切削力会使工件弯曲,引起振动,影响加工精度和表面粗糙度。 (2) 工件的自重、变形和振动,会影响工件圆柱度和表面粗糙度。 (3) 工件高速旋转时,在离心力的作用下变形,加剧了工件的弯曲和振动。 (4) 产生的切削热会导致工件轴向伸长变形,使工件发生弯曲,影响加工质量。 2.车削细长轴应注意的问题 细长轴车削在机械加工中较为常见,由于其刚性差,加工难度较大。如果能够采用正确的切削方法,选择合适的刀具及切削用量,有效地装夹定位工件,就能够有效地降低切削温度、减少热变形,最终获得满意的加工效果。 2.1机床调整 车床主轴中心线与尾座中心线同轴,并与车床大导轨平行,允差应小于0.02mm。 2.2工件安装 采用两顶尖装夹或用卡盘与顶尖配合装夹,合理地使用中心架或跟刀架作为辅助支承,以增加工件的装夹刚度。用卡盘与顶尖配合装夹时,被夹持部分最好不超过10mm。 2.3刀具 采用主偏角Κr = 75°~90°的偏刀,选择正刃倾角(λS>0),能够减小径向力和振动,还可以使切屑流向待加工表面。保持切削刃口锋利,前角γ0控制在15°~30°之间,副后角α′0控制在4°~6°之间,刀尖圆角半径r<0.3mm。刀具安装应略高于车床主轴中心。 2.4辅助支承安装 车削细长轴时,一般都要安装中心架或跟刀架作为辅助支承,来增加工件的刚性,防止工件因振动或因离心力的作用被甩弯。 2.5工件热变形伸长 防止工件热变形伸长的方法:①使用弹性顶尖(俗称活动顶针)。当工件受热伸长时,使顶尖有向后退让的余量,防止工件产生弯曲变形。在切削过程中,应注意对顶尖的调整,以刚顶上工件为宜,不宜紧,并随时观察顶尖的松紧,进行调整。②切削时加注充分的切削液,以吸收产生的切削热,同时也使跟刀架爪与工件接触处有良好的润滑。 3.车削细长轴容易产生的缺陷及消除方法 在加工过程中,由于刚性差,在切削力和切削热的作用下,很容易产生诸如径向跳动、弯曲变形等问题及振动波纹、锥度、竹节形、腰鼓形等加工缺陷,严重影响零件的加工精度及表面粗糙度,因此,在加工前,对机床的调整、跟刀架、中心架的合理应用、刀具及切削用量的选择等都提出了较严

5.影响加工误差的因素

第二节影响加工误差的因素 (一)加工原理误差: 定义:由于采用近似的加工运动或近似的刀具轮廓所产生的加工误差,为加工原理误差。 (1)采用近似的刀具轮廓形状:例如:模数铣刀铣齿轮。 (2)采用近似的加工运动:例如:车削蜗杆时,由于蜗杆螺距Pg=πm,而π=3.1415926…,是无理数,所以螺距值只能用近似值代替。因而,刀具与工件之间的螺旋轨迹是近似的加工运动。 (二)机床调整误差: 机床调整:是指使刀具的切削刃与定位基准保持正确位置的过程。 (1)进给机构的调整误差:主要指进刀位置误差; (2)定位元件的位置误差:使工件与机床之间的位置不正确,而产生误差; (3)模板(或样板)的制造误差:使对刀不准确。 (三)装夹误差: 定义:工件在装夹过程中产生的误差,为装夹误差。装夹误差包括定位误差和夹紧误差。 定位误差是指一批工件采用调整法加工时因定位不正确而引起的尺寸或位置的最大变动量。定位误差由基准不重合误差和定位副制造不准确误差造成。 1、基准不重合误差 在零件图上用来确定某一表面尺寸、位置所依据的基准称为设计基准。在工序图上用来确定本工序被加工表面加工后的尺寸、位置所依据的基准称为工序基准。一般情况下,工序基准应与设计基准重合。在机床上对工件进行加工时,须选择工件上若干几何要素作为加工(或测量)时的定位基准(或测量基准),如果所选用的定位基准(或测量基准)与设计基准不重合,就会产生基准不重合误差。基准不重合误差等于定位基准相对于设计基准在工序尺寸方向上的最大变动量。 基准不重合误差分析示例 图示零件,设e面已加工好,今在铣床上用调整法加工f面和g面。在加工f面时若选e面为定位基准,则f面的设计基准和定位基准都是e面,基准重合,没有基准不重合误差,尺寸A的制造公差为TA。加工g面时,定位基准有两种不同的选择方案,一种方案(方案Ⅰ)加工时选用f面作为定位基准,定位基准与设计基准重合,没有基准不重合误差,尺寸B的制造公差为TB;但这种定位方式的夹具结构复杂,夹紧力的作用方向与铣削力方向相反,不够合理,操作也不方便。另一种方案(方案Ⅱ)是选用e面作为定位基准来加工g面,此时,工序尺寸C是直接得到的,尺寸B是间接得到的,由于定位基准e与设计基准

轴类零件的加工工艺资料

轴类零件的加工工艺 绪论 本课题主要研究轴类零件加工过程,加工工艺注意点及改进的方法,通过总结非标件的加工以及典型半成品轴类零件的加工实例来加以说明。现在许多制造最终成品的工厂为了提高机器的某些性能或者降低成本,需要找机械加工厂定做的,常常会因为设备、技术或者工艺规程制定的不是很好,加工出来的部件无法满足使用要求,所以需要一次次的总结,改进加工工艺,从而完善产品。经过总结了生产上出现的问题,写下了这篇论文。 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。 图轴的种类 a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴 h)曲轴 i) 凸轮轴 1 轴类零件的功用、结构特点 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。它主要用来支承传动零部件,传递扭矩

和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 1.1轴类零件的毛坯和材料 1.1.1轴类零件的毛坯 轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 1.1.2轴类零件的材料 轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。 45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。 40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。 2 轴类零件一般加工要求及方法 2.1 轴类零件加工工艺规程注意点

工艺过程的统计分析一

工艺过程的统计分析 一:概述 在生产实际中,影响加工精度的原始误差很多,这些原始误差往往使综合地交错在一起对加工精度产生综合影响的,且其中不少原始误差的影响往往带有随机性。对于一个受多个随机性质原始误差影响的工艺系统,只有用概率统计的方法来进行分析,才能得出正确的、符合实际的结果。 (一)系统性误差与随机性误差 系统性误差可分为常值系统性误差和变值系统性误差两种。在顺序加工一批工件中,其大小和方向皆不变的误差,称为常值系统性误差。例如,铰刀直径大小的误差,测量仪器的一次对零误差等。在顺序加工一批工件中,其大小和方向遵循某一规律变化的误差,称为变值系统性误差。例如,由于刀具的磨损引起的加工误差,机床和刀具或工件的受热变形引起的加工误差等。显然,常值系统性误差与加工顺序无关,而变值系统性误差则与加工顺序有关。 在顺序加工一批工件中,有些误差的大小和方向使无规则变化着的,这些误差称为随机误差。例如加工余量不均匀、材料硬度不均匀、夹紧力时大时小等原因引起的 加工误差。 对于常值系统性误差,若能掌握其大小和方向,就可以通过调整消除;对于变值系统性误差,若能掌握其大小和方向随时间变化的规律,则可通过自动补偿消除;唯队随机性误差,只能缩小它们的变动范围,而不可能完全消除。由概率论与数理统计血可知,随机性误差的统计规律可用它的概率分布表示。 (二)机械制造中常见的误差分布规律

偏态 分布 在用试切法车削轴径或孔径时,由于操作者为了尽量避免产生不 可修复的废品,主观地(而不是随机地)使轴颈加工得宁大勿小, 则它们得尺寸误差就呈偏态分布。 机械加工误差 分布规律 (三)正态分布 1.正态分布的数学模型、特征参数和特殊点机械加工 中,工件的尺寸误差是由很多相互独立的随机误差综合作 用的结果,如果其中没有一个随机误差是起决定作用的, 则加工后工件的尺寸将呈正态分布,其密度方程中,有两 个特征参数:一个算术平均值只影响曲线的位置,而不影 响曲线的形状;另一个均方根偏差(标准差)σ 只影响曲 线的形状,而不影响曲线的位置,均方根偏差愈大,曲线 愈平坦,尺寸就愈分散,精度就愈差。因此,均方根偏差 反映了机床加工精度的高低,算术平均值反映了机床调整 位置的不同。 2.标准正态分布 算术平均值为 0,均方根偏差为 1 的正态分布为标准正态分布。 3.工件尺寸再某区间内的概率 生产上感兴趣的往往不是工件为某一尺寸的概率是多大,而是加工工件尺寸落在某一 区间(x1≤x≤x2)内的概率是多大,如右图示。通过分析可知,非标准正态分布概率 密度函数的积分,经标准化变换后,可用标准正态分布概率密度函数的积分表示,为 了计算的需要,可制作一个标准化正态分布概率密度函数的积分表。通过计算可知, 正态分布的分散范围为 这就是工程上经常用到的“±3σ 原则”,或称“6σ 原 则”。

浅谈细长轴车削加工方法

细长轴车削变形因素及解决方法探讨 周秀香 华亭煤业集团公司砚北煤矿 摘要:通过对细长轴类零件车削加工时产生弯曲变形的原因分析,阐述了保证细长轴加工质量的工艺方法、切削用量以及刀具几何角度的选择。 在机械加工过程中,有很多轴类零件的长径比L/d>25。在切削力、重力和顶尖顶紧力的作用下, 横置的细长轴很容易弯曲甚至失稳, 因此, 车削细长轴时必须改善细长轴的受力问题。加工方法:采用反向进给车削, 选用合理的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。 一、车削细长轴产生弯曲变形的因素分析 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是:一夹一顶安装;另一种方式是:两顶尖安装。这里主要分析一夹一顶的装夹方式。如图1所示。 图1 一夹一顶装夹方式及受力分析 通过用普通车床实际加工分析,车削细长轴弯曲变形的原因有: 1、切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PY及切向切削力PZ。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。

径向切削力PY的影响:径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向切削力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响,见图1。 轴向切削力PX的影响:轴向切削力是平行作用在细长轴轴线方向上的,它对工件形成一个弯矩。对于一般的车削加工,轴向切削力对工件弯曲变形的影响并不大,可以忽略。但是由于细长轴的刚性较差,其稳定性也较差,当轴向切削力超过一定数值时,将会把细长轴压弯而发生纵向弯曲变形。如图2所示。 图2 轴向切削力的影响及受力分析 2、切削热产生的影响 车床加工工件时产生的切削热,会引起工件热变形伸长。由于在车削过程中,卡盘和尾架顶尖都是固定不动的,因此两者之间的距离也固定不变。这样细长轴受热后的轴向伸长量受到限制,导致细长轴受到轴向挤压而产生弯曲变形。 由此可以看出,提高细长轴的加工精度问题,实质上就是控制工艺系统的受力及受热变形问题。 二、解决细长轴加工变形问题的措施 在细长轴加工过程中,为提高加工精度,应根据不同的生产条件,采取不同的措施,才能保证细长轴的加工精度。 1、选择合适的装夹方法 在普通车床上车削细长轴的两种传统装夹方式中,采用双顶尖装夹,工件定位准确,容易保证同轴度。但用这种方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动.因此只适宜于安

细长轴磨削加工难题

★细长轴的定义: 当工件长度跟直径之比大于20~25(L/d>20~25)时,称为细长轴。 主要抓住中心架和跟刀架的使用、解决工件热变形伸长以及合理选择刀具几何形状等三个关键技术,问题就迎刃而解了。 主要问题:细长轴刚性差, 在加工中极容易变形, 使零件的误差增大, 不易保证零件的加工质量;中心孔稍有偏差,工件就会产生椭圆形,两顶尖连线与纵向行程稍不平行就会产生锥形等。细长轴变形原因分析在加工过程中,由于中间工艺过程控制不当而造成细长轴弯曲变形,究其原因有以下几点: ①(切削温度)切削中工件受热产生变形,甚至会使工件卡死在顶尖间而无法加工; ②(切削力)细长轴本身刚性差,工件受切削力作用而弯曲,从而引起振动,影响工件精度和表面粗糙度; ③(切削振动)工件高速旋转时,在离心力作用下,会加剧弯曲与振动。 因此,磨削细长轴的关键技术是解决加工工件的弯曲变形问题。 细长轴的主要质量缺陷 1 工件表面产生多角形波纹 该缺陷是在工件表面沿母线方向有一条条直线痕迹,自工件横剖面来看,周边呈近似正弦波的曲线其产生原固: (1)振动:在细长轴磨削过程中,由于工件与顶尖系统刚性较差,当砂轮不平衡或砂轮修整得不够锋利时、砂轮与工件间的磨擦加剧,就会引起振动 (2)砂轮磨损不均匀 (3)砂轮或工件支承松动 2 工件表面产生螺旋形波纹螺旋形波纹是指工件表面上出现螺旋状很浅的波纹痕迹。 其产生的原因:(1)砂轮工作表面凸凹不平;(2)机床刚性影响;(3)其他因素:磨削深度太大,纵向进给量太大,或砂轮主轴有轴向窜动,都可能产生螺旋形波纹。此外、工作台导轨润滑油压过大,使工作台纵向移动产生漂浮和摆动,也会造成工件表面的螺旋形波纹。 3 工件圆柱度超差 工件在磨削后产生的锥度、鼓形、鞍形、弯曲都可能使工件的圆柱度超差。 (1)锥度:头架和尾架顶尖中心线与工作台运动方向不平行,将使工件产生锥度。

典型轴类零件加工工艺标准规范标准分析

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。

(一)结构及技术条件分析 该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。 (二)加工工艺过程分析 1.确定主要表面加工方法和加工方案。

传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。 但下列情况不能用两中心孔作为定位基面: (1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。 (2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;

加工误差统计分析实验指导

加工误差统计分析实验 一、实验目的 1、巩固已学过的统计分析法的基本理论; 2、掌握运用统计分析法的步骤; 3、学习使用统计分析法判断和解决问题的能力。 二、实验设备与仪器 电感测量仪、块规、千分尺、试件(滚动轴承滚柱)、计算机。 三、实验原理和方法 在机械加工中,应用数理统计方法对加工误差(或其他质量指标)进行分析,是进行过程控制的一种有效方法,也是实施全面质量管理的一个重要方面。其基本原理是利用加工误差的统计特性,对测量数据进行处理,作出分布图和点图,据此对加工误差的性质、工序能力及工艺稳定性等进行识别和判断,进而对加工误差作出综合分析。 1、直方图和分布曲线绘制 1)初选分组数k 2 找出样本数据的最大值X imax和最小值X imin,并按下式计算组距: 式中:k——分组数,按表选取; X max和X min——本组样本数据的最大值和最小值。 选取与计算的d值相近的且为测量值尾数整倍数的数值为组距。 3)确定组界 各组组界为: min (i1)d 2 d X+-± (i=1,2,…,k),为避免样本数据落在组 界上,组界最好选在样本数据最后一位尾数的1/2处。 4)统计各组频数 频数,即落在各组组界范围内的样本个数。 频率=频数/样本容量 5)画直方图 以样本数据值(被测工件尺寸)为横坐标,标出各组组界;以各组频数为纵坐标,画出直方图。 6)计算总体平均值与标准差

平均值的计算公式为 1 1n i i X X n ==∑ 式中:X i ——第i 个样本的测量值; n ——样本容量。 标准差的计算公式为 s =7)画分布曲线 若研究的质量指标是尺寸误差,且工艺过程稳定,则误差分布曲线接近正态分布曲线;若研究的资料指标是形位误差或其他误差,则应根据实际情况确定其分布曲线。画出分布曲线,注意使分布曲线与直方图协调一致。 8)画公差带 按照与以上分布曲线相同的坐标原点,在横轴下方画出被测零件的公差带,以便与分布曲线相比较。 公差根据试件类型、规格查国标手册可得到。 2、X -R 图绘制 1)确定样组容量,对样本进行分组 样组容量一般取m=2~10件,通常取4或5,即对试件尺寸依次按每4~5个一组进行分组,将样本划分成若干个样组。 2)计算各样组的平均值和极差 对于第i 个样组,其平均值和极差计算公式为 1 1m i ij j X X m ==∑, max min i i i R X X =- 式中:i X ——第i 个样组的平均值; i R ——第i 个样组的标准差; ij X ——第i 个样组第j 个试样的测量值; max i X ——第i 个样组数据的最大值; min i X ——第i 个样组数据的最小值。 3)计算X -R 图的控制线 X -R 图的控制线为 样组平均值X 图的中线 1 1m k i i m X X k ==∑ 样组平均值R 图的中线

普通车床加工细长轴工艺制作和加工方法

普通车床加工细长轴工艺制作和加工方法 一般工件长度与直径25:1时称为细长轴。干过车工的人都知道,细长轴是机床加工中最难加工的一种零部件。过去在机械加工行业当中有句俗话:“车工怕车杆,钳工怕挫眼”。“杆”就是指细长轴。“眼”,指的是孔。实际上这句话现在来讲也不过时。细长轴始终是困扰着机床加工中的一项技术难题。 下面根据我多年干车工的实际经验给大家讲一讲在普通车床上车削细长轴的工艺制作和加工方法: 一,下料:细长轴的下料尺寸和一般零部件的下料尺寸有一些区别,通常的零部件下料长度加长5-6mm,直径加大2-3mm即可。而细长轴就不同了,由于细长轴的刚性差,主轴旋转起来所产生的离心力比较大,工件在加工过程中,很容易脱落,造成机械事故和人伤亡事故。为了安全起见,卡盘爪加持的长度一般不少于20mm。下料尺寸一般为30长,直径最少加大5-6mm。 二,粗车:也就是除锈,主要是给调质打基础,除锈的方法一般的分三种:1),锉刀挫。2),砂布打。3),车刀车。一般的前两种不用。用车刀车一下见光

为止。注意,在编排工艺的时候一定要注明不准打中心孔。 三,调质,硬度可根据技术要求而定。 四,校直,1),在平板上用锤子敲打的方法。2),用压力机校直的方法。 五,时效,一般在空气中放置一段时即可。 六,车:一般的可分为粗车、半精车、精车三种。细长轴的装卡方法,可分为一夹一顶、两顶和一加一拉的方法。 今天我给大家讲的是一夹一顶的方法加工细长轴。首先平端面,打中心孔,最好是两头打中心孔,但不能同时把两头的中心孔打出来。 由于细长轴本身的刚性差,故在车削过程中过程中会常常出现以下问题: 1在切削过程中,工件受热会产生弯曲变形,甚至会使工件卡死在顶尖间而无法加工。 2工件受切削力作用产生弯曲,从而引起震动影 响工件的精度和表面粗糙度。 3由于工件的自重、变形、振动影响工件圆柱度和表面粗糙度。 4工件在高速旋转时,在离心力的作用下,加剧工件弯曲与振动。因此,切削速度不宜过高。

机加工质量分析

第6章机械加工质量技术分析 重点:影响机械加工精度的因素 难点:加工误差的统计分析 机械加工精度 随着机器速度、负载的增高以及自动化生产的需要,对机器性能的要求也不断提高,因此保证机器零件具有更高的加工精度也越显得重要。我们在实际生产中经常遇到和需要解决的工艺问题,多数也是加工精度问题。 研究机械加工精度的目的是研究加工系统中各种误差的物理实质,掌握其变化的基本规律,分析工艺系统中各种误差与加工精度之间的关系,寻求提高加工精度的途径,以保征零件的机械加工质量,机械加工精度是本课程的核心内容之一。 一、机械加工精度概述 (一)、加工精度与加工误差 1、加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度。符合程度越高,加工精度越高。一般机械加工精度是在零件工作图上给定的,其包括:1)零件的尺寸精度:加工后零件的实际尺寸与零件理想尺寸相符的程度。 2)零件的形状精度:加工后零件的实际形状与零件理想形状相符的程度。 3)零件的位置精度:加工后零件的实际位置与零件理想位置相符的程度。 2、获得加工精度的方法: 1)试切法:即试切--测量--再试切--直至测量结果达到图纸给定要求的方法。 2)定尺寸刀具法:用刀具的相应尺寸来保证加工表面的尺寸。 3)调整法:按零件规定的尺寸预先调整好刀具与工件的相对位置来保证加工表面尺寸的方法。 3、加工误差:实际加工不可能做得与理想零件完全一致,总会有大小不同的偏差,零件加工后的实际几何参数对理想几何参数的偏离程度,称为加工误差。加工误差的大小表示了加工精度的高低。生产实际中用控制加工误差的方法来保证加工精度。 4、误差的敏感方向:加工误差对加工精度影响最大的方向,为误差的敏感方向。例如:车削外圆柱面,加工误差敏感方向为外圆的直径方向。

轴类零件加工工艺过程分析

2016-2017学年第二学期课程论文 《机械制造工艺学》 专业:机械设计制造及其自动化班级:2014级机设1班 学号:201410470129 姓名:夏正懿 成绩: 机械工程学院

轴类零件加工工艺过程分析 摘要:轴类零件是比较常用极其重要的零件之一,好的加工工艺是决定轴类零件表面精度、粗糙度,能缩短生产时间从而降低成本,带来巨大经济效益,本论文从加工路线,刀具选择,切削量等的选用等概要说明了轴类工件的加工工艺。 关键词:数控加工轴类零件加工 1 轴类零件的功用、结构特点及技术要求 轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 2 轴类零件的毛坯和材料 2.1轴类零件的毛坯 轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。 2.2轴类零件的材料 轴类零件应根据不同的工作条件和使用要求选用不同的材料并采用不同的热处理规范(如调质、正火、淬火等),以获得一定的强度、韧性

和耐磨性。 3 轴类零件加工的定位基准和装夹 3.1以工件的中心孔定位 在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时, 还能够最大限度地在一次装夹中加工出多个外圆和端面。 3.2以外圆和中心孔作为定位基准(一夹一顶) 用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 4 轴类零件的加工工艺分析 轴类零件的加工顺序安排,数控车床与普通车床基本一样,即遵循“先粗后精,由大到小”的基本原则。先粗后精,就是先后对零件整体进行粗加工,精加工;由大到小,就是先从最大直径处开始车削,然后依次往小直径处加工。在数控车床精车轴类零件时,一般从零件右端开始连续不断地完成整个零件的切削。 4.1分析 如图1所示,这是一个由螺纹.外圆和槽构成的轴类零件,其中ф

数控机床轴类零件加工工艺分析

数控机床轴类零件加工工 艺分析 Prepared on 22 November 2020

X X X学院 毕业 设计 任务书 论文 机械工程系数控技术专业 XX 班 毕业设计 题目 数控机床轴类零件加工工艺分析论文 专题题目 数控机床轴类零件加工工艺分析 发题日期:2010年11月15日设计、论文自2010年11月20日完成期限:至2010年月日答辩日期:2010年月日 学生姓名: 指导教师: 系主任:

毕业设计版权使用授权书 本人完全了解云南机电职业技术学院关于收集、保存、使用毕业设计的规定,同意如下各项内容:按照学校要求提交毕业设计的印刷本和电子版本;学校有权保存毕业设计的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存毕业设计;学校有权提供目录检索以及提供本

毕业设计全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交毕业设计的复印件和电子版;在不以赢利为目的的前提下,学校可以适当复制毕业设计的部分或全部内容用于学术活动。 作者签名: 年月日 作者签名: 年月日 摘要 世界制造业转移,中国正逐步成为世界加工厂。美国、德国、韩国等国家已经进入发展的高技术密集时代与微电子时代,钢铁、机械、化工等重化工业发展中期。 由于数控机床综合应用了电子计算机、自动控制、伺服系统、精密检测与新型机械结构等方面的技术成果,具有高的高柔性、高精度与高度自动化的特点,因此,采用数控加工手段,解决了机械制造中常规加工技术难以解决甚至无法解决的单件、小批量,特别是复杂型面零件的加工,应用数控加工技术是机械制造业的一次技术革命,使机械制造的发展进入了一个新的阶段,提高了机械制造业的制造水平,为社会提供高质量,多品种及高可靠性的机械产品。 本次设计主要是对数控加工工艺进行分析与具体零件图的加工,首先对数控加工技术进行了简单的介绍,然后根据零件图进行数控加工分析。第一,根据本零件材料的加工工序、切削用量以及其他相关因素选用刀具及

细长轴的车削加工要领

细长轴类零件的车削加工 1. 中心架和跟刀架在细长轴零件 加工中的应用 车削细长轴工件,长度是直径10~12倍以上的长轴时,如车床光杠、丝杠等,由于这些轴本身的刚性差,加上切削力、切削热和震动等影响,车削时易产生弯曲、锥度、腰鼓度和竹节形等缺陷。此外,在车削过程中还会引起震动,影响工件表面粗糙度。为了防止这种现象产生,我们可以应用一种叫做中心架的特殊支承夹具。中心架和跟刀架是车床附件之一,用卡盘顶针与中心架,或前后顶针与跟刀架装夹,可提高切削加工系统的刚性。 使用这些附加的装卡工具,可以增加工件的装卡刚度,减少震动,保证加工质量,避免零件产生鼓面,提高工件表面形状精度和表面粗糙度,并允许采用大切削用量加工,提高劳动生产率。下面分别就中心架与跟刀架在细长轴零件中的应用加以说明。 一、中心架在细长轴零件加工中的应用 1.中心架的结构 中心架的结构组成如图5-1所示。 中心架一般固定在床面一定位置上,如图5-1(b)所示。它的主体座l通过压板4和螺母5紧固在床面上。盖子3与主体1用销作活落连接,盖子3可以打开或盖住,并用螺钉2固定。三个爪的向心或离心位置,可以用螺钉6调节,以适应不同直径大小的工件,并用螺钉9紧固爪7和8,使爪在需要位置上固定不动。 2.中心架的使用 (1)中心架的使用调整方法 工件装上中心架之前,先在毛坯中间处车一条安装中心架卡爪的沟槽,槽的直径等于工件的直径,其宽度略比爪宽大些。接着把中心架安装在床面适当位置上并加以固定,打开盖子3,把工件安装在两顶针中间(床尾要先调整好),用划针盘或百分表检查槽是否跳动,然后将盖子3盖好,并调整中心架3个爪,使他们与工件沟槽轻轻接触。这时慢慢转动工件,看是否能转得动。在爪与工件之间最好垫一层铜皮或平皮带,并加些润滑油,或者3个爪用夹布胶木制造,这样可防止擦伤工件表面。在车削大型工件或工件转速较高时,就必须采用带滚动轴承的中心架,如图5-2所示。 (2)车削步骤 车削时,先车一端,一直车到沟槽为止。然后把工件调个头,用同样方法安装和调整工件,

车工工艺教案轴类零件的加工工艺分析与实例

轴类零件的加工工艺分析与实例 在职业学校机械加工实习课中,轴类零件的加工是学生练习车削技能的最基本也最重要的项目,但学生最后完工工件的质量总是很不理想,经过分析主要是学生对轴类零件的工艺分析工艺规程制订不够合理。 轴类零件中工艺规程的制订,直接关系到工件质量、劳动生产率和经济效益。一零件可以有几种不同的加工方法,但只有某一种较合理,在制订机械加工工艺规程中,须注意以下几点。 1.零件图工艺分析中,需理解零件结构特点、精度、材质、热处理等技术要求,且要研究产品装配图,部件装配图及验收标准。 2.渗碳件加工工艺路线一般为:下料→锻造→正火→粗加工→半精加工→渗碳→去碳加工(对不需提高硬度部分)→淬火→车螺纹、钻孔或铣槽→粗磨→低温时效→半精磨→低温时效→精磨。 3.粗基准选择:有非加工表面,应选非加工表面作为粗基准。对所有表面都需加工的铸件轴,根据加工余量最小表面找正。且选择平整光滑表面,让开浇口处。选牢固可靠表面为粗基准,同时,粗基准不可重复使用。 4.精基准选择:要符合基准重合原则,尽可能选设计基准或装配基准作为定位基准。符合基准统一原则。尽可能在多数工序中用同一个定位基准。尽可能使定位基准与测量基准重合。选择精度高、安装稳定可靠表面为精基准。 内圆磨具主轴 针对上述要求,现举例说明如下。一渗碳主轴(如上图),每批40件,材料20Cr,除内外螺纹外S0.9~C59。渗碳件工艺比较复杂,必须对粗加工工艺绘制工艺草图(如图)。 工艺草图

主轴加工工艺过程

该轴类零件加工过程中几点说明: 1.采用了二中心孔为定位基准,符合前述的基准重合及基准统一原则。 2.该零件先以外圆作为粗基准,车端面和钻中心孔,再以二中心孔为定位基准粗车外圆,又以粗车外圆为定位基准加工锥孔,此即为互为基准原则,使加工有一次比一次精度更高的定位基准面。3号莫氏圆锥精度要求很高。因此,需用V型夹具以2-ф30js5外圆为定位基准达到形位公差要求。车内锥时,一端用卡爪夹住,一端搭中心架,亦是以外圆作为精基准。 3.半精加工、精加工外圆时,采用了锥堵,以锥堵中心孔作为精加工该轴外圆面的定位基准。 对锥堵要求: ①锥堵具有较高精度,保证锥堵的锥面与其顶尖孔有较高同轴度。 ②锥堵安装后不宜更换,以减少重复安装引起的安装误差。 ③锥堵外径靠近轴端处须制有外螺纹,以方便取卸锥堵。 4.主轴用20Cr低碳合金钢渗碳淬硬,对工件不需要淬硬部分发(M30×1.5-6g左、M30×1.5-6g、M12-6H、M6-6H)表面留2.5-3mm去碳层。 5.螺纹因淬火后,在车床上无法加工,如先车好螺纹后再淬火,会使螺纹产生变形。因此,螺纹一般不 允许淬硬,所以在工件中的螺纹部分的直径和长度上必需留去碳层。对于内螺纹,在孔口也应留出3mm 去碳层。 6.为保证中心孔精度,工件中心孔也不允许淬硬,为此,毛坯总长放长6mm。 7.为保证工件外圆的磨削精度,热处理后须安排研磨中心孔的工序,并要求达到较细的表面粗糙度。外 圆磨削时,影响工件的圆度主要是由于二顶尖孔的同轴度,及顶尖孔的圆度误差。 8.为消除磨削应力,粗磨后安排低温时效工序(烘)。 9.要获高精度外圆,磨削时应分粗磨、半精磨、精磨工序。精磨安排在高精度磨床上加工。 当然,实习产品质量的提高还需要学生扎实的基本功。

轴类零件工艺制定实例

一、轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩 和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项: (一)尺寸精度起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高 (IT5~IT7)。装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。 (二)几何形状精度轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的 圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。 (三)相互位置精度轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定 的。通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~0.03mm,高精度轴(如主轴)通常为0.001~0.005mm。 (四)表面粗糙度一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相 配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。 一、概述 (一)、轴类零件的功用与结构特点 1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及保证装在主轴上的工件或刀具具有一定的回转精度。 2、2、分类:轴类零件按其结构形状的特点,可分为光轴、阶梯轴、空心 轴和异形轴(包括曲轴、凸轮轴和偏心轴等)四类。

如何车削细长轴

如何车削细长轴 【内容提要】工件的长度L与直径d之比(即长径比)大于25(L/d?25)的轴类零件称为细 长轴。由于细长轴本身刚性差(L/d值越大,刚性越差),因此在车削过程中会出现工件受 切削力、自重和旋转时离心力的作用,会产生弯曲、振动,严重影响其圆柱度和表面粗糙度 以及在切削过程中,工件受热伸长产生弯曲变形,使车削难以进行本文从加工工艺方面入手,讲述了细长轴车削的三个关键基本技术方法。 【关键词】细长轴车削关键技术 一、工件的装夹 1.使用中心架支撑车削细长轴 使用中心架支撑车削细长轴,关键是使中心架与工件接触的三个支撑爪所决定圆的圆心与车 床的回转中心重合。车削时,一般是用两顶尖装夹或一夹一顶方式安装工件,中心架安装在 工件的中间部位并固定在床身上。 2. 跟刀架的选用 跟刀架一般固定在床鞍上跟随车刀移动,承受作用在工件上的切削力。细长轴刚性差,车削 比较困难,如采用跟刀架来支撑,可以增加刚性,防止工件弯曲变形,从而保证细长轴的车 削质量。从跟刀架用以承受工件上的切削力F的角度来看,只需两支支撑爪就可以了。切削 力F可以分解F1与F2两个分力,它们分别使工件贴紧在支撑爪上。但是工件除了受F力之外,还受重力Q的作用,会使工件产生弯曲变形。因此车削时,若用两爪跟刀架支撑工件, 则工件往往会受重力作用而瞬时离开支撑爪,瞬时接触支撑爪,而产生振动;若选用三爪跟 刀架支撑工件,工件支撑在支撑爪和刀尖之间,便上下、左右均不能移动,这样车削就稳定,不易产生振动。所以选用三爪跟刀架支撑车削细长轴是一项很重要的工艺措施。 二、减少工件的热变形伸长 车削时,由于切削热的影响,使工件随温度升高而逐渐伸长变形,这就叫“热变形”。车削细 长轴时,为了减少热变形的影响,主要采取以下措施: 1. 细长轴应采用一夹一顶的装夹方式 卡爪夹持部分不宜过长,一般在15mm左右,最好用钢丝圈垫在卡盘爪的凹槽中,这样以点接触,使工件在卡盘内能自由调节其位置,避免夹紧时形成弯曲力矩。这样,在切削过程中 发生热变性伸长,也不会因卡盘夹死而产生内应力。 2.使用弹性回转顶尖来补偿工件热变形伸长 弹性回转顶尖由前端圆柱滚子轴承和后端的滚针轴承承受径向力,有推力球轴承承受轴向推力。在圆柱滚子轴承和推力球轴承之间,放置两片碟形弹簧。当工件变形伸长时,工件推动 顶尖,使碟形弹簧压缩变形(即顶尖能自动后退)。经长期生产实践证明,车削细长轴时使 用弹性回转顶尖,可以有效地补偿工件的热变形伸长,工件不易产生弯曲,使车削可以顺利 进行。 3. 采取反向进给方法 车削时,通常纵向进给运动的方向是床鞍带动车刀由床尾向床头方向运动,即所谓正向进给。反向进给则是床鞍带动车刀由床头箱向床尾方向运动。正向进给时,工件所受轴向切削分力,使工件受压(与工件变形方向相反),容易产生弯曲变形。而反向进给时,作用在工件上的 轴向切削分力,使工件受拉力(与工件变形方向相同),同时,由于细长轴左端通过钢丝圈

细长轴车削加工工艺

细长轴车削加工工艺

细长轴车削加工工艺 作者:焦文凯 专业:车工 年级: 08数控 1

摘要 针对影响加工细长轴零件精度不高等因素,分析了如何提细长轴零件的加工精度,给出解决问题的具体方法 关键词: 细长轴变形装夹精度 一.细长轴车削的工艺特点: ①细长轴刚性很差,车削时装夹不当,很容易因切削力及重力的作用而发生弯曲变形,产生振动,从而影响加工精度和表面粗糙度。 ②细长轴的热扩散性能差,在切削热作用下,会产生相当大的线膨胀。如果轴的两端为固定支承,则工件会因伸长而顶弯。 ③由于轴较长,一次走刀时间长,刀具磨损大,从而影响零件的几何形状精度。 ④车细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。若压力过小或不接触,就不起作用,不能提高零件的刚度:若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟刀架继续移动后,支承块支承在小直径外圆处,支承块与工件脱离,切削力使工件向外让开,切削深度减小,车出的直径变大,以后跟刀架又跟到大直径圆上,又把工件压向车刀,使车出的直径变小,这样连续有规律的变化,就会把细长的工件车成“竹节”形。造成机床、工件、刀具工艺系统的刚 1

性不良给切削加工带来困难,不易获得良好的表面粗糙度和几何精度。 二. 引起细长轴产生弯曲变形的原因 在车床上车削细长轴采用的传统装夹方式主要有两种:一种方式是细长轴的一端用卡盘夹紧,另一端用车床尾架顶尖支承;另一种方式是细长轴的两端均由顶尖支撑。主要分析一夹一顶的装夹方式。 1. 切削力导致变形 在车削过程中,产生的切削力可以分解为轴向切削力PX、径向切削力PZ。不同的切削力对车削细长轴时产生弯曲变形的影响是不同的。 径向切削力PZ的影响 径向切削力是垂直作用在通过细长轴轴线水平平面内的,由于细长轴的刚性较差,径向力将会把细长轴顶弯,使其在水平面内发生弯曲变形.径向切削力对细长轴弯曲变形的影响。 轴向切削力PX的影响 1

典型轴类零件实验报告

电子科技大学。。。。。。学院 实验报告 (实验)课程名称典型轴类零件的数控车削工艺与加工 学生姓名:……… 学号:10 指导教师://// 日期:6-13周

电子科技大学 实验报告 学生姓名:。。。。。。学号:11 指导教师:、、、 实验地点:工程训练中心114 实验时间:6-13周 一、实验室名称:工程训练中心 二、实验项目名称:典型轴类零件的数控车削工艺与加工 三、实验学时:32 四、实验原理: 用Mastercam软件设计图形并绘图,运用G代码,将工艺文件编制成数控加工程序,输入数控车床,加工出零件。 五、实验目的: (一)掌握轴类零件的结构特点、实际应用; (二)学习Mastercam软件绘图并进行粗工与精工程序编制; (三)掌握工艺制造工艺,学习对工程手册的使用; (四)掌握典型零件的毛培制造、热处理、机加工方法; (五)将传统加工与现代制造技术有机结合,合理制定数控加工工艺,正确使用数控设备及刀夹量具。 六、实验内容: (一)、学习轴类零件的功用、结构特点及技术要求 轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项:1、尺寸精度 起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高(IT5~IT7)。装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。

轴类零件加工工艺分析

江苏省徐州机电工程高等职业学校 毕业论文 (2016届) 题目:轴类零件的加工工艺分析 姓名:张开诚 学号: 系部:数控技术系 班级: 11高职数控6班 指导教师:郁岩 2016年5月 轴类零件的加工工艺分析 张开诚 11高职数控6班 摘要:随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民 生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。 关键词:工艺分析;加工方案;进给路线;控制尺寸

图1 零件图 技术要求 1 去除毛刺尖角倒钝 2 未注倒角均为1*45° 3 无热处理和硬度要求 一、工艺方案分析 (一)零件图分析 该零件属于抽油机里面的装配零件,表面由圆柱、顺圆弧、逆圆弧、圆锥、槽、螺纹等表面组成。尺寸标注完整,对精度要求较高,我们选用毛坯为45#钢,Φ55mm×150mm。 (二)确定加工方法 加工方法的选择原则是保证加工表面的加工精度和表面粗糙度的要求。由于获得同一级精度及表面粗糙度的加工方法一般有许多,因而在实际选择时,要结合零件的形状、尺寸大小和形位公差要求等全面考虑。 图上几个精度要求较高的尺寸,因其公差值较小,所以编程时没有取平均值,而取其基本尺寸。 在轮廓线上,有个锥度10度坐标P1、和一处圆弧切点P2,在编程时要求出其坐标,P1(45.29 ,75) P2(35,56.46)。 通过以上数据分析,考虑加工的效率和加工的经济性,最理想的加工方式为车削,考虑该零件为大批量加工,故加工设备采用数控车床。 根据加工零件的外形和材料等条件,选用CJK6032数控机床。(三)确定加工方案 零件上比较精密表面的加工,常常是通过粗加工、半精加工和精加工逐步达到的。对这些表面仅仅根据质量要求选择相应的最终加工方法是不够的,还应正确地确定从毛坯到最终成形的加工方案。 毛坯先夹持左端,车右端轮廓113mm处,右端加工Φ39mm、SΦ42mm、 R9mm、Φ35mm、锥度为10度的外圆,Φ52mm.调头装夹已加工Φ52mm外圆,左端加工Φ25mm×33mm、切退刀槽、加工螺纹M25mm ×1.5mm. 该典型轴加工顺序为: 预备加工---车端面---粗车右端轮廓---精车右端轮廓---切槽---工件调头 ---车端面---粗车左端轮廓---精车左端轮廓---切退刀槽---粗车螺纹---精车螺纹。

相关文档
最新文档