超声波焊接原理和应用

超声波焊接原理和应用
超声波焊接原理和应用

超声波焊接原理:

超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。 其优点是增加多倍生产率,降低成本,提高产品质量及安全生产 。

超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。

新型的15KHz 超声波塑胶焊接机,对焊接较软的PE 、PP 材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。

超声波焊接工艺: 一、超声波焊接:

以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美。 二、铆焊法:

将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。 三、埋植:

借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

一、超声波塑料焊接的相容性和适应性:

热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接 。

热塑性塑料 超声波焊接的 相容性示例图表

A B S ABS/

聚碳 酸酯 合

金 (

聚 甲 醛 丙 烯 腈 丙烯酸系多元共聚物

丁 二 烯-苯 纤维

素(CA, CAB, CAP) 氟

聚 合 物 尼 龙 亚苯基-氧化物为主的树脂(诺里尔) 聚酰胺-酰亚胺(托郎) 聚

塑 性 聚 酯

聚 甲 基 戊 烯

聚 苯 硫 聚 丙 烯 聚

苯 乙 烯

聚 砜 聚

氯 乙 烯

SAN-NAS-ASA

注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.

超声波焊接原理和应用

超声波焊接原理: 超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。 其优点是增加多倍生产率,降低成本,提高产品质量及安全生产。 超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。 新型的15KHz超声波塑胶焊接机,对焊接较软的PE、PP材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。 超声波焊接工艺: 一、超声波焊接: 以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美。 二、铆焊法: 将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。三、埋植: 借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

一、超声波塑料焊接的相容性和适应性: 热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接。 注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.

超声波焊接原理及材料对其的影响

★超声波焊接是热塑性塑料在超声波振动作用下,由于表面分子间摩擦生热而使两块塑料熔接在一起的焊接方法。 超声波金属焊接: 1、超声波金属焊接 超声波金属焊接的优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。超声波金属焊接是一种机械处理过程,在焊接过程中,并无电流在被焊件中流过,也无诸如电焊模式的焊弧产生,由于超声焊接不存在热传导与电阻率等问题,因此对于有色金属材料来说,无疑是一种理想的金属焊接设备系统,对于不同厚度的片材,能有效地进行焊接。 超声波焊接原理: 超声波塑料焊接机超声波塑料焊接原理 当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。这个最佳压力是焊接部分的边长与边缘每1mm的最佳压力之积 原理分析图

超声波焊接优点: 1、超声波塑料焊接优点:焊接速度快,焊接强度高、密封性好;取代传统的焊接/粘接工艺,成本低廉,清洁无污染且不会损伤工件;焊接过程稳定,所有焊接参数均可通过软件系统进行跟踪监控,一旦发现故障很容易进行排除和维护。 2、超声波金属焊接优点:1)、焊接材料不熔融,不脆弱金属特性。2)、焊接后导电性好,电阻系数极低或近乎零。3)、对焊接金属表面要求低,氧化或电镀均可焊接。4)、焊接时间短,不需任何助焊剂、气体、焊料。5)、焊接无火花,环保安全。 超声波金属焊接适用产品: 1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。3)、电线互熔,偏结成一条与多条互熔。4)、电线与名种电子元件、接点、连接器互熔。5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。7)、金属管的封尾、切断可水、气密。 超音波的熔焊应用方法: 一、熔接法:以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生摩擦热而瞬间熔融接合,焊接强度可与本体媲美,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品所带来的不便,实现高效清洁的熔接。二、铆焊法:将超音波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。三、埋植:藉着焊头之传道及适当之压力,瞬间将金属零件(如螺母、螺杆等)挤入预留入塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。四、成型:本方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定,且外观光滑美观、此方法多使用在电子类、喇叭之固定成形,及化妆品类之镜片固定等。五、点焊:A、将二片塑胶分点熔接无需预先设计焊线,达到熔接目的。B、对比较大型工件,不易设计焊线的工件进行分点焊接,而达到熔接效果,可同时点焊多点。六、切割封口:运用超音波瞬间发振工作原理,对化纤织物进行切割,其优点切口光洁不开裂、不拉丝。超声波金属焊接机2、超声波金属焊接原理是利用超声频率(超过16KHz )的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将框框振动能量转变为工作间的摩擦功、形变能及有限的温升.接头间的冶金结合是母材不发生熔化的情况下实现的一种固态焊接.因此它有效地克服了电阻焊接时所产生的飞溅和氧化等现象.超

超声波焊接原理【深度解析】

超声波焊接原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。 超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料熔化。超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。一套超声波焊接系统的主要组件包括超声波发生器,换能器变幅杆/焊头三联组,模具和机架。线性振动摩擦焊接利用在两个待焊工件接触面所产生的摩擦热能来使塑料熔化。热能来自一定压力下,一个工件在另一个表面以一定的位移或振幅往复的移动。一旦达到预期的焊接程度,振动就会停止,同时仍旧会有一定的压力施加于两个工件上,使刚刚焊接好的部分冷却、固化,从而形成紧密地结合。轨道式振动摩擦焊接是一种利用摩擦热能焊接的方法。在进行轨道式振动摩擦焊接时,上部的工件以固定的速度进行轨道运动——向各个方向的圆周运动。运动可以产生热能,使两个塑料件的焊接部分达到熔点。一旦塑料开始熔化,运动就停止,两个工件的焊接部分将凝固并牢牢的连接在一起。小的夹持力会导致工件产生最小程度的变形,直径在10英寸以内的工件可以用应用轨道式振动摩擦进行焊接。 焊接原理 超声波焊接原理:超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,

超声波焊接机的工作原理

超声波焊接机的工作原理 超音波焊接机的工作原理是: 是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。根据产品的外观来设计模具的大小、形状。 超声波塑料焊接机由气压传动系统、控制系统、超声波发生器、换能器及工具头和机械装置等组成。 1、气动传动系统 包括有:过滹器、减压阀、油雾器、换向器、节流阀、气缸等。 工作时首先由空压机驱动冲程气缸,以带动超声换能器振动系统上下移动,动力气压在中小功率的超声波焊接中气压根据焊接需要调定。 2、控制系统 控制系统由时间继电器或集成电路时间定时器组成。主要功能是:一是控制气压传动系统工作,使其焊接时在定时控制下打开气路阀门,气缸加压使焊头下降,以一定压力压住被焊物件,当焊接完后保压一段时间,然后控制系统将气路阀门换向,使焊头回升复位;二是控制超声波发生器工作时间,本系统使整个焊接过程实现自动化,操作时只启动按钮产生一个触发脉冲,便能自动地完在本次焊接全过程。整个控制系统的顺序是:电源启动一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。 3、超声波发生器 (1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。

超声波检测技术及应用

超声波检测技术及应用 刘赣 (青岛滨海学院,山东省青岛市经济开发区266000) 摘要:无损检测(nondestructive test)简称NDT。无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。本文主要讲的是超声波检测(UT)的工作原理以及在现在工业中的应用和发展。 关键词:超声波检测;纵波;工业应用;无损检测 1.超声波检测介绍 1.1超声波的发展史 声学作为物理学的一个分支, 是研究声波的发生、传播、接收和效应的一门科学。在1940 年以前只有单晶压电材料, 使得超声波未能得到广泛应用。20 世纪70 年代, 人们又研制出了PLZT 透明压电陶瓷, 压电材料的发展大大地促进了超声波领域的发展。声波的全部频率为10- 4Hz~1014Hz, 通常把频率为2×104Hz~2×109Hz 的声波称为超声波。超声波作为声波的一部分, 遵循声波传播的基本定律, 1.2超声波的性质 1)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)。从而引出了“功率超声应用技术“例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。2)超声波具有良好的指向性 3)超声波只能在弹性介质中传播,不能再真空中传播。一般检测中通常把空气介质作为真空处理,所以认为超声波也不能通过空气进行传播。 4)超声波可以在异质界面透射、反射、折射和波型转化。 5)超声波具有可穿透物质和在物质中衰减的特性。 6)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。 1.2超声波的产生与接收 超声波的产生和接收是利用超声波探头中压电晶体片的压电效应来说实现的。由超声波探伤仪产生的电振荡,以高频电压形式加载于探头中压电晶体片的两面电极上时,由于逆压电效应的结果,压电晶体片会在厚度方向上产生持续的伸缩变形,形成了机械振动。弱压电晶体片与焊件表面有良好的耦合时,机械振动就以超声波形式传播进入被检工件,这就是超声波的产生。反之,当压电晶体片收到超声波作用而发生伸缩变形时,正压电效应的结果会使压电晶体片两面产生不同极性的电荷,形成超声频率的高频电压,以回波电信号的形势经探伤仪显示,这就是超声波的接收。 1.3超声波无损检测的原理 超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种

超声波的原理与应用

新疆大学课程大作业 题目:超声波的原理与应用姓名:xx xx 学院:电气工程学院 专业:电气工程及其自动化班级:电气xx-x班 完成日期:2012年11月27日

超声波的原理与应用 概述: 超声波是一种机械波。声的发生是由于发声体的机械振动,引起周围弹性介质中质点的振动由近及远的传播,这就是声波。人耳所能听闻的声波其频率在20~20000Hz之间,频率在20~20000Hz以外的声波不能引起声音的感觉。频率超过20000Hz的叫做超声波,频率低于20Hz的叫做次声波。超声波的频率可以高达911Hz,而次声波的频率可以低达9-8Hz。 早在1830年,F·Savart曾用齿轮,第一次产生24000HZ的超声,1876年F·Galton用气哨产生30000Hz 的超声。1912年4月10日,泰坦尼克号触冰山沉没,引起科学界注意,希望可以探测到水下的冰山。直到第一次世界大战中,德国大量使用潜艇,击沉了协约国大量舰船,探测潜艇的任务又提到科学家的面前[1]。当时的科学家郎之万和他的朋友利用当时已出现的功率很大的放大器和石英压电晶体结合起来,能向水下发射几十千赫兹的超声波,成功的将超声波应用到实际中。 现在,超声波测试把超声波作为一种信息载体,它已在海洋探测与开发、无损检测、医学诊断等领域发挥着不可取代的独特作用。例如:在海洋应用中,超声波可以用来探测鱼群和冰山,可以用于潜艇导航或传送信息、地形地貌测绘和地质勘探等。在检测中,利用超声波检测固体材料内部缺陷、材料尺寸测量、物理参数侧量等。在医学中,可以利用超声波进行人体内部器官的组织结构扫描和血流速度的测量等。 超声波工作原理 这次做机器人用到了超声波,才开始看它的工作原理,感觉还很简单,但是调试到最后,发现了很多问题,该碰到的都碰到了。赶紧写出来分享给大家。 先把超声波的工作原理贴出来:

超声波焊接机基础学习知识原理

超声波焊接机原理 超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。 概述 超声波模治具架设不准确受力不平均原理 在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该 会产生音波传导的现象. 我们如果单只观察硬件(模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接. 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。 另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。就这整体而言,势必产生产品熔接线熔接程度的差异。所以也就必须作修正,如何修正,那就是靠超音波熔接机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服了。

塑料产品材质配合不当 每一种塑料材质的熔点,各有不同,例如ABS塑料材质的熔点约115℃,耐隆约175℃、PC之145℃以上、PE约85℃为例:ABS与PE二种材质的熔点差距太大,超音波熔接势必困难。而ABS与PC二种材质,亦有差距,但已非前项差距如此之大,是以尚可熔接,但在超音波功率相同,能量扩大相同的情况下,相异的塑料材质,绝无法比相同材质的熔接效果好。 超声波台输出能量不足 客户在购买超音波熔接机时,通常较难预料未来产品发展的规格,所以会遇到较大产品对象超出超音波标准熔接的情形。此时在不增加成本的预算下,只得以现有设备来作业生一、超声波模治具架设不准确超声波、受力不平均怎么办? 在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该的熔接效果,其实这只是表面的看法,超音波既然是摩擦振,就会产生音波传导的现象. 我们如果单只观察硬件(模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接. 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。 另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。就这整体而言,势必产生产品熔接线熔接程度的差异。

超声波原理应用

超声波的产生 声波是物体机械振动状态(或能量)的传播形式。所谓振动是指物质的质点在其平衡位置附近进行的往返运动。 超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。但是超声波的波长很短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声波具有许多奇异特性: 传播特性──超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。 功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。声波功率就是表示声波做功快慢的物理量。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。 空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。 超声波的两个主要参数 超声波的两个主要参数:频率:F≥20KHz;功率密度:p=发射功率(W)/发射面积(cm2);通常p≥0.3w/cm2; 在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞一空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。太小的声强无法产生空化效应。 超声清洗的原理 由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质---清洗溶剂中,超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的直径为50-500μm的微小气泡,存在于液体中的微小气泡在声场的作用下振动。这些气泡在超声波纵向传播的负压区形成、生长,而在正压区,当声压达到一定值时,气泡迅速增大,然后突然闭合。并在气泡闭合时产生冲击波,在其周围产生上千个大气压,破坏不溶性污物而使他们分散于清洗液中,当团体粒子被油污裹着而黏附在清洗 件表面时,油被乳化,固体粒子及脱离,从而达到清洗件净化的目的。在这种被称之为“空化”效应的过程中,气泡闭合可形成几百度的高温和超过1000个气压的瞬间高压,连续不断地产生瞬间高压就象一连串小“爆炸”不断地冲击物件表面,使物件的表面及缝隙中的污垢迅速剥落,从而达到物件表面清洗净化的目的。

超声波热量表原理及应用

一、超声波热量表原理: 1、基本原理: 热量表是将一对温度传感器分别安装在通过载热流体的上行管和下行管 号,一对温度传感器给出表示温度高低的模拟信号,而积算仪采集来自流量 热水所提供的热量与热水的进回水温差及热水流量成正比例关系。热水流量采用声波时差法原理进行测量,进回水温度则通过铂电阻温度计测量。热能表积算仪将热水流量和进回水温度进行数据运算处理,最后得出所消耗掉的热量,单位为 kWh 、 MWh、MJ 或 GJ。

2、 计算方法: a 、焓差法(依据供回水温度、流量对水流时间进行积分来计算) Q =∫q m ×?h ×d τ=∫ρ×q v ×??×d ττ1 τ0τ1τ0 Q :系统释放或吸收的热量; q m :水的质量流量 q v :水的体积流量 ?? :供水和回水温度的水的焓值差 b 、热系数法(根据供回水温差、水的累积流量) Q =∫k ×?θ×dv v0 v1 K=ρ???θ V :水的体积 ?θ:供水和回水的温差 k :热系数 (具体密度及焓的取值参见GB/T 32224-2015附录A ) 二、 超声波热量表的选用 1、 机械部分 a 、热量表外形尺寸选用:热量表公称口径;公称压力;热量表全长、热量表计算器长度、高度、计算器高度、表接螺纹、流量计表体材质等。保证热量表可以正确安装在设备无干涉、且后期检修方便。 b 、热量表技术数据选用:包含热量表的最小流量、最大流量、过载流量、热量表温度围、公称流量下的压力损失、最大温差、最小温差、测算精度、热量表防护等级等。 2、 电气及软件部分 热量表供电方式:一般为24V 和230V (具体参见说明书)。 温度传感器类型、传感器导线长度(严禁自行加长、截短或更换导线)、热量表的通讯方式及通讯接口、流量计计量周期、用户M-Bus 抄表系统、

超声波焊接机技术原理

超声波焊接机技术原理 超声波焊接机工作原理是:通过物体上下振动,使焊接件伸缩发热熔接。其机械原理是:把电能转化成机械能。当超声换能器产生的能量传送到焊区,由于焊区,即两个焊接的交界面处声阻大,因此会产生局部高温。由于塑料导热性差,热量聚集在焊区,使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。 一、超声波模治具架设不准确、受力不平均怎么办? 在一般认为超音波作业时,产品与模具表面只要接触准确就可以得到应该的超声波焊接机熔接效果,其实这只是表面的看法,超音波既然是摩擦振,就会产生音波传导的现象. 我们如果单只观察硬件(模治具)的稳合程度,而忽略了整合型态的超音波作业方式,必定会产生舍本逐末或误判的后果,所以在此必须先强调超音波熔接的作业方式是传导音波,使成振动摩擦转为热能而熔接. 这时候超音波模治具的稳合程度、产品截面的高低、肉厚、深浅、材质的组织,必定无法是百分之百承受相同的压力。 另一方面上模(H o r n)输出的能量,每一点都有其误差值,并非整个面发出的能量都相同。就这整体而言,势必产生产品熔接线熔接程度的差异。所以也就必须作修正,如何修正,那就是靠超音波熔接机本身的水平螺丝,或是贴较薄的胶带或铝箔来克服了。 二、塑料产品材质配合不当? 每一种塑料材质的熔点,各有不同,例如ABS塑料材质的熔点约115℃,耐隆约175℃、PC之145℃以上、PE约85℃为例:ABS与PE二种材质的熔点差距太大,超音波熔接势必困难。而ABS与PC二种材质,亦有差距,但已非前项差距如此之大,是以尚可熔接,但在超音波功率相同,能量扩大相同的情况下,相异的塑料材质,绝无法比相同材质的熔接效果好。 热熔塑胶分析图:

专题实验-超声波测试原理及应用

实验一、超声波的产生与传播 实验方案 1. 直探头延迟的测量 参照附录A 连接JDUT-2型超声波实验仪和示波器。超声波实验仪接h 直探头,并把探 头放在CSK-IB 试块的正面,仪器的射频输出与示波器第1通道相连,触发与示波器外触发 相连,示波器采用外触发方式,适半设置超声波实验仪衰减器的数值和示波器的电圧范用与 时间范闱,使示波器上看到的波形如图1.7所示。 在图1.7中,S 称为始波,t 0对应于发射超声波的初始时刻;Bl 称为 图1.7 直探头延迟的测虽 试块的1次底面回波,h 对应于超声波传播到试块底面,并被发射回来后,被超声波探头接 收到的时刻,因此h 对应于超声波在试块内往复传播的时间:B 2称为试块的2次底面冋波, 它対应于超声波在试块内往复传播到试块的上表面后,部分超声波被上表面反射,并被试块 底面再次反射,即在试块内部往复传播两次后被接收到的超声波。依次类推,右3次、4次 和多次底面反射回波。 从示波器上读出传播h 和t2,则直探头的延迟为 (1-6) 2. 脉冲波频率和波长的测量 调节示波器时间范闱,使试块的1次底面回波出现在示波屏的中央,脉冲波的振幅小于 IVO 测量两个振动波峰之间的时间间隔,则得到一个脉冲周期的振动时间t,则脉冲波的频 率为^1/t :已知铝试块的纵波声速为6.32InInUS,贝IJ 脉冲波在铝试块中的波长为l=6.32t β 3. 波型转换的观察与测最 号时间范悅改变探头的入射角,并在改变的过程中适当移动探头的位宜,使每一个入射角 对应的R 2圆弧面的反射回波最 人。則在探头入射角由小变人的过 程中,我们町以先后观察到回波 B 1. B 2和B3;它们分别对应于纵 波反射回波、横波反射回波和表面 波反射回波。 让探头靠近试块背而,通过调节入 射角调,使能够同时观测到回波 BI 和(如图1.9),且它们的幅 度基本相等:再让探头逐步靠近试 块正面,则又会在Bl 前面观测到一个回波bl , 参照附录B 给出铝试块的纵波声速与横波声速,通过简单测量和计算,可以确定b 、Bl 和氏对应的波型和反射面。 4. 折射角的测量 确定Bi 、B?的波型后,町以分别测量纵波和横波的折射角。参照图Llo 首先让把探头 的纵波声束对正(回波幅度最人时为正对位宜)CSK-IB 试块 把超声波实验 仪换上町变角探头, 参照图1-8把探头 放在试块上,并使探 头靠近试块背面,使 探头的斜射声束只 打在 R2圆弧而上。 适当 设置超声波实 验仪衰减器的数值 和示波器 的电压范阖 CT ? V V R2 -C I ? 图1.8观察波型转换现彖

超声波电机的原理与应用

超声波电机的原理与应用 周传运 超声波电机(Ultrasonic Motor ,USM )是国外近20年发展起来的一种新型电机。事实上,在超声波电机问世之前,已有以压电效应驱动的电机,但其频率并不局限于超声波范围。早在1948年,威廉和布朗就申请了“压电马达”的美国专利;1964年,前苏联基辅理工学院设计了第一个压电旋转电机;1970~1972年,西门子公司和松下公司发明了压电步进电机,不过因无法达到较大的输出转矩而没能实际应用。1980年,日本的指田年生研制成超声波压电电动机(即现代意义上的超声波电动机),克服了传统压电电动机转换效率低和变位微小的缺陷,使压电电动机进入工业实用阶段。 一、超声波电机的原理和结构超声波电机的原理 超声波电机利用压电材料的逆压电效应①产生超声波振动,把电能转换为弹性体的超声波振动,并把这种振动通过摩擦传动的方式驱使运动体回转或直线运动。磁极和绕组,它一般由振动体②和移动体③组成,为了减少振动体和移动体之间相对运动产生的磨损,通常在二者间加一层摩擦材料。当在振动体的压电陶瓷(PZT )上施加20KHz 以上超声波频率的交流电压时,赫的超声波振动,使振动体表面起驱动作用的质点形成一定运动轨迹的超声波频率的微观振动(振幅一般为数微米),如椭圆、李萨如轨迹等,该微观振动通过振动体和移动体之间的摩擦作用使移动体沿某一方向做连续宏观运动。因此,超声波电机是将弹性材料的微观形变通过共振放大和摩擦耦合转换成转子或滑块的宏观运动。根据这一思想,日、德等国近几年相继研发出多种超声波电机,如环形行波USM 、步进USM 、多自由度USM 等,且行波型USM 已有较成熟的设计。下面以行波型USM 的 旋转说明其工作原理。 行波型USM 要旋转,需具备两个条件:与转子相接触的定子表面质点须做椭圆运动,定子、转子之间的接触面须有摩擦力。图1中的弹性体为定子,其上部为转子,定子、转子间夹一层摩擦材料。摩擦材料一般粘接在转子表面上。利用电能激励压电陶 瓷复合振子,使之产生超声振动,并在弹性体内产生 行波。当电信号频率调整到与定子(弹性体)的机械共振频率一致时,定子的振动幅度最大,并形成行波。在行波的弯曲传播过程中,定子表面的质点就会形成椭圆振动轨迹。当无数个这样的粒子都以同相位振动时,就会在定子表面形成力矩,力矩方向与行波传播方向相反。该力矩依靠定子、转子间的摩擦力驱动转子运动。转子的运动速度由定子表面质点的振幅和频率决定,振幅大则速度快;另外,加大定子、转子间压力,增加其间的摩擦力,也会增大转子受到的力矩。 图1 定子表面质点的椭圆运动轨迹 环形行波型超声波电机的结构 图2为环形行波型USM 的结构示意图。主要部件为定子和转子。定子由弹性环、压电陶瓷环和粘接在其上的带有凸齿的弹性金属环组成,弹性环由不锈钢、硬铝或铜等金属制成。凸齿的作用是放大定子表面振动的振幅,使转子获得较大的输出能量。压电陶瓷环采用的是施加交变电压后能够产生机械谐振位移的“硬性”压电陶瓷材料,其质量好坏直接影响电机性能。粘接剂多用高温固化的环氧树脂胶。 图2 环形行波型USM 的结构示意图 转子由转动环和摩擦材料构成。转动环一般用 不锈钢、硬铝或塑料等制成。摩擦材料必须牢固地粘接在转子的接触表面,从而增加定子、转子间的摩 ? 63?现代物理知识

超声波提取原理、特点与应用介绍

超声波提取原理、特点与应用介绍 超声波指频率高于20KHz,人的听觉阈以外的声波。 超声波提取在中药制剂质量检测中(药检系统)已广泛应用。《中华人民共和国药典》中,应用超声波处理的有232个品种,且呈日渐增多的趋势。 近年来,超声波技术在中药制剂提取工艺中的应用越来越受到关注。超声波技术用于天然产物有效成分的提取是一种非常有效的方法和手段。作为中药制剂取工艺的一种新技术,超声波提取具有广阔的前景。 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。 1、提取原理 (1)机械效应超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 (2)空化效应通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 (3)热效应和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。 2、超声波提取的特点 (1)超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。 (2)超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。 (3)溶剂用量少,节约了溶剂。 (4)超声波提取是一个物理过程,在整个浸提过程中无化学反应发生,不影响大多数药物有效成分的生理活性。 (5)提取物有效成分含量高,有利于进一步精制。 3、超声波技术在天然产物提取方面的应用 与水煎煮法对比,采用超声波法对黄芩的提取结果表明,超声波法提取与常规煎煮法相比,提取时间明显缩短,黄芩苷的提取率升高;超声波提取10、20、40、60min均比煎煮法提取3h的提取率高。 应用超声波法对槐米中主要有效成分芦丁的提取结果表明,超声波处理槐米30min所

超声波的检测原理反射折射

超声波的检测原理反射折射

2超声波及超声检测原理 2. 1超声波的基本性质 通常人耳能听到声音的频率范围在 20}20KHz 之间,把超过20KHz 的声波 称为超 声波。超声波在本质上是一种机械波,所以它的产生必须依赖两个条件, 一是有机械振动的声源,二是有能够传播振动的弹性介质。 波的种类是根据介质质点的震动方向和波动传播方向的关系来区分的。超 声波在介 质中传播的波形有许多种,有纵波、横波、表面波等。 2.1.1超声场的特征量 充满超声波的空间叫做超声场。声压、声强度、声阻抗是描述超声场 特征的几 个重要物理量。 a. 声压 超声场中某一点在某一瞬间所具有的压强与没有超声场存在时的静态 压强之差 被称为声压,常用 P 表示,单位为帕。超声波在介质中传播时,介质 中每一点的声压随着时间t 、距离x 而变化,其公式为: X p =「 Awpsi nw(t ) = pcv c 式中P 为介质的密度、必为介质的角频率 C 为超声波在介质中的波速, v 为介 质质点的振动速度。可见声压的绝对值与波速以及角频率成正比。 b. 声强度 在垂直于超声波方向上的单位面积内通过的声能量被称为声强度,也 称声强。 式中A 为超声波的振幅。从公式可见声强与质点振动的位移振幅的平方成 正比,与 质点振动的角频率的平方成正比。 C.声阻抗 从声压的公式可见,在同一声压下辉越大,质点振动速度就越小,反之亦 然,它反 映了声学特性,故将声的乘积作为介质的声阻抗,以符号 Z 表示。 2. 1. 2超声波的速度及波长 超声波在介质中的传播速度与介质的弹性模量及介质的密度有关,对 一定的介 质其弹性模量和密度为常数,故声速也是常数。不同的介质有不同的 声速。超声波的频率、波长和声谏之间的关系如下 : 其中入超声波的波长、c 为超声波的速度、f 为超声波的频率。 p cA 2 a)2 2 2 pc

超声波应用原理

超声波清洗在工农业应用中的原理 原理:超声波清洗机由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡在声场的作用下振动,当声压达到一定值时,气泡迅速增大,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压,破坏不溶性污物而使他们分散于清洗液中,当团体粒子被油污裹着而黏附在清洗件表面是,油被乳化,固体粒子及脱离,从而达到清洗件净化的目的。 超声波清洗是基於空化作用,即在清洗液中无数气泡快速形成并迅速内爆。由此产生的冲击将浸没在清洗液中的工件内外表面的污物剥落下来。随着超声频率的提高,气泡数量增加而爆破冲击力减弱,因此,高频超声特别适用於小颗粒污垢的清洗而不破环其工件表面。 空化作用:空化作用就是超声波以每秒两万次以上的压缩力和减压力交互性的高频变换方式向液体进行透射。在减压力作用时,液体中产生真空核群泡的现象,在压缩力作用时,真空核群泡受压力压碎时产生强大的冲击力,由此剥离被清洗物表面的污垢,从而达到精密洗净目的。超声波清洗是利用超声波在液体中的社会化作用、加速度作用及直进流作用对液体和污物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的。目前所用的超声波清洗机中,空化作用和直进流作用应用得更多。 理化效应:超声的机械效应和温热效应均可促发若干物理化学变化。实践证明一些理化效应往往是上述效应的继发效应。TS-C型治疗机通过理化效应继发出下列五大作用: A.弥散作用:超声波可以提高生物膜的通透性,超声波作用后,细胞膜对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,加速代谢,改善组织营养。 B.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。 C.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。 D.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。 E.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。胶原合成及成熟。促进或抑制损伤的修复和愈合过程。从而达到对受损细胞组织进行清理、激活、修复的过程。

超声波定位系统的原理与应用

超声波定位系统的原理与应用 Pr i nc iple and Appl ica tion of Superson ic L oca tion Syste m ●王富东 W ang Fudong 1 基本原理 已经获得广泛应用的无线电定位系统的基本原理是通过接收几个固定位置的发射点的无线电波,从而得到主体到这几个发射点的距离,经计算后即可得到主体的位置。超声波定位的原理与此相仿,只不过由于超声波在空气中的衰减较大,它只适用于较小的范围。 超声波在空气中的传播距离一般只有几十米。短距离的超声波测距系统已经在实际中有所应用,测距精度为厘米级。超声波定位系统可用于无人车间等场所中的移动物体定位。其具体实现可有两种方案。 方案1:在三面有墙壁的场所,利用装在主体上的反射式测距系统可以测得主体到三面墙壁的距离。如果以三面墙壁的交点为原点建立直角坐标系,则可直接得到主体的三个直角坐标如图1所示 。 图1 利用三面垂直的墙壁进行定位 这种方案在实际应用中要受到某些限制。首先,超声波传感器必须与墙面基本保持垂直。其次墙壁表面必须平整,不能有凸出和凹进。传感器与墙壁之间也不能有其它物体。这 在很大程度上影响了其实际使用的效果。方案2:在空间的某些固定位置上设立超声波发射装置,主体上设立接收器(反之亦可)。分别测量主体到各发射点的距离,经过计算后便可得到主体的位置。由于超声波的传播具有一定的发散性及绕射作用,这种方法所受到的空间条件限制较少。即使在主体与发射点之间有障碍物,只要不完全阻断超声波的传播系统仍然可以工作。故本文重点介绍这种方法。发射点的位置通常按直角方位配置。以三维空间为例,可在坐标原点及(X ,0,0),(0,Y ,0)三个位置布置发射点如图2所示 。 图2 距离与坐标换算 主体坐标(x ,y ,z )到三个发射点的距离分别为L 1,L 2,L 3,由距离计算坐标的原理如下: 由图2可得如下三角关系: X 2+Y 2+Z 2=L 1 2 (1) (X -x )2+Y 2+Z 2=L 2 2 (2) X 2+(Y -y )2+Z 2=L 3 2 (3) 求解上列方程可得: x = (L 22-L 12+X 2) 2Y (4)王富东,现在苏州大学工学院工作。 地址:苏州市干将东路178号38信箱 邮政编码:215021收稿日期:1997年12月29日(磁盘来稿)

超声波原理与应用

超声波提取原理与特点 超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。 机械效应 超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。 空化效应 通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。 热效应 和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。 此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。 超声波提取的特点 超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。 超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。 溶剂用量少,节约了溶剂。

超声波焊接机原理

东莞协和超声波焊接机原理 Ⅰ、超声波塑料焊接机基本信息 东莞协和超声波塑料焊接机(Ultrasonic plastic welding machine)就是使用超声波熔接技术,对各种热塑性胶件进行焊接处理加工的焊接机器。 在焊接塑料制品时,既不要添加任何粘接剂、填料或溶剂,也不消耗大量热源,具有操作简便、焊接速度快、焊接强度高、生产效率高等优点。因此,超声波焊接技术越来越广泛地获得应用。 东莞协和超声波塑料焊接机类型有:超声波塑焊机、超声波塑料点焊机、塑料玩具焊接机、PP塑料焊接机、ABS塑料焊接机、塑料瓶盖焊接机、电脑键盘焊接机、中空板焊接机、电源适配器焊接机等。 Ⅱ、超声波塑料焊接机工作原理 当超声波作用于热塑性的塑料件接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。这个最佳压力是焊接部分的边长与边缘每1mm 的最佳压力之积。 Ⅲ、超声波塑料焊接机焊接方法 1、熔接法:超声波振动随焊头将超声波传导至焊件,由于两焊件处声阻大,因此产生局部高温,使焊件交界面熔化。在一定压力下,使两焊件达到美观、快速、坚固的熔接效果。 2、埋植(插)法:螺母或其它金属欲插入塑料工件。首先将超声波传至金属,经高速振动,使金属物直接埋入成型塑胶内,同时将塑胶熔化,其固化后完成埋插。 3、铆接法:欲将金属和塑料或两块性质不同的塑料接合起来,可利用超声波铆接法,使焊件不易脆化、美观、坚固。 4、点焊法:利用小型焊头将两件大型塑料制品分点焊接,或整排齿状的焊头直接压于两件塑料工件上,从而达到点焊的效果。 5、成型法:利用超声波将塑料工件瞬间熔化成型,当塑料凝固时可使金属或其它材质的塑料牢固。 6、切除法:利用焊头及底座的特别设计方式,当塑料工件刚射出时,直接压于塑料的枝干上,通过超声波传导达到切除的效果。 焊接方法图片展示:

相关文档
最新文档