湖南省多源地理空间数据融合规范

湖南省多源地理空间数据融合规范
湖南省多源地理空间数据融合规范

湖南省多源地理空间数据融合规范

(修订稿)

修订记录

引言

2017年1月,湖南省人民政府令第281号《湖南省地理空间数据管理办法》(以下简称《办法》)经省人民政府第95次常务会议通过,自2017年4月1日起施行。《办法》规定了地理空间数据汇集整理和共享使用的内容以及参与各方的职责分工。为进一步规范多源地理空间数据的集成与融合,特编制本标准。

本标准的起草工作在遵循国家相关法律法规、技术规范要求的基础上,充分考虑了全省地理空间数据多源、异构、不一致性的现状及特点。本标准的实施将规范全省地理空间数据的集成与融合,明确多源地理空间数据数据融合的基本流程与技术要求,有助于形成统一权威的基础地理空间数据,为地理空间数据的交换与共享提供基础。

1范围

本规范规定了湖南省地理空间矢量数据融合的内容、规则与技术流程等相关要求。

本规范适用于湖南省1:500、1:1000、1:2000、1:5000、1:10,000地理空间矢量数据融合。

2规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 13923-2006 基础地理信息要素分类与代码

GB/T 14911-2008 测绘基本术语

GB/T 16820-2009 地图学术语

GB/T 17694-2009 地理信息术语

GB/T 33462-2016 基础地理信息1:10000地形要素数据规范

GB/T 7408-2005 数据元和交换格式信息交换日期和时间表示法

GB/T 17798-2007 地理空间数据交换格式

GB/T 13989-2012 国家基本比例尺地形图分幅和编号

GB/T 20258.1-2007 基础地理信息要素数据字典第1部分:1:500 1:1000

1:2000基础地理信息要素数据字典

GB/T 20258.2-2006 基础地理信息要素数据字典第2部分:1:5000 1:10000

基础地理信息要素数据字典

GB/T 20257.1-2007 国家基本比例尺地图图示第1部分:1:500 1:1000 1:2000

地形图图示

GB/T 20257.2-2006 国家基本比例尺地图图示第2部分:1:5000 1:10000地形

图图示

GB/T 17941-2008 数字测绘成果质量要求

GB/T 17278-2009 数字地形图产品基本要求

GB/T 24356-2009 测绘成果质量检查与验收

CH/T 9006-2010 1:5000 1:10000基础地理信息数字产品更新规范

GDPJ 03-2013 地理国情普查数据规定与采集要求

CH/Z 9010-2011 地理信息公共服务平台地理实体与地名地址数据规范

3术语

3.1地理要素(geographic feature)

表示地球上地点相关的现实世界现象,一般分自然地理要素和人文地理要素。

[GB/T 17694-2009,附录B.207]

3.2几何数据(geometry data)

表示地理实体的位置、形态、大小和分布特征以及几何类型的数据。

[GB/T 14911-2008,测绘总类2.66]

3.3矢量数据(vector data)

以坐标或有序坐标串表示的空间点、线、面等图形数据及与其相联系的有关属性数据的总称。

[GB/T 16820-2009,计算机地图制图5.13]

3.4属性数据(attribute data)

描述地理实体质量与数量特征的数据。

[GB/T 16820-2009,计算机地图制图5.16]

3.5空间关系(spatial relationship)

描述地理实体的几何位置与属性之间的关系,几何位置关系主要包括拓扑关系、方向关系、距离关系与联通性,属性关系主要包括地理实体见属性相似度。

3.6多源空间数据(multi-source spatial data)

针对同一区域,在不同时间,利用不同的获取手段得到的不同专业领域的地理空间数据。

3.7位置精度(positional accuracy)

空间点位的坐标值与其真实坐标值的符合程度。

[GB/T 16820-2009,计算机地图制图5.42]

3.8空间数据匹配(spatial data matching)

通过对地理要素的几何位置、属性、空间关系进行相似性度量,识别和建立多源地理空间数据集中的同名实体间的连接关系。

3.9空间不一致性(spatial inconsistency)

多源空间矢量数据在几何位置、属性特征和空间关系等特征上的差异性表达。

3.10空间数据转换(spatial data transfer)

将空间数据从一种表示形式转变为另一种表示形式,而不改变数据所负载的信息的过程。

[GB/T 16820-2009,计算机地图制图5.33]

3.11空间数据融合(spatial data fusion)

采用空间数据转换等方法,实现不同数据源的数据模型、数据库模式的分类分级统一和数据库实例的几何、属性融合,使位置精度改进与属性信息丰富。

4融合数据要求

4.1 数学基础

4.1.1 平面基础

采用2000国家大地坐标系。

4.1.2 高程基准

1985国家高程基准,高程系统为正常高,单位为米。

4.1.3 地图投影

采用高斯-克吕格投影,坐标单位为米(至少保留三位小数)。

4.2数据格式

融合数据格式采用.SHP、.GDB、.MDB等格式。

4.3 分幅与编号

对于标准分幅,分幅与编号应按GB/T 13989-2012规定执行。

对于非标准分幅,按行政区域、自然区域及其他区域进行分幅。

4.4数据分层

包含但不限于附录1中所包含内容。

多源信息融合软件的设计与实现精编WORD版

多源信息融合软件的设计与实现精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

多源信息融合软件的设计与实现 摘要:针对多源信息类型不一致影响信息利用效率的问题,文章在分析传统多源数据融合模型的基础上,研究了多源信息融合软件的架构及相关技术,设计并开发的软件具有较高的实用价值。 关键词:多源信息;信息融合;软件开发 多源信息融合是通过将多种信源在空间上和时间上的互补与冗余信息依据某种优化准则组合起来,产生对特点对象的一致性解释与描述。数据融合技术是指利用计算机对获得的信息,在一定准则下加以自动分析、综合,以完成所需决策和评估任务而进行的信息处理技术。主要包括对各类信息源给出有用信息的采集、传输、综合、过滤、相关及合成,以便辅助人们进行态势/环境判定、规划、探测、验证。 数据格式统一是进行数据处理的前提。由于信息的来源多,数据格式类别差异较大,对于数据处理带来不便。多源信息融合软件能够实现多源异构数据信息整合,对于充分利用信息资源、提高数据处理系统性能具有实用价值。 1 多源数据融合模型 根据对输入信息的抽象或融合输出结果的不同,可以将信息融合分为不同的3级,包括数据级融合、特征级融合及决策级融合。 作为数据级的多源数据融合模型的结构如图1所示。多源数据经过数据清理、数据集成、数据变换,形成有效数据,通过数据处理形成数据挖掘分析等处理工作的有效数据。

数据清理是指去除源数据集中的噪声数据和无关数据,处理遗留数据和清洗脏数据,去除数据域的知识背景上的白噪声,考虑时间顺序和数据变化等。主要包括处理噪声数据,处理空值,纠正不一致数据等。 数据集成就是将多文件或多数据库运行环境中的异构数据进行合并处理,将多个数据源中的数据结合起来存放在一个一致的数据存储中。 数据变换就是将数据变换成统一的适合处理的形式。数据变换主要包括平滑、聚集、属性构造、数据泛化和规范化等内容。 2 多源信息融合软件设计 2.1 软件架构 多源信息融合软件的技术要求是实现多源异构数据向指定关系数据库进行可靠转换。就是按照指定关系数据库的表结构要求,实现多源异构数据的数据导入及格式转换问题。软件的组成框图如图2所示。软件主要包括2个主要模块,多源数据预处理模块和数据导入模块。数据预处理模块主要进行数据清理及格式转换,实现常用的数据(txt、xls、关系数据库等数据)转换为目标数据库支持的数据格式。数据导入实现指定类型数据转换为指定结构数据。 2.2 关键技术 为了保证多源信息软件的可靠运行,需解决数据类型的适应性和扩展性问题,以及数据转换的可靠性、可预制性、数据转换过程的可监督性问题。 2.2.1 基于模块化设计的类型转换

多源空间数据融合技术探讨

多源空间数据融合技术探讨 郭黎崔铁军陈应东 解放军信息工程大学测绘学院河南郑州450052 摘要:地理信息系统的迅速发展和广泛应用导致了空间多源数据的产生,给数据的集成和信息共享带来不便。不同数据源,不同数据精度和不同数据模型的地理数据融合理论与方法的研究,对于降低地理数据的生产成本,加快现有地理信息更新速度,提高地理数据质量有着重要的现实意义。本文对多种空间数据融合的原理与方法进行了讨论,并对数据融合的发展方向进行了展望。 关键词:数据融合 1. 引言 20世纪90年代以来,随着遥感、地理信息系统和卫星定位技术在各行各业日益广泛的应用,对空间数据的需求越来越大,国家和军队不同的部门以及公司企业针对本部门的需要经常要进行大量的地理数据获取。由于不同部门的地理信息系统的应用目的不同,同一地区同一比例尺的空间数据往往采用不同的数据源(外业实地测量、航空摄影图像、卫星图像、地形图、海图、航空图和各种各样地图)、不同的空间数据标准、特定的数据模型和特定的空间物体分类分级体系进行重复采集。这不仅造成了人力、财力的巨大浪费,还引发了空间数据的多语义性、多时空性、多尺度性、存储格式的不同以及数据模型与存储结构的差异等,给GIS部门之间的数据共享和数据集成带来极大困难。不同数据源,不同数据精度和不同数据模型的地理数据融合理论与方法的研究,对于降低地理数据的生产成本,加快现有地理信息更新速度,提高地理数据质量有着重要的现实意义。 2. 数据融合的概念 一直以来,数据共享、数据集成、数据互操作、数据融合都是大家讨论研究的热点。它们之间有着技术、原理上的必然联系。但又有着不同的研究侧重点。 信息共享的关键是信息的标准化问题。标准化的工作可以从两方面进行:一是以已经实施的信息技术标准为基础,直接引用或经过修编采用;二是研制地理空间数据标准,包括数据定义、数据描述、数据处理等方面的标准[5]。 地理信息系统互操作的产生是信息共享的必然产物,是在异构数据库和分布计算的情况下出现的。空间数据互操作的模式主要体现在开放地理信息联盟制定的规范。实现互操作最理想的方法是通过公共接口来实现。接口相当于一种规范,在接口中不仅仅考虑到数据格式、数据处理、还要提供对数据处理应该采用的协议[4]。 数据集成是多种数据的叠加。集成后的数据中,仍保留着原来的数据的特征,并没有发生质的变化[1]。

《地理空间数据库原理》教学大纲

《地理空间数据库原理》教学大纲 一、课程基本情况 总学时:48 讲课学时: 48 实验学时:0 总学分:3.0 课程类别:专业基础必修 考核方式:考查 适用对象:地理信息系统专业 先修课程:地理信息系统原理等 参考教材:郭际元、周顺平、刘修国,空间数据库,中国地质大学(武汉),2002 毋河海、龚建雅编著,地理信息系统(GIS)空间数据结构与处理技术 二、课程的性质、任务与目的 《空间数据库》是地理信息系统专业的专业课。通过本课程的学习,使学生对各种空间数据的存贮和管理技术有个较全面的了解,对学生进行有关空间数据库的设计技巧的训练,为将来从事GIS应用系统及其数据库的设计打下基础。 三、课程内容、基本要求与学时分配 课程的基本内容 介绍数据库和数据模型库的存贮和管理技术,包括矢量数据模型的空间数据库、栅格数据模型的空间数据库、关系数据库对空间数据的管理、符号库、网络空间数据库、三维空间数据库、海量空间数据库以及时态空间数据库。 课程的基本要求 (一)对各种空间数据的存储和管理技术有个较全面的了解。 (二)掌握用文件管理图形数据和属性数据的方法和技术,并用程序予以实现。 教学安排 (一)数据库与数据模型(4学时) 理解数据库的概念;四种数据模型:层次模型网状模型、关系模型、面向对象模型。 (二)地图数据模型总论(4学时) 理解地图数据的基本组成:矢量空间数据模型和属性数据模型,图形数据和属性数据的连接。 (三)矢量数据模型的空间数据库(4学时)

掌握地理实体的目标化,实体信息的数据化,实体间关系的逻辑实现。 (四)栅格数据模型的空间数据库(4学时) 掌握栅格数据的组织与存贮,栅格数据的检索。 (五)符号库的建立及管理(6学时) 掌握矢量符号库和栅格符号库,符号库的建立及管理,符号的显示及编辑。 (六)三维空间数据库(6学时) 理解三维空间的目标分类,八叉树数据结构,四面体格网,三维边界表示法、 参数函数表示法。 (七)海量空间数据库(4学时) 理解数据库中图幅的组织方法,图幅间被分割目标的组织方法,跨图幅地图漫游。 (八)时态空间数据库(6学时) 理解空间地物的时态性、时态空间数据库的组织方法。 (九)空间数据的关系化管理(4学时) 理解基于关系数据库的空间数据模型,基于关系数据库的空间实体数据结构,空间数据访问模型,关系化空间数据的安全管理,大型关系数据库管理系统分布式体系结构的应用。 (十)网络空间数据库(6学时) 理解网络GIS主要改造模型,分布式地理信息共享形式,分布式空间数据管理技术,网络GIS中地理空间元数据管理。 四、教学方法和手段 学生在课外多关注数据库发展的新知识;采取多媒体教学方法(部分最好结合演示)等。 五、成绩评定 该课成绩有平时20分和考试卷面成绩两部分组成;考核形式闭卷。 六、其它说明 无 教学大纲撰写人: 地理信息科学系主任: 测绘与地理科学学院教学院长: 1

校园基础地理空间数据库建设设计方案

校园基础地理空间数据库建设设计方案 遥感1503班第10组 (杨森泉张晨欣杨剑钢熊倩倩) 测绘地理信息技术专业 昆明冶金高等专科学校测绘学院 2017年5月

一.数据来源 二. 目的 三 .任务 四. 任务范围 五 .任务分配与计划六.小组任务分配七. E-R模型设计八.关系模式九.属性结构表十.编码方案

一.数据来源 原始数据为大二上学期期末实训数字测图成果(即DWG格式的校园地形图) 导入GIS 软件数据则为修改过的校园地形图 二.目的 把现实世界中有一定范围内存在着的应用数据抽象成一个数据库的具体结构的过程。空间数据库设计要满足用户需求,具有良好的数据库性能,准确模拟现实世界,能够被某个数据库管理系统接受。

三.任务 任务包括三个方面:数据结构、数据操作、完整性约束 具体为: ①静态特征设计——结构特性,包括概念结构设计和逻辑结构设计; ②动态特性设计——数据库的行为特性,设计查询、静态事务处理等应用程序; ③物理设计,设计数据库的存储模式和存储方式。 主要步骤:需求分析→概念设计→逻辑设计→物理设计 原则:①尽量减少空间数据存储冗余;②提供稳定的空间数据结构,在用户的需要改变时,数据结构能够做出相应的变化;③满足用户对空间数据及时访问的需求,高校提供用户所需的空间数据查询结果;④在空间元素间为耻复杂的联系,反应空间数据的复杂性;⑤支持多种决策需要,具有较强的应用适应性。 四、任务范围 空间数据库实现的步骤、建库的前期准备工作内容、建库流程 步骤:①建立实际的空间数据库结构;②装入试验性数据测试应用程序;③装入实际空间数据,建立实际运行的空间数据库。 前期准备工作内容:①数据源的选择;②数据采集存储原则;③建库的数据准备;④数据库入库的组织管理。 建库流程:①首先必须确定数字化的方法及工具;②准备数字化原图,并掌握该图的投影、比例尺、网格等空间信息;③按照分层要求进行

一种多源异构数据融合技术在PGIS系统中的研究与应用

一种多源异构数据融合技术在PGIS系统中 的研究与应用 周凯1,2 (1.四川省公安科研中心,四川成都610015;2.四川大学,四川成都610064) [摘要]警用地理信息系统是公安机关维稳处突、打击违法犯罪行为的重要技术支撑平台。多源异构数据是维护该平台安全稳定、高效运行的底层核心数据。文章以某PGIS平台为例,针对多源异构数据使用中遇到的数据不兼容、格式不统一、属性数据非空间化、空间数据格式转化等问题,提出了一种多源异构数据的融合模型。通过属性清洗、属性追加、空间匹配、格式转化等流程化操作,实现了空间与非空间、结构与非结构等数据的融合使用。并可以基于PGIS平台,统一加载、统一展示、统一应用。通过利用该技术,挖掘了数据的利用价值,为类似平台数据处理提供了技术参考与经验。 [关键词]多源异构;PGIS;数据融合 [中图分类号]P208[文献标识码]A[文章编号]1674-5019(2019)02-0051-05 A Multi-Source Heterogeneous Data Fusion Technology in PGIS System Research and Application ZHOU Kai 1引言 数据融合的本质是多方数据协同处理,以达到减少冗余、综合互补和捕捉协同信息的目的。该技术已成为数据处理、目标识别、态势评估以及智能决策等领域的研究热点[1]。通过数据融合,能够将研究对象获取的所有信息全部统一在一个时空体系内,得到比单独输入数据更多的信息。警用地理信息系统(Police Geographic Information System,简称“PGIS”)是多源异构数据技术、地理信息技术和公安系统业务工作高度结合的产物[2]。利用多源异构数据融合技术的PGIS平台,可以实现跨省、市、县等行政区域的一张图展示,可达到资源的高度统一利用。但在实际工作过程中,支撑PGIS平台的基础地理信息数据种类繁多,从平面线划图到精细化三维成果,从空间数据到非空间数据,从海量兴趣点数据(poi)到各种图像数据应有尽有。面对大数据时代海量的数据资源,如何保障PGIS平台业务数据、测绘地理信息数据、“一标三实”等数据高效利用,互补短板,统一承载于警用地理信息平台,协同发挥数据最大价值,提高数据在分析决策中的应用价值,是当下PGIS平台发展研究的热点问题[2-3]。 2研究方法2.1多源异构数据融合技术 数据集成是数据融合的基础,融合是集成基础上的深化应用,通过数据集成与融合,可派生出更高更有价值的新数据,从而得到数据的更多利用价值[4]。马茜等人[5]基于物联网背景下多源数据获取、存储等存在的不足,提出了一种约束数据质量的异构多源多模态感知数据获取方法,提高了数据精度,降低了网络资源消耗。韩双旺[6]基于XML语言实现异构多源空间数据的映射和模式转换,利用WebGIS技术实现了空间数据的集成和互操作。惠国保[7]结合深度学习技术,构思了一种泛化性强的多源异构影像数据融合深度学习模型,实现了深度学习技术在多源异构数据方面的信息提取与挖掘。李文闯等人[8]提出了一种基于可交换图像文件(EXIF)原理以数字图像为载体融合空间位置信息和一般形式属性的数据模型,实现了空间位置和一般属性嵌入到数字图像物理结构,达到了数据融合的效果。 本文不仅需要解决各种数据的属性嵌套、数据集成,而且要解决空间数据和非空间数据、空间数据与空间数据、结构数据与非结构数据之间的转化问题。因此鉴于实际需求,本文提出了基于FME平台下自主构建多源异构数据引擎,开展数据融合,实现多源异构数据的集成统一、高效利用。

智慧城市多源异构大数据处理框架

智慧城市多源异构大数据处理框架 摘要:智慧城市建设的重心已由传统IT系统和信息资源共享建设,转变为数据的深度挖掘利用和数据资产的运营流通。大数据中心是数据资产管理和利用的实体基础,其核心驱动引擎是大数据平台及各类数据挖掘与分析系统。讨论了智慧城市大数据中心建设的功能架构,围绕城市多源异构数据处理的实际需要,对数据中心大数据平台的架构进行了拆分讲解,并以视频大数据处理为例,阐述了数据中心中大数据平台的运转流程。 关键词:智慧城市;大数据;多源异构;视频分析 1 引言 随着智慧城市建设逐步由信息基础设施和应用系统建设迈入数据资产集约利用与运营管理阶段,城市大数据中心已成为智慧城市打造核心竞争力、提升政府管理效能的重要工具。一方面政府借助大数据中心建设可以将有限的信息基础设施资源集中高效管理和利用,大幅降低各自为政、运维机关庞杂、财政压力过大的问题;另一方面,可以在国务院、发展和改革委员会大力支持的政策东风下,打破部门间数据壁垒,推动政府各部门职能由管理转为服务,提高数据共享利用率和透明度。以大数据中心为核心构建城市驾驶舱,实现城市运转过程的实时全面监控,提高政府决策的科学性和及时性。智慧城市大数据中心建设功能框架如图1所示,其中针对不同部门的数据源,由数据收集系统完成数据的汇聚,并根据数据业务类型和内容的差异进行粗分类。为避免过多“脏数据”对大数据平台的污染,对于批量数据,不推荐直接将数据汇入大数据平台,而是单设一个前端原始数据资源池,在这里暂时存储前端流入的多源异构数据,供大数据平台处理调用。

图1 智慧城市大数据中心功能框架 大数据平台是城市大数据中心运转的核心驱动引擎,主要完成多源数据导入、冗余存储、冷热迁移、批量计算、实时计算、图计算、安全管理、资源管理、运维监控等功能[1],大数据平台的主体数据是通过专线连接或硬件复制各政府部门数据库的方式获得,例如地理信息系统(geographic information system,GIS)数据、登记信息等。部分数据通过直连业务部门传感监测设备的方式获得,例如监控视频、河道流量等。大数据平台的输出主要是结构化关联数据以及统计分析结果数据,以方便各类业务系统的直接使用。 不同部门间共享与交换的数据不推荐直接使用原始数据,一方面是因为原始数据内容密级存在差异,另一方面是因为原始数据内容可能存在错误或纰漏。推荐使用经过大数据平台分类、过滤和统计分析后的数据。不同使用部门经过政务信息门户统一需求申请和查看所需数据,所有数据的交换和审批以及数据的监控运维统一由数据信息中心负责,避免了跨部门协调以及数据管理不规范等人为时间的损耗,极大地提高了数据的流通和使用效率。另外,针对特定的业务需求,可以基于大数据平台拥有的数据进行定制开发,各业务系统属于应用层,建设时不宜与大数据平台部署在同一服务器集群内,并且要保证数据由大数据平台至业务系统的单向性,尽量设置业务数据过渡区,避免应用系统直接对大数据平台核心区数据的访问。 目前主流大数据平台都采用以Hadoop为核心的数据处理框架,例如Cloudera公司的CDH(Cloud er a Distribution for Hadoop)和星环信息科技(上海)有限公司(Transwarp)的TDH(Transwarp Data Hub)、Apache Hadoop等。以Hadoop为核心的大数据解决方案占大数据市场95%以上的份额,目前国内80%的市场被Cloudera占有,剩余20%的市场由星环信息科技(上海)有限公司、北京红象云腾系统技术有限公司、华为技术有限公司等大数据公司分享。随着数据安全意识的增强、价格竞争优势的扩大,国内企业在国内大数据市场的份额和影响力正在快速提升。大数据的应用历程可归纳为3个阶段:第一个阶段是面向互联网数据收集、处理的搜索推荐时代;第二个阶段是面向金融、安全、广播电视数据的用户画像和关系发现时代;第三个阶段是面向多数据源与多业务领域数据的融合分析与数据运营时代,并且对数据处理规模和实时性的要求大幅提高。 本文在智慧城市大数据中心建设方案的基础上,阐述了多源异构大数据处理的框架和流程,并以最典型的非结构化视频大数据处理为例,介绍了多源异构大数据处理框架运转的流程。 2 多源异构大数据处理框架 2.1 系统整体架构 多源异构是大数据的基本特征[2],为适应此类数据导入、存储、处理和交互分析的需求,本文设计了如图2所示的系统框架,主要包括3个层面的内容:基础平台层、数据处理层、应用展示层。其中,基础平台层由Hadoop生态系统组件以及其他数据处理工具构成,除了提供基本的存储、计算和网络资源外,还提供分布式流计算、离线批处理以及图计算等计算引擎;数据处理层由多个数据处理单元组成,除了提供基础的数据抽取与统计分析算法外,还提供半结构化和非结构化数据转结构化数据处理算法、数据内容深度理解算法等,涉及自然语言处理、视频图像内容理解、文本挖掘与分析等,是与人工智能联系最紧密的层,该层数据处理效果的好坏直接决定了业务应用层数据统计分析的准确性和客户体验;应用展

地理空间大大数据库原理期末考试地题目总卷

《地理空间数据库原理》课程期末考试卷 一、选择题(每题3分,共10题) 1、下列不适合直接采用关系型数据库对空间数据进行管理说法错误的是(A) A. 传统数据库管理的是连续的相关性较小的数字或字符,而空间数据是连续的,并且有很强的空间相关性; B. 传统数据库管理的实体类型较少,并且实体类型间关系简单固定,而GIS数据库的实体类型繁多,实体间存在着复杂的空间关系; C. 传统数据库存储的数据通常为等长记录的数据,而空间数据的目标坐标长度不定,具有变长记录,并且数据项可能很多,很复杂; D.传统数据库只查询和操作数字和文字信息,而空间数据库需要大量的空间数据操作和查询。 2. 下列关于的空间数据库管理方式经历的阶段及其各自特点说法错误的是(C) A. 文件关系数据库混合管理阶段,用一组文件形式来存储地理空间数据及其拓扑关系,利用通用关系数据库存储属性数据,通过唯一的标识符来建立它们之间的连接。 B. 全关系式数据库管理阶段,基于关系模型方式,将图形数据按关系模型组织。图形数据和属性数据统一存储在通用关系数据库中,即将图形文件转成关系存放在目前大部分关系型数据库提供的二进制块中。 C.面向对象数据库管理阶段,面向对象型空间数据库管理系统最适合空间数据的表达和管理。持变长记录,还支持对象的嵌套,信息的继承和聚集。支持SQL 语言,有一定的通用性。允许定义合适的数据结构和数据操作。 D.对象关系数据库管理阶段,解决了空间数据的变长记录管理,使数据管理效率大大提高;空间和属性之间联结有空间数据管理模块解决,不仅具有操作关系数据的函数,还具有操作图形的API函数; 3. 对下述图形进行链式编码,编码结果为(D)

空间数据库设计综合实习报告

空间数据库设计综合实习报告 班级:地理信息系统091、092班 实验人员名单及学号: 日期:2011/10/24 目录 空间数据库设计综合实习报告 (1) 一、设计题目 (2) 二、实验目的 (2) 三、需求分析 (2) 四、功能分析和数据组织 (2) 五、数据库建设流程 (2) 5.1软硬件配置 (2) 5.2数据采集流程 (3) 六、数据库应用案例 (6) 6.1.查询 (6) 6.2 缓冲区分析 (9)

一、设计题目 成都市市区基础地理数据库的构建 二、实验目的 通过设计和建立空间数据库,掌握空间数据库设计和建设流程,学会利用所学GIS知识独立分析和解决问题的能力。 三、需求分析 1. 利用计算机进行显示城市信息; 2. 借助现有城市专题图能否自己构建一个简单的基础城市地理数据库; 3. 在基础数据基础上,完成自动制图。 四、功能分析和数据组织 1.功能分析:该数据库主要用于存储成都市的基本道路信息、居民点分布信息以 及学校医院等政设服务性机构信息。 2.数据组织:居民点分布数据、道路数据、河流数据、现有公园分布数据、 市内现有基础服务设施分布数据,几类数据应该平行组织,以便 建立他们之间拓扑关系。 五、数据库建设流程 5.1软硬件配置 1.软件:专业软件ArcGIS9.3 系统软件windows 7

2.硬件:酷睿系列微机 5.2 数据采集流程 按照功能设计、数据组织,因此数据采集的流程为: 1)收集进行数字化的基础数据:成都市地图;若干具有精确地理位置的特征点; 本实验数据来源于空间数据库DATA\栅格专题图: 成都.bmp,成都市若干道路交叉口的地理坐标(WGS-84坐标系).txt。 其中,成都.bmp作为数字化底图,从它上面提取所需数据;而成都市若干道路交叉口的地理坐标(WGS-84坐标系)这个文件则是作为地理参照,以此为依据对底图进行几何校正。 2)地理参考:对所得地图进行地理参考; 利用pci对底图进行校正,采用输入已知坐标的方法,为底图加上地理坐标WGS-84。 3)数字化:对地图信息进行分层数字化; 分工合作对底图进行数字化:用画多边形、线、点得方法,针对不同特征的图形,采用不同方法,比如,河流道路呈线状,则采取画线的方式,而学校医院已有标识,则采用画点的方式将其提取出来。 4)坐标统一:对所得图层统一进行投影,采用高斯投影; 所得的几个图层均以经纬度的方式即地理坐标表示,由于这对于常人认识地图的方式有所不变,故要统一为它们加上投影信息Gauss_Kruger。 5)构建Geodatabase,并对图层经销属性域的编辑; A.在ArcCatalog中相应文件夹下建立文件空间数据库CITY,如图5.1;

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

【大数据】多源异构通用大数据处理服务平台

一、项目背景及必要性 (一)国内外现状和技术发展趋势 大数据是指海量的数据加上复杂的数据类型。从产业的发展角度看,我们对数据的利用经历了传输、传播、处理三个阶段,而今眼目下,对数据的利用正处在处理这个阶段,即如何处理、如何管理、如何应用,如何优化是现阶段的主要工作。 大数据的具体特点主要表现为四个“V”:一是体量浩大(Volume),数据集合的规模已从GB到TB再到PB级,甚至已经开始以EB和ZB来计算。著名咨询公司IDC的研究报告称,未来10年全球大数据将增加50倍,管理数据仓库的服务器的数量将增加10倍。二是类型复杂(Variety),大数据类型包括结构化数据、半结构化数据和非结构化数据。现代互联网应用呈现出非结构化数据大幅增长的特点,到20152年末非结构化数据将达到整个数据量的75%以上。三是生成迅速(Velocity),大数据通常以数据流的形式动态、快速地产生,具有很强的时效性。数据自身的状态与价值也随时空变化而发生演变,数据的涌现特征明显。四是价值巨大但利用密度低(Value),基于传统思维与技术让人们在实际环境中面临信息泛滥而知识匮乏的窘态。 当今社会,新摩尔定律得到验证,大数据以成为各行各业的焦点。数据的来源多样化:以多源异构数据为代表的非结构化数据占世界上信息总量的95%以上,剩下的5%为结构化数据,包括网页、文本、交易数据、邮件、高清视频、3D视频、语音、图片、地质勘测

数据、多源异构数据探测数据等等,这些数亿TB的数据正以超乎人们想象的速度增长,这对数据的存储系统的容量和实时计算速度提出了空前的要求。同时,大到智慧地球,小到智慧城市的数字化建设,使其越来越多的人、设备和传感器通过数字网络连接起来,产生、传送、分享和访问数据的能力也得到彻底变革。这些行业包括:互联网、制造业、医疗行业、媒体行业、零售销售行业、金融业、能源业、航空航天等等。预计2015年,超过40亿人(世界人口的60%)在使用各种智能终端,以全方位的方式与各行各业发生交互融合。其中大约12%拥有智能终端——其渗透率以每年20%以上的速度增长。如今,3000多万联网传感器节点分布在互联网、交通、汽车、工业、公用事业和零售部门,其数量正以每年30%以上的速度增长。预计到2020年,全球数据使用量预计暴增44倍,达到35.2ZB。35.2ZB也就是说全球大概需要376亿个1TB硬盘来存储数据。 人们对数据日益广泛的需求导致存储系统的规模变得越来越庞大,管理越来越复杂,数据的爆炸性增长和管理能力的相对不足之间的矛盾日益尖锐。同时,数据的高速增长也对存储系统的可靠性和扩展性提出了挑战,海量数据的共享、分析、搜索也显得越来越重要,充分挖掘海量数据中的有效价值。这就要求我们得实现一种有别于传统系统而全新的存储管理平台,该平台必须具备高扩展性、高可靠性、高时效性,同时也需要具备高经济性,只有这样才能更好的为国民经济和生活服务。 国外的大数据发展现状,以GOOGLE/FACEBOOK为代表的

多源异构数据采集和可视化解决方案

工业互联网先进应用案例集 案例 可快速部署的低成本多源异构数据采集 和可视化解决方案 ——基于宜科边缘控制器和IoTHub平台的设 备智能管理应用 宜科(天津)电子有限公司成立于2003年,位于天津市西青经济开发区,在中国天津和德国德累斯顿设有研发中心。公司将“自动化技术+数字化工厂+工业互联网”定义为重要的发展战略,围绕工业互联网和智能制造业务持续发力,在工业互联网、智能制造、工业软件等方面积累了大量项目案例和实施经验,在工业互联网领域拥有核心产品和方案,在系统集成解决方案领域处于国内领先地位。 一、项目概况 宜科边缘控制器利用宜科IoTHub TM工业互联网赋能平台和Workbench工业APP快速开发工具,提供“设备连接+数据可视化”应用模式,将成为中小企业管理者直观了解工厂运行状态的最有效方式。

1. 项目背景 工业互联网平台是工业互联网建设的核心。工业设备上云正成为牵引工业互联网平台发展的先导性应用,也是当前工业互联网平台建设的切入点。 工业设备上云就是通过建立实时、系统、全面的工业设备数据采集体系。构建基于云计算的数据汇聚、分析和服务平台,实现工业设备状态监测、预测预警、性能优化,引导带来工业互联网平台的功能演进和规模商用。工业设备种类繁杂、数量多、通信协议与数据格式各异,当前尚缺乏有效的技术手段能够低成本、便捷地实现工业设备快速接入平台,导致绝大部分平台的设备接入数量有限。2. 项目简介 基于宜科边缘控制器,提供“数据+应用”的服务,充分利用IoTHub TM工业互联网赋能平台IaaS和PaaS资源,以及边缘计算设备的性能,提供数据采集能力和数据可视化应用。 数据:系统提供多种协议接口,支持典型的工业控制器、传感器、物联网采集监控终端,并提供协议连接及数据交互操作。 应用:工业APP开发工具,方便提供生产过程监控、调试维护配置、报警相应及处理、报表实时更新及显示生成等功能,方便平台应用。 数据+应用=服务 3. 项目目标 面向工业互联网应用,支持市场二十种以上主流工业协议解析,支持二十万台设备并发连接,提供面向工业现场的图形化、拖拽式和低代码快速开发APP 工具,支持本地、私有云、共有云混合或单一部署,提供多个重点垂直领域的基础应用APP。 在汽车整车及零部件、装备制造、冶金、电子信息领域发展客户上千家,设备连接数超百万。在设备监控、设备预测性维护、生产现场数据可视化、数据分析、实时报警等方面,帮助广大中小制造业企业解决“数据之痛”,提升生产效率,降低运营成本,提高管理水平,助力企业做大做强。

面向空间大数据的GIS

面向空间大数据的GIS 摘要:大数据因具有巨大的研究发展潜力,已经得到了学术界和产业界的持续关注和利用。本文总结了目 前的大数据利用现状,以及大数据引发的科学研究新思维和新观念。空间数据作为大数据的主体数据集, 在泛在测绘、多源异构时空数据等方面给传统GIS的发展带来了巨大的挑战。面对挑战,文章总结了大数 据环境下GIS应该具备的基础特征,以及在空间数据挖掘和空间分析方面的研究进展。最后,文章从商业 模式、智慧城市、云计算、城市计算和大数据驱动的人类移动规律等方面展望了大数据背景下GIS的研究 热点和发展前景。 关键词:空间大数据, GIS,空间数据挖掘,空间分析, 云计算 1空间大数据 1.1 大数据倍受关注和利用 在学术界, 0’Reilly Media于2008年出版了《数据之美》,随后Nature、Science 等陆续刊登了大数据专辑,麦肯锡从经济和商业维度分析了大数据在不同行业的应用潜力。2012年,我国科技部发布的十二五国家科技计划信息技术领域2013年度备选项目征集指 南中把大数据研究列在了首位。在产业界,IBM、亚马逊、Google、甲骨文等信息技术巨头都纷纷推出了大数据解决方案和应用。在中国,百度、腾讯、淘宝、阿里巴巴等也采用了Hadoop处理大规模数据。大数据的研究与发展涉及国防安全、生活健康、气候变化、地质 调查、减灾防灾、智慧地球等众多领域。以美国为例,2012年3月,奥巴马政府率先在全 球宣布推出大数据的研究和发展计划,将大数据研发上升为国家意志,并投资2亿多美元 资助美国国家科学基金和美国地质调查局等6个联邦政府部门的大数据项目,以提高从大 量的、复杂的数据集合中获取知识的能力。 1.2 空间数据是大数据的基础 大数据具有体量巨大、多种多样、高速变化、真实质差等特点。在这些数据中,大约80%的数据与空间位置有关。空间数据描述了对象的具体地理位置和空间分布,包括空间 实体的位置及其空间关系等,涵盖从宏观、中观到微观的整个层次,可以是点的高程、道 路的长度、多边形的面积、建筑物的体积、像元的灰度等数值,也可以是空间关系等拓扑 结构。空间数据具有空间性、时间性、多维性、空间关系复杂等特性。用于采集空间数据 的设备包括红外、卫星、多光谱扫描仪、全站仪等各种宏观与微观传感器或设备,也包括 野外测量、人口普查、土地资源调查、地图扫描、地图数字化等空间数据获取手段,还可 能是计算机、GPS、RS和GIS等技术应用和分析空间数据的过程。遥感对地观测技术形成 了一个多层次、多角度、全方位和全天候的全球立体对地观测网,传感器的地面分辨率数 量级从千米到厘米,波段范围从紫外到超长波,探测深度从几米到万米,新型的高分辨率 卫星遥感数据如Quick Bird等已提供使用。空间数据基础设施积累了大量的城市电子地图数据库、工程地质信息数据库、用地现状信息数据库、市政红线数据库、建筑红线与用地 红线数据库、地籍数据库,以及土地利用及基本农田保护规划数据库等空间基础数据。此外,人类活动每时每刻还在采集和产生新的空间数据集[1,2]。

【CN110110082A】多源异构数据融合优化方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910294678.8 (22)申请日 2019.04.12 (71)申请人 黄红梅 地址 510610 广东省广州市天河区沾益直 街1号 申请人 何卓华 谢新屋 (72)发明人 黄红梅 何卓华 谢新屋  (74)专利代理机构 北京联瑞联丰知识产权代理 事务所(普通合伙) 11411 代理人 张学府 (51)Int.Cl. G06F 16/35(2019.01) G06F 16/903(2019.01) (54)发明名称 多源异构数据融合优化方法 (57)摘要 本发明公开了一种多源异构数据融合优化 方法,包括如下步骤:A)对数据实例、类别和属性 进行提取和分析,建立词库和短文本库;B)从互 联网获取多源异构数据;C)对多源异构数据进行 规范化处理,生成短文本;短文本有多个词构成, 规范化处理包括分词和去除停用词;D)将短文本 作为待匹配短文本,将待匹配短文本与短文本库 中存储的短文本进行匹配,得到短文本匹配结 果;E )根据短文本匹配结果对数据进行融合,建 立大数据内容模型,得到数据融合结果;F )对数 据融合结果进行评价,得到评价结果;评价结果 包括优、良、中和差。本发明能建立完整性、准确 性和一致性较强的高质量的大数据知识库。权利要求书2页 说明书5页 附图1页CN 110110082 A 2019.08.09 C N 110110082 A

1.一种多源异构数据融合优化方法,其特征在于,包括如下步骤: A)对数据实例、类别和属性进行提取和分析,建立词库和短文本库; B)从互联网获取多源异构数据; C)对所述多源异构数据进行规范化处理,生成短文本;所述短文本由多个词构成,所述规范化处理包括分词和去除停用词; D)将所述短文本作为待匹配短文本,将所述待匹配短文本与短文本库中存储的短文本进行匹配,得到短文本匹配结果; E)根据所述短文本匹配结果对数据进行融合,建立大数据内容模型,得到数据融合结果; F)对所述数据融合结果进行评价,得到评价结果;所述评价结果包括优、良、中和差。 2.根据权利要求1所述的多源异构数据融合优化方法,其特征在于,所述步骤D)进一步包括: D1)计算所述待匹配短文本与短文本库中的短文本之间的字符匹配因子; D2)计算所述待匹配短文本与短文本库中的短文本之间的词匹配因子; D3)根据所述字符匹配因子和词匹配因子,对所述待匹配短文本与短文本库中的短文本进行匹配,计算短文本匹配因子。 3.根据权利要求2所述的多源异构数据融合优化方法,其特征在于,所述字符匹配因子 采用如下公式进行计算: 其中,F 1表示所述字符匹配因子,c 1表示所述待匹配短文本包含的字符数,c 2表示所述短文本库中的短文本包含的字符数,p表示匹配的字符数,h表示换位的数目。 4.根据权利要求3所述的多源异构数据融合优化方法,其特征在于,所述词匹配因子采 用如下公式进行计算: 其中,F 2表示所述词匹配因子,n表示维数较高短文本向量的维数,σ表示修正因子,σ∈ [0.9,1.3],用于修正增加词带来的误差,A i 为所述待匹配短文本中的第i个词,B i 为短文本库中的短文本中的第i个词。 5.根据权利要求4所述的多源异构数据融合优化方法,其特征在于,所述短文本匹配因 子采用如下公式进行计算: 其中,Y表示短文本的匹配因子;设定匹配阈值Y 0,若Y≥Y 0,则说明所述待匹配短文本与短文本库中的短文本相匹配,若Y<Y 0,则说明所述待匹配短文本与短文本库中的短文本不匹配。 6.根据权利要求5所述的多源异构数据融合优化方法,其特征在于,所述步骤E)具体 权 利 要 求 书1/2页2CN 110110082 A

论中医药多源异构大数据融合方法研究的意义

Traditional Chinese Medicine 中医学, 2018, 7(5), 282-285 Published Online September 2018 in Hans. https://www.360docs.net/doc/cc259916.html,/journal/tcm https://https://www.360docs.net/doc/cc259916.html,/10.12677/tcm.2018.75047 On the Significance of the Method of Multi-Source Heterogeneous Data Fusion in TCM Hanqing Zhao, Zhiguo Wang* Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing Received: Aug. 18th, 2018; accepted: Aug. 26th, 2018; published: Sep. 3rd, 2018 Abstract Multi-source isomerism is one of the basic features of large data. It is a hot issue in recent years to study traditional Chinese medicine diagnosis and treatment methods based on data. Building a generalization model is one of the methods to solve multisource heterogeneous data fusion and shares and extends the scope of traditional Chinese medicine data. However, the complexity of the large data of traditional Chinese medicine is high. Many problems, such as rich semantics, uneven distribution and poor objectivity, have greatly restricted the research and application of big data in Chinese medicine. In this paper, the importance of multi-source heterogeneous data fusion me-thod under the background of Internet+ large data is discussed, and the importance of mul-ti-source heterogeneous data fusion method based on the combination of disease and syndrome is discussed. It is the original cause of the important component of the large data of traditional Chi-nese medicine in the future, and the further study of the multi-source isomerism of traditional Chinese medicine. The method of large data fusion provides a theoretical reference. Keywords TCM Informatization, Diagnosis and Treatment Mode, Combination of Disease and Syndrome, Big Data, Multi-Source Heterogeneous Fusion 论中医药多源异构大数据融合方法研究的意义 赵汉青,王志国* 中国中医科学院中医临床基础医学研究所,北京 收稿日期:2018年8月18日;录用日期:2018年8月26日;发布日期:2018年9月3日 *通讯作者。

相关文档
最新文档