深水钻井防喷器选配关键因素分析_许亮斌

深水钻井防喷器选配关键因素分析_许亮斌
深水钻井防喷器选配关键因素分析_许亮斌

压控振荡器实验报告

微波与天线实验报告 实验名称:压控振荡器 实验指导:黎鹏老师 一、实验目的: 1.了解变容二极管的基本原理与压控振荡器的设计方法。 2.利用实验模组的实际测量使学生了解压控振荡器的特性。 3.学会使用微波软件对压控振荡器进行设计和仿真,并分析结果。 二、预习内容: 1.熟悉VCO的原理的理论知识。 2.熟悉VCO的设计的有关的理论知识。

三、实验设备: 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 压控振荡器模组1组RF2KM9-1A 3 50Ω BNC及1MΩ BNC 连接线4条CA-1、CA-2 、CA-3、CA-4 4 直流电源连接线1条DC-1 5 MICROWAVE软件1套微波软件 四、实验步骤 1、硬件测量: 1.对MOD-9,压控振荡器的频率测量以了解压控振荡电路的特性。 2.准备电脑、测量软件、RF-2000,相关模组,若干小器件等。 3.测量步骤: MOD-9之P1端子的频率测量: ⑴设定 RF-2000测量模式:COUNTER MODE. ⑵用DC-1连接线将RF-2000后面12VDC 输出端子与待测模组之12VDC 输入端子连接起来。 ⑶针对模组P1端子做频率测量。 ⑷调整模组之旋钮,并记录所量测频率值: 最大_623_______ MHZ。 最小___876_____ MHZ。 4.实验记录:填写各项数据即可。 5.硬件测量的结果建议如下为合格: RF2KM9-1A MOD-9 fo 600-900MHZ Pout≥5dBm 6.待测模组方框图: 2、软件仿真: 1、进入微波软件。 2、在原理图上设计好相应的电路,设置好端口,完成频率设置、尺寸规范、 器件的加载、仿真图型等等的设置。

JPH-373井钻井工程设计(有导眼)

鄂尔多斯盆地杭锦旗东胜气田锦58井区JPH-373井钻井工程设计 中国石油化工股份有限公司华北油气分公司 二○一七年八月

鄂尔多斯盆地杭锦旗东胜气田锦58井区JPH-373井钻井工程设计 设计单位:华北油气分公司石油工程技术研究院设计人: 初审人: 审批单位:华北油气分公司 审核人:梁文龙 审批人: 中国石油化工股份有限公司华北油气分公司 二○一七年八月

设计审批意见 原则同意该设计,同时提出以下要求,请一并执行。 1、本井施工斜导眼完后,着陆点深度均要根据地层变化作相关调整。为加快作业 进度对回填部分斜导眼的轨迹符合率在满足中靶前提下不做严格要求;钻穿导眼目的层后,可根据快速钻进需要改变钻井方式和钻具组合。 2、二开下技术套管间隙较小,井队和固定队应根据实钻情况制定完善的通井、下 套管及固井措施;钻井过程中出现漏失的,下套管前通井需堵漏并做不低于3MPa的承压试验,否则不能下套管,确保固井质量符合要求,特别注意下完套管后固井前循环钻井液排量要控制在环空返速在1.2m/s以上。 3、技术套管固井前钻井队充分作好井眼准备工作,通井正常后方可进行下套管作 业,水泥浆性能试验要取现场水质进行检测。 4、本井完井管柱结合实钻情况和投产方式另行通知。 中国石油化工股份有限公司华北油气分公司 2017年8月

目录 1.设计依据 (1) 2.地质概况 (2) 3.井身结构及套管程序 (6) 4.井眼轨道设计 (8) 5.测量方案及轨迹计算方法 (13) 6.钻井设备及管理要点 (14) 7.钻具组合及强度校核 (16) 8.钻井完井液设计 (21) 9.钻头及钻井参数设计 (26) 10.钻开水平段目的层技术措施 (27) 11.井身质量要求 (27) 12.固井设计 (28) 13.油气井压力控制 (33) 14.复杂情况对策 (47) 15.健康、安全与环境管理要点 (49) 16 弃井要求 (52) 17 风险识别及削减措施 (54) 18.施工进度预测 (57) 19.钻井主要材料计划 (57) 20.资料提交 (58) 附录1:工程应急预案 (59)

海洋深水钻井钻井液技术

海洋深水钻井钻井液技术 深水钻井一般指在海上作业中水深超过900m的钻井;水深大于1500m时为超深水钻井,近年来随着海洋石油储量开采比例的不断增加,海洋石油勘探逐步向深水区发展。然而,深水钻井所涉及的钻井环境温度低、钻井液用量大、海底页岩稳定性、井眼清洗、浅水流动、浅层天然气及形成的气体水合物等问题,给钻井、完井带来严峻的挑战。 1.深水钻井带来的主要问题 与浅水区域相比,深水钻井面临的主要问题有以下几个方面:①井壁稳定性;②钻井液用量大;③地层破裂压力窗口窄;④井眼清洗;⑤低温下钻井液的流变性;⑥浅层天然气与形成的气体水合物。这些问题给钻井工艺带来了许多困难,同时对钻井液提出了更高的要求。 1.1 海底页岩的稳定性 在深水区中,由于沉积速度、压实方式以及含水量的不同,海底页岩的活性大。河水和海水携带细小的沉积物离海岸越来越远,由于缺乏上部压实作用,胶结性较差,易于膨胀、分散,导致过量的固相或细颗粒分散在钻井液中。如通过稀释或替换钻井液来控制钻井液的低密度钻井液的低密度固相的含量,必将需要大量钻井液。因此,针对海底页岩稳定的问题,采取了加入一定量的页岩稳定剂的措施。如在深水钻井液中加入无机盐(NaCl、CaCl2)和具有浊点的聚合醇、以达到增强页岩稳定性的目的。 1.2 钻井液用量大 实践证明,在深水钻井作业中的钻井液量远远大于其它同样深度但钻井条件不同的井,因为海洋钻井需要采用隔水管、隔水管体积一般高达159m3,加上平台钻井液系统,所以钻井液需要用量比其他同样深度但钻井条件不同井大得多。钻井中为了避免复杂情况的发生,一般多下几层套管,因此所需的井眼直径也相应增大。深水钻井时应配备3台高频率振动筛,以及大流量的除砂器和除泥器等固控设备,在非加重的钻井液中,固相的有效清除率大于75%,将钻井液中的钻屑含量控制在适当的范围内,可节省大量的钻井费用。 1.3 井眼清洗 深水钻井时,由于开孔直径、套管和隔水管的直径都比较大,如果钻井液流速不足就难以达到清洗井眼的目的。因此,对钻井液清洗井眼的能力提出高要求,一般采用稠浆清洗、稀浆清洗、联合清洗、增加低剪切速度粘度,以及有规律地短程起下钻等方法,均有助于钻井过程中钻屑的清除。使用与钻井过程中钻井液粘度不同的钻井液清除钻屑效果较明显,比如使用稀浆钻进,稠浆清洗钻屑。 1.4 浅层气与气体水合物 深水钻井遇到的主要问题之一是浅层气砂岩引起的气体水合物的生成。一般在钻井液管线中发现生物气(沼气)并不算大问题。但是在深层发现含气砂岩则会引起大问题。因为对砂岩地层来说,浅层一般多是含有重油的非胶结性地层,而深层则是含有气体的低渗透率的硬质地层。在深水钻井作业中,气体水合物的形成不仅是一个经济问题,更是一个安全问题因为这种气体水合物是堵塞气体传输管线的主要原因。气体水合物类似冰的结构,主要由气体分子和水分子组成,外观上看起来类似于脏水。但是它在性质上又不象冰,如果压力足够,它可以在0℃以上形成。在深水钻井作业中,海底较高的静水压力和较低的环境温度进一步增加了生成气体水合物的可能性,尤其是节流管线、钻井隔水导管以及海底的井口里,一旦

BZ振荡反应-实验报告

B-Z 振荡反应 实验日期:2016/11/24 完成报告日期:2016/11/25 1 引言 1.1 实验目的 1. 了解Belousov-Zhabotinski 反应(简称B-Z 反应)的机理。 2. 通过测定电位——时间曲线求得振荡反应的表观活化能。 1.2 实验原理 对于以B-Z 反应为代表的化学振荡现象,目前被普遍认同的是Field ,kooros 和Noyes 在1972年提出的FKN 机理,,他们提出了该反应由萨那个主过程组成: 过程A ① ② 式中 为中间体,过程特点是大量消耗。反应中产生的能进一步反应,使 有机物MA 如丙二酸按下式被溴化为BrMA, (A1) (A2) 过程B ③ ④ 这是一个自催化过程,在消耗到一定程度后, 才转化到按以上③、④两式 进行反应,并使反应不断加速,与此同时,催化剂氧化为。在过程B 的③和④中,③的正反应是速率控制步骤。此外, 的累积还受到下面歧化反应的制约。 ⑤ 过程C MA 和使离子还原为,并产生(由)和其他产物。 这一过程目前了解得还不够,反应可大致表达为: ⑥2++f +2+其他产物 式中f 为系数,它是每两个离子反应所产生的数,随着与MA 参加反应 的不同比例而异。过程C 对化学振荡非常重要。如果只有A 和B ,那就是一般的自催化反应或时钟反应,进行一次就完成。正是由于过程C ,以有机物MA 的消耗为代价,重新得到和,反应得以重新启动,形成周期性的振荡。 322BrO Br H HBrO HOBr --+++→+22HBrO Br H HOBr -+++→2 HBrO Br - HOBr 22HOBr Br H Br H O -+++→+2Br MA BrMA Br H -+ +→++32222BrO HBrO H BrO H O -++++342222222BrO Ce H HBrO Ce ++ ++→+Br - 2 HBrO 3Ce + 4Ce + 2 HBrO 232HBrO BrO HOBr H -+ →++BrMA 4Ce + 3Ce + Br - BrMA 4Ce + MA BrMA →Br - 3Ce + 4Ce + Br - BrMA Br - 3Ce +

钻井工程课程设计报告书

表A-1 钻井工程课程设计任务书 一、地质概况29: 井别:探井井号:设计井深:3265m 目的层: 当量密度为:g/cm3 表A-2设计系数 石工专业石工(卓越班)1201班学生:木合来提.木哈西

图A-1 地层压力和破裂压力

一.井身结构设计 1.由于该井位为探井,故中间套管下深按可能发生溢流条件确定必封点深度。 由图A-1得,钻遇最层压力当量密度ρpmax=1.23g/cm3,则设计地层破裂压力当量密度为:ρfD=1.23+0.024+3245/H1×0.023+0.026. 试取H1=1500m,则ρfD=1.23+0.024+2.16×0.023+0.026=1.33 g/cm3, ρf1400=1.36 g/cm3> ρfD 且相近,所以确定中间套管下入深度初选点为H1=1500m。验证中间套管下入深度初选点1500m是否有卡钻危险。 从图A-1知在井深1400m处地层压力梯度为1.12 g/cm3以及320m属正常地层压力,该井段最小地层压力梯度当量密度为1.0 g/cm3。 ΔP N=0.00981×(1.10+0.024-1.0)×320=0.389<11MPa 所以中间套管下入井深1500m无卡套管危险。 水泥返至井深500m。 2.油层套管下入J层13-30m,即H2=3265m。 校核油层套管下至井深3265m是否卡套管。 从图A-1知井深3265m处地层压力梯度为1.23 g/cm3,该井段的最小地层压力梯度为1.12g/cm3,故该井段的最小地层压力的最大深度为2170m。 Δp a=0.00981×(1.23+0.024-1.12)×2170=2.85Mpa<20 Mpa 所以油层套管下至井深3265m无卡套管危险。 水泥返至井深2265m。 3.表层套管下入深度。 中间套管下入井深1500处,地层压力梯度当量密度为1.12 g/cm3,给定溢流数值

深水钻井的难点及关键技术

深水钻井的难点及关键技术 随着油气资源的持续开采, 陆地未勘探的领域越来越少, 油气开发难度越来越大。占地球面积70%以上的海洋有着丰富的油气资源, 油气开发重点正逐步由陆地转向海洋, 并走向深海。目前, 国外钻井水深已达3000 m 以上, 而我国海上油气生产一直在水深不足500 m 的浅海区进行, 我国南海拥有丰富的油气资源但这一海域水深在500~ 2 000m, 我国目前还不具备在这样水深海域进行油气勘探和生产的技术。周边国家每年从南沙海域生产石油达5 000×10 4 t 以上, 相当于我国大庆油田的年产量, 这种严峻的形势迫使必须加快我国南海等海域的深水油气勘探开发。石油工业没有关于“深水”的预先定义。“深水”的定义随时间、区域和专业在不断变化。随着科技的进步和石油工业的发展,“ 深水”的定义也在不断发展。据2002 年在巴西召开的世界石油大会报道,油气勘探开发通常按水深加以区别:水深400m 以内为常规水深 400m-1500m 为深水,超过1500m 为超深水。但深度不是唯一的着眼点,只要越过大陆架,典型的深水问题就会出现。一、深水钻井的难点 与陆地和浅水钻井相比, 深水钻井有着更为复杂的海况条件面临着更多的难题, 主要表现在以下几个方面。 1、不稳定的海床由于滑坡形成的快速沉积,浊流沉积,

陆坡上松软的、未胶结的沉积物形成了厚、松软、高含水、未胶结的地层。这种地层由于沉积速度、压实方式以及含水量的不同,所以它们的活性很大,给导管井段的作业带来了很大困难。河水和海水携带细小的沉积物离海岸越来越远,这些沉积物由于缺乏上部压实作用,所以胶结性差。 在某些地区,常表现为易于膨胀和分散性高,这将会导致过量的固相或细颗粒分散在钻井液中。 2、较低的破裂压力梯度 对于相同沉积厚度的地层来说,随着水深的增加,地层的破裂压力梯度在降低,致使破裂压力梯度和地层孔隙压力梯度之间的窗口较窄,容易发生井漏等复杂情况。在深水钻井作业中,将套管鞋深度尽可能设置得深的努力往往由于孔隙压力梯度与破裂压力梯度之间狭小的作业窗口而放弃。结果,深水区域的井所需的套管柱层数,常比有着相同钻进深度的浅水区域的井或陆上的井多。有的井甚至没有可用的套管而没有达到最 终的钻井目的。 3、气体水合物的危害 气体水合物是气体(甲烷、天然气、CO2 、N2 等)和水在一定条件(高温、高压)下形成的类似于冰物质。气体水合物在深水钻井作业中常常会遇到,通常在超过250m 水深的海域都会形成水合物, 一旦形成很难去除。气体水合物是一 种潜在的危害, 生成时结冰堵塞管汇, 气化时生成大量气

海洋石油深水钻完井技术概述

海洋石油深水钻完井技术概述 摘要:深水区海洋环境恶劣,台风和孤立内波频发,深水钻完井工程设计和作业难度大、风险高。在充分借鉴我国浅水钻井设计和国外深水钻完井设计及施工经验的基础上,研究并提出了深水钻完井设计的技术流程与工作方法,逐步形成了深水技术、深水科研、深水管理的三大体系,克服了深水特殊环境条件下的技术挑战和作业难题,满足了深水油气钻完井安全、高效的作业要求,具备了国内外深水自主作业能力。 关键词:深水;钻完井;作业实践;超深水跨越 目前,世界各国高度重视深水油气的勘探与开发,以BP、Shell、Petrobras 等为代表的油公司和以Transocean等为代表的服务公司掌握了深水钻井完井关键技术,主导着深水油气勘探开发作业。我国南海是世界四大油气聚集地之一,其中70%蕴藏于深水区。深水是挑战当今油气勘探开发技术和装备极限的前沿领域,尤其是在恶劣海洋环境下,如何安全、高效地开展深水钻完井作业成为了业界极为关注的焦点[1-3]。因此,研究深水钻完井所具有的特点,把握其发展趋势,对于促进我国石油工业可持续发展、增加油气产量、保障能源安全具有重要意义。1深水钻完井设计面临的挑战 在深水环境钻完井难度很大,深水钻完井设计不同于常规水深的钻完井设计,主要面临以下几个方面的挑战: 2.1深水低温 海水温度随水深增加而降低,深水海底温度通常约为4℃,海水的低温可以影响到海底泥线以下约数百米的岩层[4]。低温带来的问题主要包括:海水低温环境使隔水管中的钻井液流变性发生变化,在该温度下容易形成水台物,而且这样低的温度的对于钻井液和水泥浆的物理性质有很大的不利影响。会使钻井液的黏度和密度增大,钻井液的黏度增大可产生凝胶效应,在井筒流动中产生较高摩擦阻力,增大套管鞋处地层被压开的风险。容易引起钻井液稠化,使其流变性变差。低温还会延缓水泥水化导致水泥胶凝强度和水泥石抗压强度发展缓慢,流体易侵入水泥基体,容易造成油、气、水窜,后续作业无法顺利进行,影响固井质量。 2.2浅层气和浅层流

国外深水钻井液技术现状

国外深水钻井液技术现状 (一)引言 自1985年以来,随着第一批水深在300 m以上深水油气勘探开发项目的投入建设,国际深水油气勘探开发逐渐增多。最初10年的年平均增长速度为65%,西北欧、巴西、墨西哥湾的勘探开发速度最快,2001年起墨西哥湾深水区的产量已超过浅水区。据统计,截至2000年,水深500 m的深水油气田有162个,遍及世界各海域,其中尤以美洲的墨西哥湾海域、拉丁美洲的巴西海域及西非海域最多,深水油气田探明油气储量为22.6×108t油当量,占海上油气田探明总储量的12%。目前,深水钻井还面临着许多难题,对钻井液技术的要求更高,本文在分析深井钻井存在的主要难题的基础上,详细介绍了国外先进的深水钻井液技术,并对其发展趋势进行了分析。 (二)深水钻井中存在的问题 与浅水区域相比,深水钻井面临的主要问题有:海底页岩的稳定性差、钻井液用量大、井眼清洗难、浅层天然气与形成的气体水合物、低温下钻井液的流变性、地层破裂压力窗口窄等。这些问题给钻井工作带来了诸多困难,同时对钻井液技术提出了更高的要求:在保证钻井安全的前提下,兼顾钻井成本和环境效益。 1.海底页岩的稳定性差 在深水区中,由于沉积速度、压实方式以及含水量的不同,海底页岩的活性大。河水和海水携带细小的沉积物离海岸越来越远,由于缺乏上部压实作用,胶结性较差,易于膨胀、分散,导致过量的固相或细颗粒分散在钻井液中,从而影响钻井液性能。 2.钻井液用量大 在深水环境下的钻井液需求量是很大的。一般隔水管体积就高达159 m3,再加上平台钻井液系统,而且由于井眼直径大,为了钻达设计井深,一般下入的套管也多(常常是4~7层),因此钻井液用量就比其他同样井深的陆上或浅水区的井大得多。 3.井眼清洗难 深水钻井时,由于开孔直径、套管和隔水管的直径都比较大,如果钻井液流速不足就难以达到清洗井眼的目的。因此,对钻井液清洗井眼的能力提出了更高要求。一般采用稠浆清洗、稀浆清洗、联合清洗、增加低剪切速率黏度,以及有规律地短程起下钻等方法,这些方法均有助于清除钻井过程中的钻屑。使用与钻井过程中钻井液黏度不同的清扫液清除钻屑效果较明显,比如使用稀浆钻进,稠浆清洗钻屑。 4.浅层气与气体水合物 深水钻井作业中,气体水合物的形成不仅是一个经济问题,更是一个安全问题。气体水合物类似于冰的结构,主要由气体分子和水分子组成,外观上看起来类似于脏冰,但是它在性质上又不像冰,如果压力足够,它可以在0℃以上形成。海底附近或井中溶解的水合物受到冷却后易在隔水管和压井阻流管线上重新凝结,尤其是在节流管线、钻井隔水导管、防喷器以及海底的井口里,一旦形成气体水合物,就会堵塞气管、导管、隔水管和海底防喷器等,从而造成严重的事故;

深水钻井液技术现状与发展趋势

深水钻井液技术现状与发展趋势 文/邱正松赵欣,中国石油大学 引言 深水已成为国际油气勘探开发的重点区域。深水钻井液技术作为深水油气开发的关键技术之一,需解决深水复杂地层井壁失稳、低温流变性调控、天然气水合物的生成等技术问题。由于深水钻井液技术难度大,风险高,目前主要由国外技术服务公司垄断。中国深水钻井液技术尚处于起步阶段,与国外先进水平存在很大差距。笔者对深水钻井液面临的技术问题及对策进行全面分析,总结深水钻井液体系研究与应用进展以及中国深水钻井液技术研究现状,并对深水钻井液技术的发展趋势进行了展望,以期把握先进深水钻井液技术动向,对中国深水钻井液技术的发展起到一定的参考与借鉴作用。 1 深水钻井液面临的主要技术问题及对策 与陆地和浅水相比,深水钻井液面临着许多特殊的技术问题,包括深水地质条件的复杂性、钻井液低温流变性调控、天然气水合物的生成、井眼清洗问题及环保问题。 1.1 深水地质条件的复杂性 1.1.1 海底疏松地层井壁失稳与井漏问题 由于深水沉积过程中部分上覆岩层由海水代替,造成地层欠压实,孔隙压力大,胶结性差,海底泥页岩易膨胀、分散。欠压实作用下地层破裂压力低,导致钻井液的安全密度窗口变窄,易出现井漏等问题。 海底浅部地层通常存在数百米厚的硅质软泥,含水量为50%~70%,其物理性质类似于牙膏,剪切强度低,地层承载力差,易引发井壁失稳。 1.1.2 天然气水合物地层分解问题 由于天然气水合物可稳定存在于深水高压低温环境中,钻井过程中不可避免地钻遇赋存天然气水合物地层。由于钻具的机械扰动以及钻井液的侵入和传热作用等因素,井壁周围地层压力和温度的变化导致地层中的水合物分解,地层强度降低,引发井壁坍塌。此外,水合物分解释放大量气体和少量的水,增加了井壁地层的含水量和地层孔隙压力,引发井壁失稳;而大量的气体进入井筒易引起井涌或井控问题。 1.1.3 深水厚盐岩层井壁失稳问题

2015钻探与钻井工程课程设计

《钻探与钻井工程》课程设计 一、课程安排: 本学期按照课程设计要求完成课程设计作业。一律打印。 二、课程内容与要求 1 掌握钻探与钻井及完井工程设计流程和设计规范、格式; 2 掌握井身结构的设计方法; 3 掌握钻进工具的选用及钻探参数的设计计算; 4掌握固井工程设计方法,包括套管柱强度设计、注水泥设计等; 三、考核方式及成绩评定 课程设计的成绩为百分制,课程考核标准组成: 1.格式、规范10分 评分依据:工程设计规范 评分标准:10*符合程度% 2.设计的依据与原则准确性30分 评分依据:工程设计依据与原则 评分标准:30*符合程度% 3 . 过程的参数选择的合理性和计算过程的可靠性30分 评分依据:参数符合工程实际;计算过程可靠 评分标准:30*符合程度% 4. 结果准确性30分 钻探与钻井工程概述 钻探:以钻孔取样的方式(包括工作有:钻探、取心、测井、维护孔壁、封孔等)。探查地下地质信息(地质资料,水文资料,矿产信息)钻井:以钻孔的方式,开发地下资源(包括油、气、水、地热、煤、各类盐碱),从勘探直到开采出来的整个过程与其中所涉及的设备、工艺和关键技术。具体包括:钻头与钻柱、喷射钻井、优选参数钻进、井斜及控制、定向钻井、地层压力检测与井控技术、固井与完井及钻井新技术等。为将来学生毕业后从事这些领域的工作打下坚实基础

设计大纲(目录) 一、地质设计摘要 二、井身结构设计 三、固井工程设计 1.套管柱强度设计; 2.套管柱管串结构及扶正器安放; 3.水泥及水泥浆设计; 4.注水泥浆及流变学设计; 四、钻柱设计 五、钻井设备选择 六、钻井液设计 七、钻进参数设计 1.机械破岩参数设计(包括钻头选型,所有钻头选用江汉钻头厂牙轮钻头、选取钻压和转速)(√); 2.钻井液体系及性能设计(仅设计钻井液密度,其它参数不作要求) 3.水力参数设计(√); 4.钻柱与下部防斜钻具结构(√); 八、下部钻具组合设计 九、油气井控制 十、各次开钻或分井段施工重点要求 十一、地层压力监测要求 十二、地层漏失试验 十三、油气层保护 十四、完井井口装置 十五、环保要求 十六、钻井进度计划 十七、成本预算

深水石油钻井技术现状及发展趋势

文章编号:1000-7393(2008)02-0010-04 深水石油钻井技术现状及发展趋势3 杨 进1 曹式敬2 (1.中国石油大学石油工程教育部重点实验室,北京 102249; 2.中国海洋油田服务股份有限公司钻井事业部,北京 101149) 摘要:随着世界深水油气资源不断发现,近几年来深水钻探工作量越来越大。随着水深的增加和复杂的海况环境条件,对钻井工程提出了更高的挑战,钻井技术的难度越来越大。从目前国内外深水钻井实践出发,对深水的钻井设备、定位系统、井身结构设计、双梯度钻井技术、喷射下导管技术、动态压井钻井技术、随钻环空压力监测、钻井液和固井工艺技术和钻井隔水管及防喷器系统等关键技术进行了阐述,对深水的钻井设计和施工进一步向深水钻井领域发展具有重要导向作用。 关键词:深水钻井;钻井设备;关键技术 中图分类号:TE21;TE24 文献标识码:A Curren t situa ti on and develop i n g trend of petroleu m dr illi n g technolog i es i n deep wa ter Y ANG Jin1,CAO Shijing2 (1.MO E Key Laboratory of Petroleum Engineering in China U niversity of Petroleum,B eijing102249,China; 2.D rilling D epart m ent of China O ffshore O ilfield Services L i m ited,CNOOC,B eijing101149,China) Abstract:A s more and more oil and gas res ources are discovered in deepwater world wide,the deep water drilling has become more and more in recent years.It requires more on drilling engineering and drilling technol ogies due t o the increased water dep th and comp licated marine conditi ons.Based on the p ractice in deep water drilling both at home and abr oad,s ome key technol ogies are dis2 cussed in this paper,including the drilling equi pment,the positi oning syste m,the casing p r ogra m design,the dual-gradient drilling technol ogy,the technol ogy of jetting and l ower circuit,the dyna m ic killing and drilling technol ogy,the technol ogy of annulus p ressure detecti on while drilling,the technol ogy of drilling fluid and ce menting,the drilling raiser technol ogy,and the bl owout p reventer sys2 te m.A ll the technol ogies p lay an i m portant r ole in enabling drilling design and constructi on t o expand int o deep water. Key words:deep water drilling;drilling equi pment;key technol ogy 全世界未发现的海上油气储量有90%潜伏在水深超过1000m以下的地层,所以深水钻井技术水平关系着深海油气勘探开发的步伐。对于海洋深水钻井工程而言,钻井环境条件随水深的增加变得更加复杂,容易出现常规的钻井工程难以克服的技术难题,因此深水钻井技术的发展是影响未来石油发展的重要因素。 1 国内外深水油气勘探形势 全球海洋油气资源丰富。据估计,海洋石油资源量约占全球石油资源总量的34%,累计获探明储量约400×108t,探明率30%左右,尚处于勘探早期阶段。据美国地质调查局(USGS)评估,世界(不含美国)海洋待发现石油资源量(含凝析油)548×108 t,待发现天然气资源量7815×1012m3,分别占世界待发现资源量的47%和46%。因此,全球海洋油气资源潜力巨大,勘探前景良好,为今后世界油气勘探开发的重要领域。 随着海洋钻探和开发工程技术的不断进步,深水的概念和范围不断扩大。目前,大于500m为深水,大于1500m则为超深水。据估计,世界海上44%的油气资源位于300m以下的水域,其中,墨西哥湾深水油气资源量高达(400~500)×108桶油当量,约占墨西哥湾大陆架油气资源量的40%以上, 第30卷第2期 石油钻采工艺 Vol.30No.2 2008年4月 O I L DR I L L I N G&PRODUCTI O N TECHNOLOGY Ap r.2008  3作者简介:杨进,1966年生。1989年毕业于石油大学(华东)钻井工程专业,现从事油气钻井工程研究工作,教授,本刊编委。电话:010 -89733204。

深水钻井关键装备现状与选择

万方数据

万方数据

万方数据

。4’石油矿场机械2009年10月 触面也进?步加大。凶此随着作业水深的增加,水下 井II也变得越来越大,压力等级、抗弯能力、町悬挂 套管质垦和数最对各种套管层序的适川性、操作性 和安全町靠性等性能指标也越来越高。 4结语 走向深水既足提高油气产量的需求,也是全球 海洋石油发展的趋势。深水浮式钻井装置、隔水管 系统和水下井II等是进行深水钻井的必要装备。深 水钻井区别于浅滩和陆地钴升作、Ik,所需装备的没 计、制造难度很大,国外涉足深水领域已有几十年的 历程,深水钻井装备已成为成熟技术。依靠进fl深 水作、Ip装备,小但耗费人量资会。在关键技术上也受 制于人,严重制约着我国深水石油开发进度,因而展 开相关研究工作已迫在眉睫。 图1水卜.井11系统 临时导向基座用于定井位,是首先下入的设备,坐在海底泥线卜;永久导向基座安装在临时导向基座之上,通过连接在导向柱上的导向绳引导后续J二具的入井及设备的安装;0762mm(30in)导管头悬挂导管坐落在永久导向基座内,用专用下入工具随永久导向基座同时下入;0476.25mm(18%in)高压井[I头下部连接表层套管,坐落在导管头内,通过液压连接器连接水下防喷器;各层技术套管通过套管挂和密封总成悬挂在高压井II头内。 深水条件下对水下井【1的选择主要考虑井筒中需要悬挂的套管层序、套管尺寸和连接方式、抗弯曲能力、压力级别、可悬挂的最大套管质鼍等。在没计的前期,需要对海况条件下井口呵能受到的钻井隔水管、防喷器组上部质量以及可能的轴向力和弯矩进行分析,尤其是采用动力定f《》=时,钻井船偏离井口或紧急情况下进行紧急解脱时。防喷器组和水下井口头可能会承受很大的弯矩∽。…。 井口头压力级别的选用应与防喷器一致,主要根据地层压力的情况,通常选用69MPa(10000psi)或103MPa(15000psi)压力等级,在一些特殊情况下,也可选用138MPa(20000psi)。抗弯曲能力在2710~9484kN?m(2000~7000klb?ft)。常规水下井口的抗弯曲能力在3387~4065kN?m(2500~3000klb?ft)。井[1头的抗弯能力与高压井fl头的壁厚相关,典型的高压井口头的外径大约是0685.8mm(27in)。为了获得较高的抗弯能力,高压井口的外径不断增加,而且与低压井口的接参考文献: [1]PettingillHS,WeimerP.Worldwidedeepwaterex—plorationandproduction:past,presentandfuture [-CJ//Houston,Texas:21stAnnualResearchConfer— ence,2001. I-z]赵政璋。赵贤正,李景明,等.国外海洋深水油气勘探发展趋势及启示LJ].中国石油勘探,2005。10(6):71— 76. [3]兰洪波,张玉霖,菅志军,等.深水钻井隔水管的应用及发展趋势[J].石油矿场机械。2008,37(3):96—98. 1-4_]杨进,曹式敬.深水石油钻井技术现状及发展趋势[J].右油钻采工艺。2008,30(2):1013. [5]方华灿.海洋深水双梯度钻J{:用水下装备[J].石油矿场机械,2008,37(11):1-6. [6]陈国明,殷志明,许亮斌。等.深水双梯度钻井技术研究进展[J].石油勘探与开发,2007,34(2):246-251.[7]SmithKI.,(;auk人D,WittDE.eta1.Subseamudliftdrillingjointindustryproject:deliveringdualgradient drillingtechnologytOindustryLO].SPE71357,2001.[8]SchumacherJP,DowellJD,RibbeckI.R.eta1.SubseaMudLiftDrilling(SMD):planningandpreparationfor thefirstsubseafieldtestofafullscaledualgradient drillingsystematgreencanyon136,GulfofMexico [G].SPE71358,2001. I-9]EggemeyerJC,AkinsME,BrainardPE。eta1.Sub—Seamudliftdrilling:designandimplementationofa dualgradientdrillingsystem[G].SPE71359,2001.[10]MaurerWC。Medley(jH,McDonaldWJ.Muhigra—dientdrillingmethodandsystem:UnitedStates, 006530437[P].2003—03—11.万方数据

lc压控振荡器实验报告doc

lc压控振荡器实验报告 篇一:实验2 振荡器实验 实验二振荡器 (A)三点式正弦波振荡器 一、实验目的 1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1. 熟悉振荡器模块各元件及其作用。 2. 进行LC振荡器波段工作研究。 3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4. 测试LC振荡器的频率稳定度。 三、基本原理 图6-1 正弦波振荡器(4.5MHz) 【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振 荡频率。振荡频率可调范围为:

?3.9799?M??f0??? ? ?4.7079?M? CCI?25p CCI? 5p 调节电容CCI,使振荡器的频率约为4.5MHz 。振荡电路反馈系数: F= C1356 ??0.12 C20470 振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。 四、实验步骤 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 1. 调整静态工作点,观察振荡情况。 1)将开关S2全拨下,S1全拨下,使振荡电路停振 调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使

高性能深水钻井液体系研究

Hans Journal of Chemical Engineering and Technology 化学工程与技术, 2019, 9(2), 132-136 Published Online March 2019 in Hans. https://www.360docs.net/doc/cc3047926.html,/journal/hjcet https://https://www.360docs.net/doc/cc3047926.html,/10.12677/hjcet.2019.92019 Research on High Performance Deepwater Drilling Fluid System Peng Cheng1, Yingzhong Cui2, Hong Chen2, Fuchang Shu2,3, Xingjin Xiang2,3 1CNOOC EnerTech—Drilling & Production Co.-Zhanjiang, Zhanjiang Guangdong 2Jingzhou HANC New Technology Research Institute, Hubei HANC New Technology Co. Ltd., Jingzhou Hubei 3Yangtze University, Jingzhou Hubei Received: Mar. 7th, 2019; accepted: Mar. 21st, 2019; published: Mar. 28th, 2019 Abstract In the process of offshore deepwater drilling, due to a series of problems such as low seabed tem-perature, poor stability of seabed shale and easy formation of gas hydrate, the performance of drilling fluid is put forward with high requirements. By analyzing the problems encountered in Lingshui 17-2 drilling development, a set of high-performance deepwater drilling fluid system was developed, and its performance reached the international level of similar technology. Keywords High-Temperature, Deep-Water, Drilling Fluid, Reservoir Protection 高性能深水钻井液体系研究 程朋1,崔应中2,陈洪2,舒福昌2,3,向兴金2,3 1中海油能源发展股份有限公司工程技术湛江分公司,广东湛江 2湖北汉科新技术股份有限公司,荆州市汉科新技术研究所,湖北荆州 3长江大学,湖北荆州 收稿日期:2019年3月7日;录用日期:2019年3月21日;发布日期:2019年3月28日 摘要 在海洋深水钻井过程中,由于存在海底温度低、海底页岩稳定性差、易形成气体水合物等一系列问题,

XX井钻井工程设计1

川东高陡褶皱带包鸾-焦石坝背斜带焦石坝构造井号:XX井井别:开发井井型:水平井钻井设计

1、钻井地质设计 1.1基本数据 井号:XX井 井别:开发井 井型:水平井 地面海拔 592.47m,补心高 9.0m,补心海拔 601m 计算 地理位置:重庆市涪陵区江东街道办凉水村 5 组 构造位置:川东南地区川东高陡褶皱带包鸾-焦石坝背斜带焦石坝构造 目的层: 上奥陶统五峰组-下志留统龙马溪组下部优质页岩气层段(对应焦页 87-3 井 3610.6-3649.2m/38.6m) 设计井深:A靶点垂深:2799m, C靶点垂深:2777m, B靶点垂深:2821m; AB 段长:2074.10m;完钻井深:5160m; 完钻层位:下志留统龙马溪组下部页岩段 完钻原则:钻至 B 靶点留口袋完钻 完井方式:套管完井 1.2钻探依据 设计井区上奥陶统五峰组-下志留统龙马溪组为深水陆棚相沉积,邻井焦页 87-3HF(导眼井)发育厚达89.6m灰黑色富有机质泥页岩,TOC平均为2.44%,优质页 岩段(①-⑤小层)平均TOC为2.85%;有机质类型为Ⅰ型,热演化程度(Ro)为 2.42- 3.13%,有利于天然气的大量生成。 邻井焦页87-3HF(导眼井)目的层以灰黑色粉砂质、炭质泥页岩夹放射虫炭质泥页 岩为主,物性分析表明优质页岩段(①-⑤小层)孔隙度为3.81-5.21%,平均孔隙度达4.48%,具较好储集性能。 邻井焦页87-3HF(导眼井)上奥陶统五峰组-下志留统龙马溪组含气量 1.45-6.62m3/t,平均为3.49m3/t,其中,优质页岩段(①-⑤小层)含气量3.69-6.62m3/t,平均为5.16m3/t,具有较好的含气性。

RC振荡电路实验报告(特选资料)

广州大学学生实验报告 院(系)名称 物理与信息工程系 班别 姓名 专业名称 学号 实验课程名称 模拟电路实验 实验项目名称 RC 串并联网络(文氏桥)振荡器 实验时间 实验地点 实验成绩 指导老师签名 【实验目的】 1.进一步学习RC 正弦波振荡器的组成及其振荡条件。 2.学会测量、调试振荡器。 【实验原理】 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。 RC 串并联网络(文氏桥)振荡器 电路型式如图6-1所示。 振荡频率 RC 21 f O π= 起振条件 |A &|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图6-1 RC 串并联网络振荡器原理图 注:本实验采用两级共射极分立元件放大器组成RC 正弦波振荡器。 【实验仪器与材料】 模拟电路实验箱 双踪示波器 函数信号发生器 交流毫伏表 万用电表 连接线若干

【实验内容及步骤】 1.RC 串并联选频网络振荡器 (1)按图6-2组接线路 图6-2 RC 串并联选频网络振荡器 (2)接通RC 串并联网络,调节R f 并使电路起振,用示波器观测输出电压u O 波形,再细调节R f ,使获得满意的正弦信号,记录波形及其参数,即,测量振荡频率,周期并与计算值进行比较。 (3) 断开RC 串并联网络,保持R f 不变,测量放大器静态工作点,电压放大倍数。 (4)断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。(输入小信号:f=1KHz,峰峰值为100mV 正弦波)用毫伏表测量u i 、u 0 就可以计算出电路的放大倍数。 (5)改变R 或C 值,观察振荡频率变化情况。 将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。且输入、输出同相位,此时信号源频率为 2πRC 1 f f ο== 【实验数据整理与归纳】 (1)静态工作点测量 U B (V ) U E (V ) U C (V) 第一级 2.48 2.96 4.66 第二级 0.84 11.51 1.01 (2)电压放大倍数测量: u i (mV) u o (V) Av 788 2.80 3.60

海洋钻井钻井液技术

海洋钻井钻井液技术 目前我国在海洋钻井液技术的应用与研究领域已经取得了很大的进步,但在实际应用过程中仍然面临着诸多问题。因此,在实际的钻井过程中,就需要根据实际情况,来合理选择适当的钻井液,已达到解决问题的同时,不破坏海洋的环境或对海洋生物造成破坏。另外,还要加大对其研究的力度,争取研制出更加适合未来发展的钻井液技术。 标签:海洋钻井;钻井液;技术 1 海洋钻井液技术应用过程中所要注意的问题 1.1 海底页岩的相对稳定性 技术研发都面临比较多的问题,对于深水钻的技术研究方面,主要涉及到含水量,沉积的速度还有压实的方式等各种因素不能同时作用,因此深水演示的变化多,特别是在实际工作中,这些变化的情况会导致深水岩石变化更多,若深水变化带来的沉积物距离海岸线远,会导致沉积物黏性降低,故海洋钻井区内,常常会发现分散性、膨胀性,导致海水中的颗粒杂质掺杂进钻井液中,从而影响其效果。为了岩石的稳定性,大多数会选择用适当的岩石稳定剂,再加入配比的无机盐,从而达成稳定效果。还可以用合成基钻井液加固岩石的稳定性。 1.2 钻井液技术的使用情况 钻井工作的时候,减少钻井液的用量是一项基本工作,面对海洋生态的多种变化,更要对钻井液的使用进行调试。一般情况下,钻井液用量要多于相同深度的钻井量,这样能够预防污染。为了节约钻井液,还可以在实施的时候调控好设备。通过多项研究表明,海洋钻井常用的设备主要是除砂器以及除泥器等,多为固控工具。在相对复杂的钻井液工作环境中,逐渐减少工作系统的固相,从而彻底清除。 1.3 对钻水井眼的清洗和應用 钻井液工作时,要让钻井液去清洗钻井眼,从而达到实际应用的要求。若钻井液实际的上返流速不能够满足标准要求,这样就要用常规方式清洗钻井眼。一旦满足了上返流速,就用钻井液粘度操作,这样能够去掉钻井中产生的钻屑。 2 对深水钻井液技术的研究 2.1 高盐部分水解聚丙烯酚胺聚合物钻井液 钻井液体系具有非常好的剪切稀释的性能,该剪切稀释的性能可以提高机械钻井的速度。虽然该钻井液体系可以满足环境保护的要求,但是因为钻井液中含

相关文档
最新文档