函数的有关概念

函数的有关概念
函数的有关概念

函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈

A }叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都

有意义的x的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

2.值域: 先考虑其定义域

(1)观察法 (2)配方法 (3)代换法

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为

纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

(2) 画法

A、描点法:

B、图象变换法

常用变换方法有三种

1)平移变换

2)伸缩变换

3)对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.

5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A →B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)→B(象)”

对于映射f:A→B来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中对应的象可以是同一个;

(3)不要求集合B中的每一个元素在集合A中都有原象。

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1

注意:函数的单调性是函数的局部性质;

(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

○1任取x1,x2∈D,且x1

○5下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

2.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;

○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

3、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:

1)凑配法

2)待定系数法

3)换元法

4)消参法

4.函数最大(小)值(定义见课本p36页)

○1利用二次函数的性质(配方法)求函数的最大(小)值

○2利用图象求函数的最大(小)值

○3利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

[基础训练A 组] 一、选择题

1.判断下列各组中的两个函数是同一函数的为( )

⑴3

)

5)(3(1+-+=

x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;

⑶x x f =)(,2)(x x g =;

⑷()f x =

()F x =

⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸

2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2

3.已知集合{}{}

42

1,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈

使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5

4.已知22(1)()(12)2(2)x x f x x x x x +≤-??

=-<

,若()3f x =,则x 的值是( )

A .1

B .1或32

C .1,3

2

5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,

这个平移是( )

A .沿x 轴向右平移1个单位

B .沿x 轴向右平移1

2个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移1

2

个单位 6.设??

?<+≥-=)

10()],6([)

10(,2)(x x f f x x x f 则)5(f 的值为( )

A .10

B .11

C .12

D .13

二、填空题

1.设函数.)().0(1),0(12

1

)(a a f x x

x x x f >??????

?<≥-=若则实数a 的取值范围是 。 2.函数4

2

2--=

x x y 的定义域 。

3.若二次函数2

y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,

则这个二次函数的表达式是 。

4.函数0y

=

定义域是_____________________。

5.函数1)(2-+=x x x f 的最小值是_________________。 三、解答题

1.求函数()1

f x x =+的定义域。

2.求函数12++=x x y 的值域。

3.12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,

求()y f m =的解析式及此函数的定义域。

4.已知函数2

()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值。

[综合训练B 组]

一、选择题

1.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )

A .21x +

B .21x -

C .23x -

D .27x + 2.函数)2

3

(,32)(-≠+=

x x cx x f 满足,)]([x x f f =则常数c 等于( ) A .3 B .3- C .33-或 D .35-或

3.已知)0(1)]([,21)(2

2≠-=-=x x

x x g f x x g ,那么)21

(f 等于( ) A .15 B .1 C .3 D .30

4.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

A .[]05

2

, B. []-14, C. []-55, D. []-37,

5.函数2y =的值域是( )

A .[2,2]-

B .[1,2]

C .[0,2]

D .[

6.已知2

2

11()11x x f x x

--=++,则()f x 的解析式为( ) A .

21x x + B .212x x +- C .212x x + D .2

1x

x

+- 二、填空题

1.若函数234(0)

()(0)0(0)x x f x x x π?->?

==??

,则((0))f f = .

2.若函数x x x f 2)12(2-=+,则)3(f = . 3

.函数()f x =

的值域是 。

4.已知???<-≥=0

,10

,1)(x x x f ,则不等式(2)(2)5x x f x ++?+≤的解集是 。

5.设函数21y ax a =++,当11x -≤≤时,y 的值有正有负,则实数a 的范围 。

三、解答题

1.设,αβ是方程2

4420,()x mx m x R -++=∈的两实根,当m 为何值时,

22αβ+有最小值?求出这个最小值.

2.求下列函数的定义域 (1

)y =(2)1

112

2--+-=

x x x y

(3)x

x y --

-=

11111

3.求下列函数的值域 (1)x x y -+=43 (2)3

425

2+-=x x y (3)x x y --=21

4.作出函数(]6,3,762

∈+-=x x x y 的图象。

函数的基本性质

一、选择题

1.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,

则m 的值是( )

A . 1

B . 2

C . 3

D . 4

2.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )

A .)2()1()23(f f f <-<-

B .)2()2

3()1(f f f <-<- C .)23()1()2(-<-

3()2(-<-

3.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( ) A .增函数且最小值是5- B .增函数且最大值是5- C .减函数且最大值是5- D .减函数且最小值是5-

4.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数。 5.下列函数中,在区间()0,1上是增函数的是( ) A .x y = B .x y -=3 C .x

y 1= D .42

+-=x y 6.函数)11()(+--=x x x x f 是( )

A .是奇函数又是减函数

B .是奇函数但不是减函数

C .是减函数但不是奇函数

D .不是奇函数也不是减函数

二、填空题

1.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式()0f x <的解是

2.函数2y x =________________。

3.已知[0,1]x ∈,则函数y 的值域是 . 4.若函数2

()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 .

5.下列四个命题

(1)()f x ; (2)函数是其定义域到值域的映射;

(3)函数2()y x x N =∈的图象是一直线;(4)函数22,0

,0

x x y x x ?≥?=?-

其中正确的命题个数是____________。

三、解答题

1.判断一次函数,b kx y +=反比例函数x

k

y =,二次函数c bx ax y ++=2的 单调性。

2.已知函数()f x 的定义域为()1,1-,且同时满足下列条件:(1)()f x 是奇函数; (2)()f x 在定义域上单调递减;(3)2(1)(1)0,f a f a -+-<求a 的取值范围。

3.利用函数的单调性求函数x x y 21++=的值域;

4.已知函数[]2

()22,5,5f x x ax x =++∈-.

① 当1a =-时,求函数的最大值和最小值;

② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数。

一、选择题

1.下列判断正确的是( )

A .函数22)(2--=x x

x x f 是奇函数 B .函数()(1f x x =-

C .函数()f x x =

D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞

3.函数y )

A .(]2,∞-

B .(]2,0

C .

[)+∞,2 D .[)+∞,0

4.已知函数()()2

212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( )

A .3a ≤-

B .3a ≥-

C .5a ≤

D .3a ≥ 5.下列四个命题:

(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;

(2)若函数2

()2f x ax bx =++与x 轴没有交点,则2

80b a -<且0a >;

(3) 2

23y x x =--的递增区间为[)1,+∞; (4) 1y x =+和y =

其中正确命题的个数是( ) A .0 B .1 C .2 D .3

6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )

二、填空题

1.函数x x x f -=2

)(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,

那么0x <时,()f x = . 3.若函数2

()1

x a

f x x bx +=

++在[]1,1-上是奇函数,则()f x 的解析式为________. 4.奇函数()f x 在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,

最小值为1-,则2(6)(3)f f -+-=__________。

5.若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________。

三、解答题

1.判断下列函数的奇偶性

(1

)()f x =(2)[][]()0,6,22,6f x x =∈--

2.已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,

()0f x <恒成立,证明:(1)函数()y f x =是R 上的减函数;

(2)函数()y f x =是奇函数。

3.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且1()()1

f x

g x x +=-,求()f x 和()g x 的解析式.

4.设a 为实数,函数1||)(2

+-+=a x x x f ,R x ∈

(1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值。

一、选择题 1. C 2. C 3. D 4. D 5.D 6. B

二、填空题 1. (),1-∞- 2. {}|2,2x x x ≠-≠且 3. (2)(4)y x x =-+- 4. (),0-∞ 5. 5

4

- 三、解答题 1.解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-

2.解: ∵221331(),244x x x ++=++

∴y ≥

,∴值域为)+∞

3.解:24(1)4(1)0,30m m m m ?=--+≥≥≤得或,

222121212()2y x x x x x x =+=+-

22

4(1)2(1)

4102

m m m m =--+=-+

∴2()4102,(03)f m m m m m =-+≤≥或。

4. 解:对称轴1x =,[]

1,3是()f x 的递增区间,

max ()(3)5,335f x f a b ==-+=即 min ()(1)2,32,f x f a b ==--+=即

∴3231,.1

44a b a b a b -=?==?--=-?得

一、选择题 1. B 2. B 3. A 4. A 5. C 6. C

二、填空题 1. 2

34π- (0)f π=;

2. 1- 令2213,1,(3)(21)21x x f f x x x +===+=-=-;

3.

2223(1)2x x x -+=-+≥≥

0()22

f x <

<≤

4. 3(,]2

-∞ 当3

20,2,(2)1,25,2,2

x x f x x x x +≥≥-+=++≤-≤≤

即则 当20,2,(2)1,25,2x x f x x x x +<<-+=---≤<-即则恒成立,即∴32

x <

; 5. 1(1,)3

-- (),(1)31,(1)1,(1)(1)(31)(1)0y f x f a f a f f a a ==+-=+?-=++<令则 得113

a -<<- 三、解答题

1. 解:2

1616(2)0,21,m m m m ?=-+≥≥≤-或

222222min 1()21

2

11,()2

m m m αβαβαβαβ+=+-=--=-+=

当时

2. 解:(1)∵80

83,30x x x +≥?-≤≤?

-≥?

得∴定义域为[]8,3-

(2)∵222

101011,110x x x x x x ?-≥?-≥=≠=-??-≠?

得且即∴定义域为{}1-

(3)∵0

01110211

0101x x x x x x x x x x ??

??

?-≠?

??-≠≠-

??-????≠-

≠??-??-?-?

得∴定义域为11,,022?

???-∞-- ? ????? 3.解:(1)∵343

,43,,141

x y y y xy x x y x y +-=

-=+=≠--+得,∴值域为{}|1y y ≠- (2)∵222432(1)11,x x x -+=-+≥ ∴21

01,05243

y x x <≤<≤-+∴值域为(]0,5

(3)1120,,2x x y x -≥≤

且是的减函数, 当min 11,22x y ==-时,∴值域为1

[,)2

-+∞ (数学1必修)第一章下 [基础训练A 组]

一、选择题1. B 2. D 3. A 4. A 5. A 6. A

二、填空题1. (](2,0)2,5- 2. [2,)-+∞ 3.

4. [)0,+∞ 5. 1

三、解答题

1.解:当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数;

当0k >,k

y x

=在(,0),(0,)-∞+∞是减函数, 当0k <,k

y x

=

在(,0),(0,)-∞+∞是增函数; 当0a >,2

y ax bx c =++在(,]2b a -∞-

是减函数,在[,)2b

a -+∞是增函数, 当0a <,2

y ax bx c =++在(,]2b a -∞-

是增函数,在[,)2b

a

-+∞是减函数。 2.解:22(1)(1)(1)f a f a f a -<--=-,则2

211111111a a a a -<--?

,∴01a <<

3.解:1210,2x x +≥≥-,显然y 是x 的增函数,12x =-,min 1,2y =- 1

[,)2

y ∴∈-+∞

4.解:2(1)1,()22,a f x x x =-=-+对称轴min max 1,()(1)1,()(5)37x f x f f x f =====

∴max m ()37,()1in f x f x ==

(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x 在[]5,5-上单调 ∴5a ≥或5a ≤-。

(数学1必修)第一章(下) [综合训练B 组] 一、选择题1. C 2. C 3. B 4. A 5.A 6. B

二、填空题1. 11(,],[0,]22

-∞- 2. 2

1x x --+ 3. 2()1

x

f x x =

+ 4. 15- 5. (1,2)

三、解答题1.解:(1)定义域为[)(]1,00,1- ,则22x x +-=,()f x =

∵()()f x f x -=-∴()f x =为奇函数。

(2)∵()()f x f x -=-且()()f x f x -=∴()f x 既是奇函数又是偶函数。 2.证明:(1)设12x x >,则120x x ->,而()()()f a b f a f b +=+

∴11221222()()()()()f x f x x x f x x f x f x =-+=-+< ∴函数()y f x =是R 上的减函数; (2)由()()()f a b f a f b +=+得()()()f x x f x f x -=+-

即()()(0)f x f x f +-=,而(0)0f = ∴()()f x f x -=-,即函数()y f x =是奇函数。 3.解:∵()f x 是偶函数, ()g x 是奇函数,∴()()f x f x -=,且()()g x g x -=-

而1()()1f x g x x +=-,得1()()1f x g x x -+-=--, 即11

()()11

f x

g x x x -==---+, ∴21()1f x x =

-,2()1

x g x x =-。

4.解:(1)当0a =时,2

()||1f x x x =++为偶函数, 当0a ≠时,2

()||1f x x x a =+-+为非奇非偶函数;

(2)当x a <时,22

13()1(),24

f x x x a x a =-++=-++

当12a >时,min 13()()24f x f a ==+, 当1

2

a ≤

时,min ()f x 不存在; 当x a ≥时,22

13()1(),2

4

f x x x a x a =+-+=+-+

当1

2

a >-时,2min ()()1f x f a a ==+, 当12a ≤-

时,min 13()()24

f x f a =-=-+。

函数概念与表示

函数概念与表示1.下列各组函数中表示相同函数的是() A. f(x)=√x2,g(x)=√x3 3 B. f(x)=√x√x+1,g(x)=√x2+x C. f(x)=|x| x ,g(x)={ 1(x?0), ?1(x<0), D. f(x)=x2?2x?1,g(t)=t2?2t?1 2.下列图象不能作为函数图象的是() A. B. C. D. 3.已知函数f(2x)=x2?3,则f(8)=() A. 3 B. 6 C. 8 D. 61 4.下面4组函数中,f(x)和g(x)相同的是() A. f(x)=x?1, g(x)=x2 x ?1B. f(x)=x2, g(x)=(√x)4C. f(x)=√x2, g(x)=|x|D. f(x)=x0?,g(x)=1 5.已知f(x)={x 2+1,x?1 ?2x+3,x>1,则f(f(2))=() A. 5 B. ?1 C. ?7 D. 2 6.给出如图所示的对应: 其中构成从A到B的映射的个数为() A. 3 B. 4 C. 5 D. 6 7.在映射f:A→B中,且f:(x,y)→(x?y,x+y),则与A中的元素(?2,1)对应的B中的元素为() A. (?1,?3) B. (1,3) C. (?3,1) D. (?3,?1) 8.若f(x)=x?1 x ,则方程f(4x)=x的根是() A. ?2 B. 2 C. ?1 2 D. 1 2 9.设f(x)={1?√x,x≥0 2x,x<0,则 f(f(?2))=() A. ?1 B. 1 4 C. 1 2 D. 3 2 10.已知g(x)=1?2x,f(g(x))=1?x2 x2 (x≠0),则f(1 2 )等于() A. 1 B. 3 C. 15 D. 30 11.已知函数f(x)满足f(x)+2f(1?x)=3 x ,求f(3)的值为() A. ?3 4 B. ?4 3 C. ?3 5 D. ?5 3 12. X12345 f(x)23423 若f(f(x))=x?1,则x可以取() A. 2 B. 3 C. 4 D. 5 13.已知函数f(x)=2x?a x+2 的图象过点(1,?1).(1)求实数a的值;(2)若f(x)=m+n x+2 (m、n是常数),求实数m,n的值. 第1页,共1页

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

函数概念与表示

高三数学第一轮复习 --------函数概念与表示 一.教材分析: 函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。 从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。https://www.360docs.net/doc/cc3916402.html,/view/72edea4d767f5acfa1c7cdfa.html 高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大。 预测2012年高考对本节的考察是: 1.题型是1个选择和一个填空; 2.热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。https://www.360docs.net/doc/cc3916402.html,/mainland/wodesangemuqin/ 二.教学目标: 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数; 3.通过具体实例,了解简单的分段函数,并能简单应用; 4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义; 5.学会运用函数图象理解和研究函数的性质。 三.教学方法: 《新课标》指出:“学生个性化行为,不应以教师的分析来代替学生的综合实践。”本课采用个性化教学,以学生原有的知识经验为基础展开教学,通过创设情境,激发学生的学习兴趣,引领学生自学自悟。设计充分尊重学生独特的感受、体验和理解,让学生自己对教学内容领悟取代教材的讲解分析,让学生自己的独立思考取代统一答案,让学生自己的感性体验取代整齐划一的理解指导,整个过程为张扬学生个性,激发学生灵性服务。 四.教学过程: 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x ∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。 注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; (2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。 2.构成函数的三要素:定义域、对应关系和值域https://www.360docs.net/doc/cc3916402.html,/question/356753987.html (1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式: ①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等); ②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;

函数的概念与表示法

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①22x y +=2 1= ③ A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B.y=f (x )图像与直线x=a 没有交点 C.y=f (x )图像与直线x=a 最少有一个交点 D.y=f (x )图像与直线x=a 最多有一个交点 变式4.对于函数y =f(x),以下说法正确的有…( ) ①y 是x 的函数 ②对于不同的x ,y 的值也不同 ③f(a)表示当x =a 时函数f(x)的值,是一个常量 ④f(x)一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个 变式5.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( ) A .①②③④ B .①②③ C .②③ D .② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) ①. y=x ②.y = ③. 2 y = ④.y=t ⑤.3 3x y = ;⑥.2x y =

第一章集合与函数概念(教师用书)

第一章集合与函数概念 §1.1集合 1.1.1 集合的含义与表示(一) 1.体验由实例分析探究集合中元素的特性的过程,了解集合的含义以及集合中元素的特性,培养自己的抽象、概括能力. 2.掌握“属于”关系的意义,知道常用数集及其记法,初步体会集合语言和符号语言表示数学内容的简洁性和准确性. 1.元素与集合的概念 (1)把研究对象统称为元素,通常用小写拉丁字母表示. (2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母表示. 2.集合中元素的特性:确定性、互异性、无序性. 3.集合相等:只有构成两个集合的元素是一样的,才说这两个集合是相等的. 4.元素与集合的关系 (1)如果a是集合A的元素,就说a属于集合A,记作a∈A. (2)如果a不是集合A的元素,就说a不属于集合A,记作a A. 5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N+来表示.

对点讲练 集合的概念 【例1】考查下列每组对象能否构成一个集合: (1)著名的数学家;(2)某校2007年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解; (5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体. 解(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(6)不能构成集合. 规律方法判断指定的对象能不能形成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性. 变式迁移1 下列给出的对象中,能构成集合的是() A.高个子的人B.很大的数C.聪明的人D.小于3的实数 答案 D

第一节 函数的概念及其表示

第二章函数 第一节函数的概念及其表示 高考试题 考点一函数的定义域 1.(2013年重庆卷,文3)函数y= 21 log(2) x- 的定义域是( ) (A)(-∞,2) (B)(2,+∞) (C)(2,3)∪(3,+∞) (D)(2,4)∪(4,+∞) 解析:要使函数有意义,则x满足 20, 21, x x -> ? ? -≠ ? 解得x>2且x≠3.故选C. 答案:C 2.(2013年陕西卷,文10)设[x]表示不大于x的最大整数,则对任意实数x,有( ) (A)[-x]=-[x] (B) 1 2 x ?? + ?? ?? =[x] (C)[2x]=2[x] (D)[x]+ 1 2 x ?? + ?? ?? =[2x] 解析:取特殊值进行排除: 当x=1.3时,[-x]=[-1.3]=-2,-[x]=-1,选项A错. 当x=1.5时, 1 2 x ?? + ?? ?? =2,[x]=[1.5]=1, [2x]=3,2[x]=2,选项B、C错.故选D.答案:D 3.(2013年山东卷,文5)函数 的定义域为( ) (A)(-3,0] (B)(-3,1] (C)(-∞,-3)∪(-3,0] (D)(-∞,-3)∪(-3,1] 解析:由f(x)= 得 120, 30, x x ?-≥ ? +> ? 则-3

4.(2013年广东卷,文2)函数f(x)= lg(1)1x x +-的定义域是( ) (A)(-1,+∞) (B)[-1,+∞) (C)(-1,1)∪(1,+∞) (D)[-1,1)∪(1,+∞) 解析:由题意得10,10,x x -≠??+>? 即x>-1且x ≠1.故选C. 答案:C 5.(2012年山东卷,文3)函数f(x)= ()1ln 1x + 的定义域为( ) (A)[-2,0)∪(0,2] (B)(-1,0)∪(0,2] (C)[-2,2] (D)(-1,2] 解析:由210,11,40,x x x ?+>?+≠??-≥? 得1,0,22,x x x >-??≠??-≤≤?∴-1?, 得x>-1且x ≠1, ∴函数f(x)的定义域为(-1,1)∪(1,+∞).故选C. 答案:C 7.(2011年江西卷,文3)若f(x)=() 121log 21x +,则f(x)的定义域为( ) (A)1,02??- ??? (B)1,2??-+∞ ??? (C)1,02??- ???∪(0,+∞) (D)1,22??- ??? 解析:法一 要使函数有意义,需满足210211x x +>?? +≠?解得x>-12且x ≠0.∴函数f(x)的定义域为1,02??- ??? ∪(0,+∞).故选C. 法二 显然当x=0时函数无意义,故排除B 和D;又当x=1时函数有意义,因此排除A,故选C. 答案:C

高中数学第一章集合与函数概念知识点

高中数学第一章集合与函数概念知识点 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示正整数集,Z表示整数集,Q表示有理数集,N表示自然数集,N*或N + R表示实数集. (3)集合与元素间的关系 ?,两者必居其一. ∈,或者a M 对象a与集合M的关系是a M (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 【1.1.3】集合的基本运算

【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 (2)一元二次不等式的解法 0) 〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足 ,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

函数的概念及表示

函数的概念及表示 一、选择题 1.下列对应f :A →B 是从集合A 到集合B 的函数的是( ) A .A ={x |x >0}, B ={y |y ≥0},f :y =1x B .A ={x |x ≥0},B ={y |y >0},f :y =x 2 C .A ={x |x 是三角形},B ={y |y 是圆},f :每一个三角形对应它的外切圆 D .A ={x |x 是圆},B ={y |y 是三角形},f :每一个圆对应它的外切三角形 2.函数f (x )= lg 2+x -x 2|x |-x 的定义域为( ) A .(-2,0) B .(-1,0) C .(-1,2) D .(-1,0)∪(0,2) 3.已知函数f (x )的定义域是[0,2],则函数g (x )=f ? ????x +12+f ? ?? ??x -12的定义域是( ) A.???? ??12,1 B.??????12,2 C.???? ??12,32 D.??????1,32 4.已知函数f (x )=????? 2x ,x ≥2,f x +2,x <2,则f ? ????log 218等于( ) A .3 B .8 C .9 D .12 5.若函数f (x )满足关系式f (x )+2f ? ?? ??1x =3x ,则f (2)的值为( ) A .1 B .-1 C .-32 D.32 6.已知函数f (x )=????? log 21-x +1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域是[0,2],则实数a 的取值范 围是( ) A .(0,1] B .[1,3] C .[1,2] D .[3,2] 7.已知f (x 3-1)=x +1,则f (7)的值为( ) A.37-1 B.3 7+1 C .3 D .2 8.已知函数f (x )=1lg[ 25x -4·5x +m ]的定义域为R ,则实数m 的取值范围是( ) A .(5,+∞) B .(-∞,5)

函数的概念及其表示

一、函数的概念及其表示 函数是刻画变量之间对应关系的数学模型和工具。 函数的共同特征: (1)都包含两个非空数集,用A 、B 来表示; (2)都有一个对应关系; (3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数级A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。 事实上,除了解析式、图象、表格外,还有其他表示对应关系的方法。为了表示方便,我们引进符号f 统一表示对应关系。 一般地,设A 、B 是非空的实数集,如果对于集合A 中的任意一个数x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合b 的一个函数,记作 ().,A x x f y ∈= 其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈|叫做函数的值域。 我们所熟悉的一次函数y=kx+b ,k ≠0的定义域是R ,值域也是R 。对应关系f 把r 中的任意一个数x ,对应到R 中唯一确定的数kx+b 。二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B 。当A>0时,B=??????-≥a b ac y y 44|2;当A<0时,B=? ?????-≤a b ac y y 44|2。对应关系f 把R 中任意一个数x,对应到B 中唯一确定的数)0(2≠++a c bx ax 。 由函数的定义可知,一个函数的构成要素为:定义域、对应关系

和值域。因为值域是由定义域和对应关系决定的,所以如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数。两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。 函数的三种表示方法:解析法、列表法和图象法。 解析法,就是用数学表达式表示两个变量之间的对应关系; 列表法,就是列出表格来表示两个变量之间的对应关系; 图象法,的就是用图象表示两个变量之间的对应关系。 这三种方法是常用的函数表示法。

集合与函数概念

集合与函数概念 一.课标要求: 本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁 性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交 流的能力. 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型 来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展 学生对变量数学的认识. 1.了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号. 2.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述 不同的具体问题,感受集合语言的意义和作用. 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力. 4、能在具体情境中,了解全集与空集的含义. 5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集,培养学生从 具体到抽象的思维能力. 6.理解在给定集合中,一个子集的补集的含义,会求给定子集的补集. 7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 8.学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对 应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表 示法. 9.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当 地进行选择;会用描点法画一些简单函数的图象. 10.通过具体实例,了解简单的分段函数,并能简单应用. 11.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶 性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 12.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.

函数的概念与表示知识点与经典题型归纳

函数的概念与表示 知识领航 1.函数的定义 一般地:设A,B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数() f x和它对应,那么就称(): f x A B →为从集合A到集合B的一个函数,记作:(), y f x x A =∈. 注意:函数概念中的关键词 (1) A,B是非空数集. (2)任意的x∈A,存在唯一的y∈B与之对应. 2. 函数的定义域、值域 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{()|} f x x A ∈叫做函数的值域. 3. 函数的三要素 定义域、值域和对应法则. 4. 相等函数 如果两个函数的定义域和对应法则完全一致,则这两个函数相等; 这是判断两函数相等的依据. 5. 区间的概念 设,a b是两个实数,而且a b<.我们规定: (1)满足不等式a x b ≤≤的实数x的集合叫做闭区间,表示为[,] a b. (2)满足不等式a x b <<的实数x的集合叫做开区间,表示为(,) a b. (3)满足不等式a x b ≤<或a x b <≤的实数x的集合叫做半开半闭区间,分别表示为[,) a b,(,] a b. 这里的实数都叫做相应区间的端点. 实数R可以用区间表示为(,) -∞+∞.“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,我们可以把满足x a≥,x a>,x b≤,x b<,的实数x的集合分别表示为[,) a+∞,(,) a+∞,(,]b -∞,(,)b -∞. 6. 函数的表示法 (1)解析法:用数学表达式表示两个变量之间的对应关系的方法. (2)列表法:列出表格来表示两个变量之间的对应关系的方法. (3)图像法: 用图象表示两个变量之间的对应关系的方法. 用描点法画函数图象的一般步骤:列表、描点、连线(视其定义域决定是否连线). 7.求函数的解析式的方法 (1)待定系数法: 适用于已知函数的模型(如一次函数、二次函数、反比例函数等. (2)换元法: 适用于已知(()) f g x的解析式,求() f x. (3)消元法: 适用于同时含有() f x和1() f x ,或() f x和() f x-.

第02讲 函数概念与表示

高三新数学第一轮复习教案(讲座2) 函数概念与表示 一.课标要求 1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念; 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数; 3.通过具体实例,了解简单的分段函数,并能简单应用; 4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义; 5.学会运用函数图象理解和研究函数的性质。 二.命题走向 函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。 从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。 高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大。 预测2008年高考对本节的考察是: 1.题型是1个选择和一个填空; 2.热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。三.要点精讲 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。 注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; (2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。 2.构成函数的三要素:定义域、对应关系和值域 (1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式: ①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等); ②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误; ③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。 (2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。 ①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。 3.两个函数的相等: 函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

最新人教版高中数学必修一--第一章-集合与函数概念--知识点总结

人教版高中数学必修一第一章函数与集合 概念知识点总结 第一章集合与函数概念 一、集合有关概念: 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: (1)元素的确定性;(2)元素的互异性;(3)元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ …}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 (Ⅰ)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 (Ⅱ)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2} (3)图示法(文氏图): 4、常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 5、“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a ∈A ,相反,a不属于集合A 记作a?A 6、集合的分类: 1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合 二、集合间的基本关系 1.“包含”关系———子集 对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说两集合有包含关系,称集合A为集合B的子集,记作A?B

函数的概念及其表示

授课主题函数1----概念及其表示 教学目的①理解函数的概念,了解构成函数的要素. ②在实际情境中,会根据不同的需要选择恰当的方表示函数. ③了解简单的分段函数,并能简单应用 教学重点求函数的解析式及值域 教学内容 1.函数的基本概念 (1)函数的定义 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A (2)函数的定义域、值域 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集. (3)函数的三要素:定义域、对应关系和值域. (4)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 2.映射的概念 设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射. 3.函数解析式的求法 求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 4.常见函数定义域的求法 (1)分式函数中分母不等于零.

(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =tan x 的定义域为? ??? ??x |x ∈R 且x ≠k π+π 2,k ∈Z . (6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}. 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f (x )=x 2 x 与g (x )=x 是同一个函数. ( × ) (2)若两个函数的定义域与值域相同,则这两个函数相等. ( × ) (3)若函数f (x )的定义域为{x |1≤x <3},则函数f (2x -1)的定义域为{x |1≤x <5}.( × ) (4)f (x )=??? 1-x 2 (-1≤x ≤1) x +1 (x >1或x <-1), 则f (-x )=? ?? 1-x 2 (-1≤x ≤1) -x +1 (x >1或x <-1). ( √ ) (5)函数f (x )=x 2+4+1的值域是{y |y ≥1}. ( × ) (6)函数是特殊的映射. ( √ ) 2.(2013·江西)函数y =x ln(1-x )的定义域为 ( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1] 答案 B 解析 由??? 1-x >0 x ≥0得,函数定义域为[0,1). 3.(2012·安徽)下列函数中,不满足...f (2x )=2f (x )的是 ( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x 答案 C 解析 将f (2x )表示出来,看与2f (x )是否相等. 对于A ,f (2x )=|2x |=2|x |=2f (x ); 对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ); 对于C ,f (2x )=2x +1≠2f (x );

集合与函数概念单元测试题(答案)

第一章 《集合与函数概念》单元测试题 (纯属个人做法,如有不正确的请纠正) 姓名: 饭团 班别: 学号: 一、选择题:每小题4分,共40分 1、在“①高一数学课本中的难题;②所有的正三角形; ③方程220x +=的实数解”中,能够表示成集合的是( A ) (A )② (B )③ (C )②③ (D )①②③ 2、若{ {}|0,|12A x x B x x =<< =≤<,则A B ?= ( D ) (A ){}|0x x ≤ (B ){}|2x x ≥ (C ){ 0x ≤≤ (D ){}|02x x << 3、若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B ?= ( C ) (A ){}1,2 (B ){}0,1 (C ){}0,3 (D ){}3 4、在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则与A 中的元素)2,1(-对应的B 中的元素为( A ) (A ))1,3(- (B ))3,1( (C ))3,1(-- (D ))1,3( 5、下列各组函数)()(x g x f 与的图象相同的是( D ) (A )2)()(,)(x x g x x f == (B )2 2 )1()(,)(+==x x g x x f (C )0 )(,1)(x x g x f == (D )?? ?-==x x x g x x f )(|,|)( ) 0()0(<≥x x 6、 是定义在上的增函数,则不等式 的解集是( D ) (A)(0 ,+∞) (B)(0 , 2) (C) (2 ,+∞) (D) (2 ,7 16) 7、若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( C ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值0 8、如图所示,阴影部分的面积S 是h 的函数()H h ≤≤0。 H S

函数的概念及表示方法

函数的概念及表示方法 一、选择题(每小题5分,共60分) 1、 数)(x y ?=的图象与直线a x =的交点个数为( ) A 、必有1个 B 、1个或2个 C 、至多1个 D 、可能2个以上 2、 下列四组中的函数 )(x f 与)(x g ,表示相同函数的一组是( ) A 、2)()(,)(x x g x x f == B 、1)(,11)(2-=-+=x x g x x x f C 、 x x x g x x f ==)(,)(0 D 、2)(,)(x x g x x f == 3、 下列选项正确的是( ) (1)x x y -+-= 12可以表示函数 (2)521=-+-y x 可以表示函数(3)122=+y x 可以表示函数 (4)12=+y x 可以表示函数 A 、 (2)(4) B 、(1)(3) C 、(1)(2) D 、(3)(4) 4、下列关于分段函数的叙述正确的是( ) (1) 分段函数的定义域是各段定义域的并集,值域是各段值域的并集 (2)分段函数尽管在定义域不同的部分有不同的对应法则,但它们是同一个函数 (3)若21,D D 分别是分段函数的两个不同对应法则的值域,则Φ=21D D I A 、 (1) B 、(2)、(3) C 、(1)、(2) D 、(1)、(3) 5、设2:x x f →是集合A 到B 的映射,如果{}2,1=B ,那么B A I =( ) A 、 Φ B 、 {}1 C 、Φ 或{}2 D 、Φ或{}1 6、若函数)(x f 满足),)(()()(R y x y f x f y x f ∈+=+,则下列各项不恒成立 的是( ) A 、0)0(=f B 、)1(3)3(f f = C 、)1(2 1)21(f f = D 、0)()(<-x f x f 7、将x y 1=的图像变换至函数23++=x x y 的图像,需先向 平移 个单位,再向 平移 个单位( ) A 、左,2,上,1 B 、左,2,下,1 C 、右,2,上,1 D 、右,2,上,1 8、已知函数)(x f 的定义域是),(b a ,其中b>a+2,则)13()13()(+--=x f x f x f 的定义域是( )

高一数学知识点:集合与函数概念

高一数学知识点:集合与函数概念 集合 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(cantor,g.f.p.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。 元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。

集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合a的所有元素同时都是集合b的元素,则a称作是b的子集,写作a?b。若a是b的子集,且a不等于b,则a称作是b的真子集,一般写作a?b。中学教材课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』 集合的几种运算法则 并集:以属于a或属于b的元素为元素的集合称为a与b的并(集),记作a∪b(或b∪a),读作“a并b”(或“b并a”),即a∪b={x|x ∈a,或x∈b}交集:以属于a且属于b的元差集表示 素为元素的集合称为a与b的交(集),记作a∩b(或b∩a),读作“a交b”(或“b交a”),即a∩b={x|x∈a,且x∈b}例如,全集u={1,2,3,4,5}a={1,3,5}b={1,2,5}。那么因为a和b中都有1,5,所以a∩b={1,5}。再来看看,他们两个中含有1,2,3,5这

相关文档
最新文档