定量分析方法总结

定量分析方法总结
定量分析方法总结

一、灰色关联分析

灰色关联分析就是系统态势的一种量化比较分析,其实质就就是比较若干数列所构成的曲线到理想数列所构成的曲线几何形状的接近程度,几何形状越接近,其关联度就越大。可见,灰色关联分析就是一种趋势分析,它对样本的大小没有太高的要求,一般情况下比较适合小样本,贫信息的数据,并且样本数据不需要典型的分布规律,因而,具有广泛的适用性。

灰色关联分析模型的建立:

(1)确定比较数列与参考数列;

设Xi={xi(1),xi(2),…xi(n)}为创业板上市公司的财务指标形成的比较数据列,其中,i=1,2…17、同时,把每项指标中的最优值作为最优指标集X0,可得到参考数列:X 0={x 0(1),x 0(2),…x 0(n)}

(2)无量纲化处理;无量纲化的处理方法通常有初值化、均值化、规范化三种方法,而本文采用的就是不同指标的标准化处理方法,如前文所示。

(3)各个指标权重的确定w (k);

(4)计算关联系数δi(k);

(5)计算关联度r i

设参考数列为:X 0={x 0(1),x 0(2),…x 0(n)},关联分析中被比较数列记为X i ={x i (1),x i (2),…x i (n)},i=1,2,…28;n=1,2,3…12、

对于一个参考数列X 0,比较数列Xi,可用下述关系表示各比较曲线与参考曲线在各点的差:

式中,δi(k)

就是第k 个时刻比较曲线x i 与参考曲线x o 的相对差值,这种形式的相对差值称为x i 对x 0在k 时刻的关联系数。ρ为分辨系数,ρ∈(0,1),引入它就是为了减少极值对计算的影响。在实际计算使用时,一般取ρ=0、5、

若记:Δmin=minmin|x o (k)-x i (k)|, Δmax= maxmax|x o (k)-x i (k)|,则Δmin 与Δmax 分别为各时刻x o 与x i 的最小绝对差值与最大绝对差值,从而有

ρΔm ax

|x -x |ρΔm ax Δm in δi(k)0(k))k i(++= 根据关联系数计算关联度,得到灰色关联模型为:

r i =∑=n

1i )(*)(k w k i δ

二、层次分析法构建经营绩效评价模型

层次分析法(Analytic Hierarchy Process 简称AHP)就是美国运筹学家匹茨

|(k)x -(k) x |ρm ax m ax |(k)x -(k)x | |

(k)x -(k)x |m ax m ax ρ |(k)x -(k)x |m inm in (k)δi o i o i o i o i ++=

堡大学教授Saaty 于二十世纪70年代初期提出的。层次分析法(AHP),它就是系统工程中对非定量事件作定量分析的一种简便方法,也就是人们对主观判断进行客观描述的一种有效方法。它将复杂问题分解成若干个层次,逐步进行分析。这种做法,首先要求把问题层次化,根据问题的性质与要得到的目标,将问题分解为不同的组合因素,并将问题按不同的层次聚集组合,形成一个多层次的分析结构模型。通过两两比较的方法,确定层次中诸因素的相对重要性,然后组合人们的判断以决定诸因素相对于总目标的相对重要性数值或相对优劣次序的排序。

层次分析法的核心思想可以归纳为“先分解后综合”,应用层次分析法进行上市公司经营绩效评价进,应包括如下基本步骤[27]:

(1)建立层次结构

应用层次分析法进行综合经营绩效评价时,首先建立评价问题的层次结构(Hierarchy)。层次结构就是应用层次分析法把复杂问题分解简化的关键,必须建立在对决策问题深刻分析与对决策目标以及决策主体意图的充分理解之上。层次结构的建立过程就是首先确定决策目标,其次罗列出与该目标相关的各种因素,然后分析这些因素问的逻辑关系,最后绘制决策的层次结构图,简单的层次结构如图4、1所示:

图4、1 简单的层次结构图

这种层次结构分为目标层、准则层与方案层,其中准则层根据问题的复杂程度又可以由多层构成。层次分析法的最终目标G 就是考虑所有相关因素,对各方案综合评判比较并选择最优方案。各方案对于总目标G 的优越性评分,称为方案的综合权重。求综合权重前,必须求解层次结构中的局部权重。局部权重分为两类,一类就是同层因素对于上一层父因素的相对重要性,称为因素权重,例如上图中因素1A , 2A ,…,n A 相对G 的重要性;另一类就是各方案就某因素而言的相对优越性,称为方案权重,例如方案1B ,2B ,…,n B 就因素1A 的相对优越性。权重反映了多个比较变量间的相对重要性关系,采用归一化的向量来表示。权重的大小反映了该比较量相对其它比较量重要性的高低。

(2)构造判断矩阵

建立递阶层次结构以后,就可以采用层次分析法中的相对评价方法对方案进

行两两比较。长期的心理学研究表明,决策者对事物两两比较的判断要比对多个事物同时比较的判断容易与准确得多。因此,层次分析法在确定权重时一般都采用两两比较的方式。若有n 个比较量,则让每一个量与其她量分别进行共n-1次两两比较,第i 个量与第j 个量的比较结果记为ij a ,再加上与自身的比较结果,可以形成一个n n ?的矩阵,称为判断矩阵。该矩阵中蕴含了比较量之间的权重关系,通过一些权重求解算法可求出权重向量。因此,要得到层次结构中的局部权重,就必须首先逐层建立判断矩阵,对应方案权重的判断矩阵称为方案判断矩阵,它就是关于某个因素对各方案进行两两比较而形成的。对应因素权重的判断矩阵称为因素判断矩阵。例如要得到图4、2、1中因素1A , 2A ,…,n A 相对G 的因素权重,就需要将1A , 2A ,…,n A 对G 的重要性进行两两比较,比较结果可以形成一个n n ?的判断矩阵,再通过计算求得这n 个因素相对于G 的权重。

准则层i A 对目标层G 的判断矩阵可以表示为表4、2。

表4、2 准则层判断矩阵

形成判断矩阵的过程也就是数据标量化(或测度)的过程。标量化就是指通过一定的标度体系,将各种原始数据转换为可直接比较的规范化格式的过程。在决策表中的数据还无法直接比较,表中的定性描述必须通过标量化手段转换为规范化的定量数据;表中的定量数据虽己量化,但其量纲与数量级还不统一,仍需规范化后才能比较。定量数据既可采用直接相比的办法进行处理,也可以让专家进行两两比较得到定性评价后按定性数据处理。定性数据可用点值打分来表示。决策者在用层次分析法对各种因素进行测度过程中,提出了一系列标度。在传统的层次分析法中,决策者通常都会选择正互反性1-9标度判断矩阵作为标量化方法

[49]。正互反性1-9标度打分规则如表4、3所示:

表4、3 层次分析法1-9标度打分规则

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

Python学习笔记:八大排序算法!

一、插入排序 介绍 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据。 算法适用于少量数据的排序,时间复杂度为O(n^2)。 插入排算法是稳定的排序方法。 步骤 ①从第一个元素开始,该元素可以认为已经被排序 ②取出下一个元素,在已经排序的元素序列中从后向前扫描 ③如果该元素(已排序)大于新元素,将该元素移到下一位置 ④重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 ⑤将新元素插入到该位置中 ⑥重复步骤2 排序演示

算法实现 二、冒泡排序 介绍 冒泡排序(Bubble Sort)是一种简单的排序算法,时间复杂度为O(n^2)。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。原理 循环遍历列表,每次循环找出循环最大的元素排在后面; 需要使用嵌套循环实现:外层循环控制总循环次数,内层循环负责每轮的循环比较。 步骤 ①比较相邻的元素。如果第一个比第二个大,就交换他们两个。 ②对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。 ③针对所有的元素重复以上的步骤,除了最后一个。 ④持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

算法实现: 三、快速排序 介绍 快速排序(Quicksort)是对冒泡排序的一种改进,借用了分治的思想,由C. A. R. Hoare在1962年提出。 基本思想 快速排序的基本思想是:挖坑填数+ 分治法。 首先选出一个轴值(pivot,也有叫基准的),通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 实现步骤

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

数据结构 各种排序算法

数据结构各种排序算法总结 2009-08-19 11:09 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序 BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序 selectSort public void selectionSort() { int out, in, min; for(out=0; out

swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序 insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。 public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

数据结构-各类排序算法总结

数据结构-各类排序算法总结 原文转自: https://www.360docs.net/doc/cc18297804.html,/zjf280441589/article/details/38387103各类排序算法总结 一. 排序的基本概念 排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素 某个项值有序的序列。 有n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。通过排序,要求找出当前下标序列1,2,…,n 的一种排列p1,p2,…,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。 作为排序依据的数据项称为“排序码”,也即数据元素的关键码。若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可

能不唯一。实现排序的基本操作有两个: (1)“比较”序列中两个关键字的大小; (2)“移动”记录。 若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。 二.插入类排序 1.直接插入排序直接插入排序是最简单的插入类排序。仅有一个记录的表总是有序的,因此,对n 个记录的表,可从第二个记录开始直到第n 个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。

数学中常用极限方法总结

【1】 忽略高阶无穷小方法。 很多极限看起来很复杂, 而且也不好使用洛必达法则, 但是如果忽略掉次要部分, 易计算。 比如 …皿 ,忽略掉比x 低的无穷小项后为 V x / V 2x = 1/ V2 再比如斐波那契数列, 忽略掉[(1-V 5)/2]人n 的次要项后, 可以求得 lim a(n+1)/a(n) = (1+ V 5)/2 再比如 lim(x- ) (sinh(x)+sinx)/(2Cosh(x) -3Cos(x)) 当x->g 的时候sinx 和cosx 是sinh(x)和cosh(x)的高阶无穷小 所以 lim(x- >g ) (sinh(x)+sinx)/(2Cosh(x) -3Cos(x)) =lim(x- >m )sin h(x)/2Cosh(x) =lim(x- >g ) (e A )ee A (-x)) / 2(e A x+e A (-x)) =lim(x- >m )eAx / 2eAx =1 【2】 取对数与洛必达法则 洛必达法则是求极限的时候用的最多的方法,但是很多题目都会饶下弯子,需要先 对代 数式进行一些变形,否则计算起来会越来越烦,常见的的代换包括取对数,等 价无穷小 代换,省略高阶无穷小部分,在用完这些方法后,再使用洛必达法则,可 以有效的解决 这类问题。 比如 这个直接用等价无穷小代换后会因为损失了高阶无穷小导致结果不正确,取对数后 就会 化成容易计算的形式了 lim(x->8) xA2*ln(1+1/x) - x 再做代换t = 1/x 则会很容 lim 工一>乂 (1+-) X e x

=li n(t->0) (In (1+t)-t) / t A2 再用洛必达法则=Iim(t->0) (1/(1+t) - 1) / 2t = -1/2 所以原式极限为eA(-1/2) 再比如tanx A(1/|nx)在x->0+的时候的极限 这个极限是0A R的形式 直接取对数得In(tanx) / Inx,现在是g/ °的形式 用洛必达法则得=x / ( sinx cosx) = x/si nx * 1/cosx = 1 所以tanxA(1/Inx)在x->0+的时候的极限为e 【3】常用等价无穷小 经常用到的等价无穷小有 (1) tanx ~ si nx ~ acrs inx ~ arcta nx ~ sin h(x) ~ acsin h(x) ~ x (x->0) (2) 1-cosx ~ 沁212 (x->0) (3) eAx - 1 ~ x (x->0) (4) In (1+x) ~ x (x->0) (5) (1+x)Aa - 1 ~ ax (x->0) (6) e - (1+x)A(1/x) ~ ex / 2 (x->0) 【4】极限存在准则 有些极限问题直接计算很困难,但是合理地使用放缩,再利用极限存在准则,可以很容 易的得到,这个方法在判别级数收敛,反常积分计算的时候更是经常用到。 比如 显然n/ V(nA2+n) < 刀1/V(n人2+。< n/ V(n人2+1) 而limn/ V(n人2+n) = limn/ V(n人2+1) = 1 所以极限是1 H+COS2用y “ 再比如 显然1 <= 2s in A2n + cosA2 n <= 2 所以1A(1/n) <= (2si nA2n + cosA2 n)A(1/n) <= 2人(1/ n) 所以原式极限是1 € 一企 2 也E 另外一个巧妙应用是计算广义积分’'' 「,可以在很多地方找 到这个方法,这里就不再写了。 【5】泰勒级数代换 利用一个函数的泰勒级数来求极限是一个重要的方法,等价无穷小是泰勒级数的一个特例,而通常

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

数值分析论文

题目:论数值分析在数学建模中的应用 学院: 机械自动化学院 专业: 机械设计及理论 学号: 学生姓名: 日期: 2011年12月5日

论数值分析在数学建模中的应用 摘要 为了满足科技发展对科学研究和工程技术人员用数学理论解决实际的能力的要求,讨论了数值分析在数学建模中的应用。数值分析不仅应用模型求解的过程中,它对模型的建立也具有较强的指导性。研究数值分析中插值拟合,解线性方程组,数值积分等方法在模型建立、求解以及误差分析中的应用,使数值分析作为一种工具更好的解决实际问题。 关键词 数值分析;数学建模;线性方程组;微分方程 the Application of Numerical Analysis in Methmetical Modeling Han Y u-tao 1 Bai Y ang 2 Tian Lu 2 Liu De-zheng 2 (1 College of Science ,Tianjin University of Commerce ,Tianjin ,300134 2 College of Science ,Tianjin University of Commerce ,Tianjin ,300134) Abstract In order to meet the technological scientific researchers who use mathematical theory to solve practical problems, the use of numerical analysis in mathematical modeling is discussed.Numerical analysis not only solve the model,but also relatively guide the model.Research on some numerical methods in numerical analysis which usually used in mathmetical modeling and error analysis will be a better way to solve practical problems. Key Words Numerical Analysis ;Mathematical Modeling; Linear Equations ;differential equation 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2. 数值分析在模型建立中的应用 在实际中,许多问题所研究的变量都是离散的形式,所建立的模型也是离散的。例如,对经济进行动态的分析时,一般总是根据一些计划的周期期末的指标值判断某经济计划执行的如何。有些实际问题即可建立连续模型,也可建立离散模型,但在研究中,并不能时时刻刻统计它,而是在某些特定时刻获得统计数据。例如,人口普查统计是一个时段的人口增长量,通过这个时段人口数量变化规律建立离散模型来预测未来人口。另一方面,对常见的微分方程、积分方程为了求解,往往需要将连续模型转化成离散模型。将连续模型转化成离散模型,最常用的方法就是建立差分方程。 以非负整数k 表示时间,记k x 为变量x 在时刻k 的取值,则称k k k x x x -=?+1为k x 的一阶差分,称k k k k k x x x x x +-=??=?++1222)(为k x 的二阶差分。类似课求出k x 的n 阶差分k n x ?。由k ,k x ,及k x 的差分给出的方程称为差分方程[2]。例如在研究节食与运动模型时,发现人们往往采取节食与运动方式消耗体内存储的脂肪,引起体重下降,达到减肥目的。通常制定减肥计划以周为时间单位比较方便,所以采用差分方程模型进行讨论。记第k 周末体重为)(k w ,第k 周吸收热量为)(k c ,热量转换系数α,代谢消耗系数β,在不考虑运动情况下体重变化的模型

c语言各种排序法详细讲解

一插入排序 1.1 直接插入排序 基本思想:每次将一个待排序额记录按其关键码的大小插入到一个已经排好序的有序序列中,直到全部记录排好序。 图解:

1.//直接顺序排序 2.void InsertSort(int r[], int n) 3.{ 4.for (int i=2; i

代码实现: [cpp]view plain copy 1.//希尔排序 2.void ShellSort(int r[], int n) 3.{ 4.int i; 5.int d; 6.int j; 7.for (d=n/2; d>=1; d=d/2) //以增量为d进行直接插入排序 8. { 9.for (i=d+1; i0 && r[0]

各大常用排序方法

//1. 希尔排序, 时间复杂度:O(nlogn)~ O(n^2) // 另称:缩小增量排序(Diminishing Increment Sort) void ShellSort(int v[],int n) { int gap, i, j, temp; for(gap=n/2; gap>0; gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap; i=0) && (v[j]>v[j+gap]); j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp = v[j]; v[j] = v[j+gap]; v[j+gap] = temp; } } } } //2. 二分插入, void HalfInsertSort(int a[], int len) { int i, j, temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */ { high = mid-1;

} else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧 */ { low = mid+1; } } /* 找到当前元素的位置,在low和high之间 */ for (j=i-1; j>high; j--)/* 元素后移 */ { a[j+1] = a[j]; } a[high+1] = temp; /* 插入 */ } } //3. 插入排序 //3.1 直接插入排序, 时间复杂度:O(n^2) void StraightInsertionSort(int input[],int len) { int i, j, temp; for (i=1; i=0 && input[j]>temp; j--) /* 从当前元素的上一个元素开始查找合适的位置 */ { input[j+1] = input[j]; /* 一边找一边移动元素 */ input[j] = temp; } } } //3.2 带哨兵的直接排序, 时间复杂度:O(n^2) /* * 带哨兵的直接插入排序,数组的第一个元素不用于存储有效数据 * 将input[0]作为哨兵,可以避免判定input[j]中,数组是否越界 * 因为在j--的过程中,当j减小到0时,变成了input[0]与input[0] * 自身进行比较,很明显这个时候说明位置i之前的数字都比input[i]小

各种排序实验报告

【一】需求分析 课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序,快速排序,基数排序,折半插入排序,直接插入排序。 为了运行时的方便,将八种排序方法进行编号,其中1为堆排序,2为归并排序,3为希尔排序,4为冒泡排序,5为快速排序,6为基数排序,7为折半插入排序8为直接插入排序。 【二】概要设计 1.堆排序 ⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。 ⑵程序实现及核心代码的注释: for(j=2*i+1; j<=m; j=j*2+1) { if(j=su[j]) break; su[i]=su[j]; i=j; } su[i]=temp; } void dpx() //堆排序 { int i,temp; cout<<"排序之前的数组为:"<=0; i--) { head(i,N); } for(i=N-1; i>0; i--) {

temp=su[i]; su[i]=su[0]; su[0]=temp; head(0,i-1); } cout<<"排序之后的数组为:"<

C C++笔试面试题目汇总3——各种排序算法

C/C++笔试面试题目汇总3——各种排序算法 原文:https://www.360docs.net/doc/cc18297804.html,/u/1222/showart_318070.html 排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将给出详细的说明。对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。 我将按照算法的复杂度,从简单到难来分析算法。 第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。 第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种算法因为涉及树与堆的概念,所以这里不于讨论。 第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。 第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。 一、简单排序算法 由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。 1.冒泡法:(Gilbert:点这里有视频) 这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡: #include void BubbleSort(int* pData,int Count) { int iTemp; for(int i=1;i=i;j--) { if(pData[j]

极限求值方法总结

求极限方法总结 1、 四则运算 设lim (),lim ()p p f x A g x B ==(A 、B 为常数)则 lim[()()]lim ()lim ()p p p f x g x f x g x A B ±=±=±; lim[()()]lim ()lim ()p p p f x g x f x g x A B ==; lim ()()lim (0)()lim ()p p p f x f x A B g x g x B ==≠ 例1 32 lim(23).x x x →-+ 解: 333 2 2 2 2 lim(23)lim lim(2)lim322237x x x x x x x x →→→→-+=-+=-?+= 2、 约去零因子法 当分子极限0 0lim ()()0x x p x p x →=≠时,即当0x x →时,分式 () () P x Q x 的分子、分母的极限均为0(称此式 型不定式)时,多项式()P x 与()Q x 必有公因子0()x x -,故在求0() lim ()x x P x Q x →时,分子分母可以先约去0()x x -,再求极限。 例2. 23 3 lim 9 x x x →-- 解:()()23 333311 lim lim lim 93336 x x x x x x x x x →→→--=== -+-+ 3、 同除以最高次幂 当x →∞时,分子与分母都是无穷大,故不能直接应用商的极限运算法则。将分子分母同除以x 的最高次幂,此时分子、分母都有极限存在,且分母极限不为零。 例3 2351 lim 232 x x x x x →∞+++- 解:223233 2323511511lim 510lim lim 0323223222lim 2x x x x x x x x x x x x x x x x x x →∞→∞→∞→∞??++++ ?++??====+-??+-+- ? ? ?

数值分析学习方法

第一章 1霍纳(horner)方法: 输入=c + bn*c bn?1*c b3*c b2*c b1*c an an?1 an?2 ……a2 a1 a0 bn bn?1 bn?2 b2 b1 b0 answer p(x)=b0 该方法用于解决多项式求值问题=anxn+an?1xn?1+an?2xn?2+……+a2x2+a1x+a0 ? 2 注:p为近似值 p(x) 绝对误差: ?|ep?|p?p ?||p?p rp? |p| 相对误差: ?|101?d|p?p rp?? |p|2 有效数字: (d为有效数字,为满足条件的最大整数) 3 big oh(精度的计算): o(h?)+o(h?)=o(h?); o(hm)+o(hn)=o(hr) [r=min{p,q}]; o(hp)o(hq)=o(hs) [s=q+p]; 第二章 2.1 求解x=g(x)的迭代法用迭代规则 ,可得到序 列值{}。设函数g 满足 y 定义在得 。如果对于所有 x ,则函数g 在 ,映射y=g(x)的范围 内有一个不动点; 此外,设 ,存在正常数k<1,使 内,且对于所有x,则函数g 在 内有唯一的不动点p。 ,(ii)k是一个正常数, 。如果对于所有 定理2.3 设有(i)g,g ’(iii ) 如果对于所有x在

这种情况下,p成为排斥不动点,而且迭代显示出局部发散 性。波理 尔 查 . 诺 二 分 法 ( 二 分 法 定) <收敛速度较慢> 试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线l与 x轴的交点(c,0)> 应注意 越来越 小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法 . f(pk?1) 其中k=1,2,……证明:用 f(pk?1) 牛顿—拉夫森迭代函数:pk?g(pk?1)?pk?1? 泰勒多项式证明 第三章线性方程组的解法对于给定的解线性方程组ax=b a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2 ? an1x1 ? an2x2 ? ? ? annxn ? bn 一gauss elimination (高斯消元法第一步forward elimination 第二步 substitution 二lu factorization 第一步 a = lu 原方程变为lux=y ; 第二步令ux=y,则ly = b由下三角解出y;第三步 ux=y,又上三角解出x ; 三iterative methods(迭代法) a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2? ) back 初始值 0,x0,?,x0x1n2 四 jacobi method 1.选择初始值 2.迭代方程为 0,x0,?,x0x1n2 k?1? x1k?1 ? x2

相关文档
最新文档