石墨烯材料拉曼光谱测试详细讲解

2004年英国曼彻斯特大学的A.K.Geim领导的小组首次通过机械玻璃的方法成功制备了新型的二维碳材料-石墨烯(graphene)。自发现以来,石墨烯在科学界激起了巨大的波澜,它在各学科方面的优异性能,使其成为近年来化学、材料科学、凝聚态物理以及电子等领域的一颗新星。

就石墨烯的研究来说,确定其层数以及量化无序性是至关重要的。激光显微拉曼光谱恰好就是表征上述两种性能的标准理想分析工具。通过测量石墨烯的拉曼光谱我们可以判断石墨烯的层数、堆垛方式、缺陷多少、边缘结构、张力和掺杂状态等结构和性质特征。此外,在理解石墨烯的电子声子行为中,拉曼光谱也发挥了巨大作用。

石墨烯的典型拉曼光谱图

石墨烯的拉曼光谱由若干峰组成,主要为G峰,D峰以及G’峰。G峰是石墨烯的主要特征峰,是由sp2碳原子的面内振动引起的,www.glt910.com它出现在1580cm-1附近,该峰能有效反映石墨烯的层数,但极易受应力影响。D峰通常被认为是石墨烯的无序振动峰,该峰出现的具体位置与激光波长有关,它是由于晶格振动离开布里渊区中心引起的,用于表征石墨烯样品中的结构缺陷或边缘。G’峰,也被称为2D峰,是双声子共振二阶拉曼峰,用于表征石墨烯样品中碳原子的层间堆垛方式,它的出峰频率也受激光波长影响。举例来说,图1[1]为514.5nm激光激发下单层石墨烯的典型拉曼光谱图。其对应的特征峰分别位于1582cm-1附近的G峰和位于2700cm-1左右的G’峰,如果石墨烯的边缘较多或者含有缺陷,还会出现位于1350cm-1左右的D峰,以及位于1620cm-1附近的D’峰。

图1 514nm激光激发下单层石墨烯的典型拉曼光谱图[1]

当然对于sp2碳材料,除了典型的拉曼G峰,D峰以及G’峰,还有一些其它的二阶拉曼散射峰,大量的研究表明石墨烯含有一些二阶的和频与倍频拉曼峰,这些拉曼信号由于其强度较弱而常常被忽略。如果对这些弱信号的拉曼光谱进行分析,也可以很好地对石墨烯中的电子-电子、电子-声子相互作用及其拉曼散射过程进行系统的研究。

石墨烯拉曼光谱与层数的关系

多层和单层石墨烯的电子色散不同,导致了拉曼光谱的明显差异。图2 [1,2]为532nm激光激发下,SiO2(300nm)/Si基底上1~4层石墨烯的典型拉曼光谱图,由图可以看出,单层石墨烯的G’峰尖锐而对称,并具有完美的单洛伦兹(Lorentzien)峰型。此外,单层石墨烯的G’峰强度大于G峰,且随着层数的增加,G’峰的半峰宽(FWHM:full width at half maximum)逐渐增大且向高波数位移(蓝移)。双层石墨烯的G’峰可以劈裂成四个洛伦兹峰,其中半峰宽约为24cm-1。这是由于双层石墨烯的电子能带结构发生分裂,导带和价带均由两支抛物线组成,因此存在着四种可能的双共振散射过程(即G’峰可以拟合成四个洛伦兹峰)。同样地,三层石墨烯的G’峰可以用六个洛伦兹峰来拟合。此外,不同层数的石墨烯的拉曼光谱除了G’峰的不同,G峰的强度也会随着层数的增加而近似线性增加(10层以内,如图3[3]所示),这是由于在多层石墨烯中会有更多的碳原子被检测到。综上所述,1~4层石墨烯的G峰强度有所不同,且G’峰也有其各自的特征峰型以及不同的分峰方法,因此,G峰强度和G’峰的峰型常被用

来作为石墨烯层数的判断依据。但是当石墨烯层数增加到4层以上时,双共振过程增强,G’峰也可以用两个洛伦兹峰来拟合,拉曼谱图形状越接近石墨。所以,利用拉曼光谱用来测定少层石墨烯的层数具有一定的优越性(清楚、高效、无破坏性),其给出的是石墨烯的本征信息,而不依赖于所用的基底。

图2 (a)1,2,3,4层石墨烯的拉曼光谱;(b)1~4层石墨烯的拉曼G’峰[1,2]

举例说明,图3[3]揭示了1~10层石墨烯的拉曼光谱(1550cm-1-1640cm-1),右上角插入的图为石墨烯材料在60 Torr的NO2下热暴露前后的拉曼光谱图。由图可知,对于单层石墨烯和双层石墨烯,G峰分别位于1614 cm-1和1608 cm-1附近。而三层石墨烯的G峰被劈裂成两个峰,分别位于1601.5 cm-1和1584 cm-1附近,后者标记为G-(低强度峰)。随着石墨烯层数超过3层时,G峰出现在1582 cm-1和1598 cm-1处,低强度峰的峰强也随着层数的增加而增加。由此可以确认NO2

在石墨烯最表层和最里层的吸附效果。

图3 1~10层石墨烯的拉曼光谱[3]

含有缺陷石墨烯的拉曼光谱分析

众所周知,石墨烯是一种零带隙的二维原子晶体材料,为了适应其快速应用,人们发展了一系列方法来打开石墨烯的带隙,例如:打孔,用硼或氮掺杂和化学修饰等,这样就会给石墨烯引入缺陷,从而对其电学性能和器件性能有很大的影响。拉曼光谱在表征石墨烯材料的缺陷方面具有独特的优势,带有缺陷的石墨烯在1350cm-1附近会有拉曼D峰,一般用D峰与G峰的强度比(I D/I G)以及G峰的半峰宽(FWHM)来表征石墨烯中的缺陷密度[4, 5]。图4 [4]揭示了I D/I G随着37Cl+辐

照能量增加的变化曲线图及对应的辐照能量的HRTEM图。I D/I G的最大值出现在

37Cl+辐照能量约为1014 ions/cm2处。研究表明,缺陷密度正比于I

D/I G,因此此时的缺陷是最多的。进一步增加辐照能量(1016inos/cm2),样品已经完全非晶化了(HRTEM)。拉曼光谱依然有效,这是因为样品仍保留了sp2结构的相。此外,含有缺陷的石墨烯还会出现位于1620cm-1附近的D’峰。I D/I D,与石墨烯表面缺陷的类型密切相关[5]。综上所述,拉曼光谱是一种判断石墨烯缺陷类型和缺陷密度的非常有效的手段。

图4 I D/I G随着37Cl+辐照能量增加的变化曲线图及对应的辐照能量的HRTEM图[4]

石墨烯的表面增强拉曼效应

当一些分子吸附在特定的物质(如金和银)的表面时,分子的拉曼光谱信号强度会出现明显地增幅,我们把这种拉曼散射增强的现象称为表面增强拉曼散射(Surface-enhanced Raman scattering,简称SERS)效应。SERS技术克服了传统拉曼信号微弱的缺点,可以使拉曼强度增大几个数量级。当然想要得到很强的增强信号首先需要得到很好的基底。石墨烯作为一种新型二维超薄碳材料,易于吸附分子,可以说是天然的衬底。当某些分子吸附在石墨烯表面时,分子的拉曼信号会得到明显地增强。近年来,许多学者对此进行了研究[6,7,8],试验结果显示石墨烯不仅可以增强分子拉曼光谱信号,还可以有效地淬灭荧光分子的荧光背低,为分析检测提供了一个良好的平台。我们把这种拉曼增强效应称为石墨烯增强拉曼散射效应(GERS)。研究发现,单层石墨烯增强因子最大,可达17倍,随着层数的增多,增强因子逐渐降低。图5[9]揭示了单层石墨烯、金属银和罗丹明的协同增强SERS的稳定性。图5d为单层石墨烯在Ag基底上经过连续激光辐照(每次间隔8min)后的拉曼光谱图。

图5单层石墨烯、金属银和罗丹明协同增强SERS的稳定性[9]

此外,针尖增强拉曼散射(TERS)的发展把SERS和原子力显微镜(AFM)的分析结合了起来。目标是真正实现拉曼分析的纳米尺寸空间分辨率。通过将AFM的针尖包覆活性金属或金属纳米粒子使其具有SERS活性,SERS增强效应将可能只发生在针尖附近很小的范围内,一般针尖都小于100nm,从而使其空间分辨率也小于100nm。目前TERS测量石墨烯已经获得了成功[10],但是不是所有样品都能得到很好的结果。这是由于TERS所取样品的分子数目相应地减少了几个数量级,虽然SERS的拉曼强度有所增强,但并不是所有样品最终的TERS强度能超过常规的拉曼信号。

拉曼光谱激光器波长的选择

从紫外、可见到近红外波长范围的激光器均可用作高利通显微拉曼光谱分析的激发光源,激光器波长的选择对实验结果有着重要影响,典型的激光器如下:

紫外:244nm,257nm,325nm,364nm

可见:457nm,488nm,514nm,532nm,633nm,660nm

近红外:785nm,830nm,980nm,1064nm

拉曼散射强度与激光波长的四次方成反比。

紫外激光器适合生物分子(蛋白质、DNA等)的共振拉曼实验以及抑制样品荧光,灵敏度高,325nm激发的拉曼强度是633nm激发的14倍。但目前紫外拉曼实验依然属于高端技术,需要高水平专业技术人员操作;蓝/绿激光器适合无机材料(如碳材料),共振拉曼实验以及SERS,是目前最常用的激光器;红色和近红

外适合于抑制样品荧光,但是灵敏度很低,要想获得相同的光谱质量,通常耗时更长。

石墨烯拉曼测试解析

3.1 石墨烯AFM测试详解 单层石墨烯的厚度为0.335nm,在垂直方向上有约1nm的起伏,且不同工艺制备的石墨烯在形貌上差异较大,层数和结构也有所不同,但无论通过哪种方法得到的最终产物都或多或少混有多层石墨烯片,这会对单层石墨烯的识别产生干扰,如何有效地鉴定石墨烯的层数和结构是获得高质量石墨烯的关键步骤之一。 石墨烯的表征主要分为图像类和图谱类图像类以光学显微镜透射电镜TEM 扫描电子显微镜、SEM和原子力显微分析AFM为主而图谱类则以拉曼光谱Raman红外光谱IRX射线光电子能谱、XPS和紫外光谱UV为代表其中TEM、SEM、Raman、AFM和光学显微镜一般用来判断石墨烯的层数而IRX、XPS和UV则可对石墨烯的结构进行表征,用来监控石墨烯的合成过程。且看“材料+”小编为您一一解答。 3.1.1 AFM表征 图1 AFM的工作原理图

图3.1 AFM工作的三种模式 关于AFM的原理这里就不多说了,目前常用的AFM工作模式主要有三种:接触模式,轻敲模式以及非接触模式。这三种工作模式各有特点,分别适用于不同的实验需求。 石墨烯的原子力表征一般采用轻敲模式(TappingMode):敲击模式介于接触模式和非接触模式之间,是一个杂化的概念。悬臂在试样表面上方以其共振频率振荡,针尖仅仅是周期性地短暂地接触/敲击样品表面。这就意味着针尖接触样品时所产生的侧向力被明显地减小了。因此当检测柔嫩的样品时,AFM的敲击模式是最好的选择之一。【材料+】微信平台,内容不错,欢迎关注。一旦AFM开始对样品进行成像扫描,装置随即将有关数据输入系统,如表面粗糙度、平均高度、峰谷峰顶之间的最大距离等,用于物体表面分析。 优点:很好的消除了横向力的影响。降低了由吸附液层引起的力,图像分辨率高,适于观测软、易碎、或胶粘性样品,不会损伤其表面。 缺点:比ContactModeAFM的扫描速度慢。 3.1.2 AFM表征石墨烯原理 AFM可用于了解石墨烯细微的形貌和确切的厚度信息,属于扫描探针显微镜,它利用针尖和样品之间的相互作用力传感到微悬臂上,进而由激光反射系统

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

石墨烯的表征

石墨烯的表征方法 拉曼光谱分析 拉曼光谱是碳材料分析与表征的最好工具之一。图1是石墨、氧化石墨和石墨烯的拉曼光谱。从图中看出石墨仅在1576 cm-1处存在一个尖而强的吸收峰(G 峰),对应于E2g光学模的一阶拉曼散射,说明石墨的结构非常规整。当石墨被氧化后,氧化石墨的G峰已经变宽,且移至1578 cm-1处,并且还在1345 cm-1处出现一个新的较强的吸收峰(D峰),表明石墨被氧化后,结构中一部分sp2杂化碳原子转化成sp3杂化结构,即石墨层中的C=C双键被破坏。此外G带与D带的强度比也表示sp2/sp3碳原子比。这进一步说明氧化石墨中sp2杂化碳层平面长度比石墨的减小。当氧化石墨被还原后,还原氧化石墨即石墨烯的拉曼光谱图中也包含有类似氧化石墨的峰位。石墨烯拉曼光谱图中两个峰(D与G)的强度比高于氧化石墨的,表明石墨烯中sp2杂化碳原子数比sp3杂化碳原子数多,也就是说石墨烯中sp2杂化碳层平面的平均尺寸比氧化石墨的大。这说明了在本实验条件下氧化石墨被还原时,它只有一部分sp3杂化碳原子被还原成sp2杂化碳原子,即氧化石墨的还原状态结构不可能被完全恢复到原有的石墨状态,也就是说石墨烯的结构和石墨结构还是有差别的。 图1. 石墨(a)、氧化石墨(b)、石墨烯(c)拉曼光谱

X-射线衍射分析 图2是石墨、氧化石墨和石墨烯的XRD图。从图中可以看出石墨在2θ约为26°附近出现一个很尖很强的衍射峰,即石墨(002)面的衍射峰,说明纯石墨微晶片层的空间排列非常规整。石墨被氧化后,石墨(002)面的衍射峰非常小,但在2θ 约为10.6°附近出现很强的衍射峰,即氧化石墨(001)面的衍射峰。这说明石墨的晶型被破坏,生成了新的晶体结构。当氧化石墨被还原成石墨烯,石墨烯在2θ约为23°附近出现衍射峰,这与石墨的衍射峰位置相近,但衍射峰变宽,强度减弱。这是由于还原后,石墨片层尺寸更加缩小,晶体结构的完整性下降,无序度增加。 图2. 石墨(a)、氧化石墨(b)、石墨烯(c)的XRD图 原子力显微镜表征 原子力显微镜图像能得到石墨烯的横向尺寸,面积和厚度等方面的信息。一般用来分辨单层或双层石墨烯。

关于石墨烯 拉曼光普 扫描电镜 能谱的原理

1、石墨烯是什么?如何制备? 石墨烯是一种从碳材料中剥离出来的单层碳原子面材料,是碳的二维结构。这种石墨晶体薄膜的厚度只有0.335纳米,把20万片薄膜叠加到一起,也只有一根头发丝那么厚。石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格排列构成的单层二维晶体。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯的结构非常稳定,碳碳键仅为1.42?。石墨烯內部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。 石墨烯的制备方法有以下几种: (1)撕胶带法/轻微摩擦法 最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。2004年,海姆等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。但缺点是此法利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。 (2)碳化硅表面外延生长 该法是通过加热单晶碳化矽脱除矽,在单晶(0001) 面上分解出石墨烯片层。具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。 用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后恒温1min~20min,从而形成极薄的石墨层,经过几年的探索,克莱尔?伯格(Claire Berger)等人已经能可控地制备出单层或是多层石墨烯。在C-terminated表面比较容易得到高达100层的多层石墨烯。其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。 (3)金属表面生长 取向附生法是利用生长基质原子结构“种”出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“孤岛”布满了整个基质表面,最终它们可长成完整的一层石墨烯。第一层覆盖8 0 %后,第二层开始生长。底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。 但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。 (4)氧化减薄石墨片法 石墨烯也可以通过加热氧化的办法一层一层的减薄石墨片,从而得到单、双层石墨烯 (5)肼还原法 将氧化石墨烯纸置入纯肼溶液(一种氢原子与氮原子的化合物),这溶液会使氧化石墨烯纸还原为单层石墨烯。 (6)乙氧钠裂解 一份于2008年发表的论文,描述了一种程序,能够制造达到克级数量的石墨烯。 首先用钠金属还原乙醇,然后将得到的乙醇盐产物裂解,经过水沖洗除去钠盐,得到黏在一起的石墨烯,再用温和声波振散,即可制成克级数量的纯石墨烯。

拉曼光谱在石墨烯结构表征中的应用

拉曼光谱在石墨烯结构表征中的应用 发表时间:2019-01-11T15:52:54.703Z 来源:《新材料·新装饰》2018年7月下作者:张鲁一航[导读] 石墨烯属于由sp2碳原子组合而成的二维原子晶体结构,由于该物质在结构上非常特殊,也有独特的性质,所以受到了学者们的普遍关注。(陆军勤务学院,401311) 摘要:石墨烯属于由sp2碳原子组合而成的二维原子晶体结构,由于该物质在结构上非常特殊,也有独特的性质,所以受到了学者们的普遍关注。拉曼光谱属于高效、简便的用来表征物质结构的方式。其着重阐述在石墨烯结构表征中,光普曼技术的新的探究成果。第一,以石墨烯声子色散曲线为基础,着重阐述了是石墨烯的重点拉曼特征,并全面分析了石墨烯二阶和频与倍频拉曼特征,包括石墨烯低频拉曼特征的具体情况,同时阐述其对石墨烯结构表现出怎样的依赖特点。关键词:拉曼光谱;石墨烯;低频振动模 一、拉曼光谱应用烯结构表征中的基本介绍 石墨烯属于一种由sp2碳原子协同结合形成的六边形蜂窝状的二维原子晶体。它可以用来构建别的sp2杂化碳,并且是其中的一个核心组成部分,能够堆垛成为三维石墨,卷曲的话还可以展现出碳纳米管的状态,同时还能够包裹变成刘维度富勒烯,在碳材料领域是一种新型、极受欢迎的材料。在本文后续的探究中,笔者着重结合拉曼光谱技术对石墨烯和该物质的结构表征探究成果展开具体归纳和判定。 二、石墨烯声子色散和典型拉曼光谱特征 想要对石墨烯拉曼光谱进行分析,应当先阐述石墨烯声子色散曲线的概念。具体来说,在石墨烯单细胞中,会有A与B两个不等价碳原子,由此,从单层石墨烯的角度看,可分成六支声子色散曲线,具体就是三个生学支、三个光学支。面内与面外各对应原子振动方向、和石墨烯垂直的平面,纵、横向表示的是原子振动方向平行或是和A-B碳碳健垂直的方向。基于入射激光的作用,电子会从石墨烯带上转移到导带上,在电子和声子的相互作用下,会产生射散的现象,由此能够引发多个拉曼特征峰。 G峰在sp2碳原子面内振动的情况下出现,是基于布里渊区中心双重简并iTO以及iLO的光学生子作用下而形成的,体现出一定的E2g对称特点,属于单层石墨烯中仅有的一阶拉曼散射过程。 三、石墨烯层数、边缘和缺陷态的拉曼光谱表征 对比G峰来看,单层石墨烯的G’峰要明显更强,同时,其还体现出了很好的单洛伦兹峰型,在层数逐步增加的情况下,G’峰半峰宽也逐步变大,同时还会想高波数位移。G’峰会在双生子双共振的情况下出现,和石墨烯的能带结构有很大的关联性,针对AB堆垛的双层石墨烯,电子能带结构会出现裂分的情况,两支抛物线组成了价带与导带,双共振散射过程会出现四种可能,游戏,双层石墨烯G’峰能够你和成四个洛伦兹峰,同理,其还能够以六个洛伦兹峰来进行拟合。石墨烯的拉曼光谱在层数不同的情况下,会出现G’峰不同的情况,G在层数波动的情况下,G峰的强度也随之出现正向变化,之所以会存在这样的情况,就是因为多层石墨烯中的碳原子被检测到的可能性更大。所以,G峰强度、G’峰和G峰强度之别包括G’峰的峰型都可以作为判定石墨烯层数的参考条件,以拉曼光谱在判定石墨烯层数的情况下,会体现出一定的优势,它能够体现石墨烯的本征信息,而并非是基于基地来作出判断。 四、石墨烯的堆垛以及掺杂效应为拉曼特征造成的影响的 针对层数较少的石墨烯,层间堆垛形式会对它们的晶格对称性造成严重影响,堆垛方式不同的话,电子能带结构、曾建平不等方面的特征也会发生变化,一般来说,机械剥离的三层石墨烯都被判定为ABC堆垛方式,这是由于其有极强的热稳定性。不过,Liu等学者在展开该类石墨烯的具体探究之后了解到,基于常规的机械剥离之下形成的三成的三层石墨烯,有一部分样品是具备ABC堆垛形式的,就算是针对有均匀厚度的三层石墨烯,依然有15%的堆垛区域,探究结果表示,ABA堆堆三层是模型属于半金属型的,具体的能带重叠程度可以基于电厂的调节而发生变化。但ABC堆垛而成的三层石墨烯属于半导体,以施加栅压的方式能够对其带隙展开调节。 五、外界环境为石墨烯拉曼光谱带来的影响 长波光学声子会影响石墨烯G峰,从而使其对外界环境有更高的灵敏度,在石墨烯所处外部温度出现波动的情况下,G峰峰位也会出现波动,在特定的温度范围区间当中,温度更高,石墨烯拉曼G峰也就更向低波数位移,和温度之间构成线性关系、对于应力来说,石墨烯的拉曼特征也会起到非常明显的影响作用。能够发现,在石墨烯受到应力作用的情况下,G峰与G’峰都会超低波数位移,和所受应力之间有线性关系。在特定情况下,石墨烯拉曼位移受应力的影响而发生的变化是由可逆性的,其征峰红移可看做是碳-碳健的拉伸,有研究表明,在石墨烯接触到拉伸的应力时,拉曼特征峰会王低波数位移,基于压缩应力的作用,会从碳原子间距离的缩减到高波数位移。 六、石墨烯的和频与倍频拉曼特征极及其结构依赖性 前文我们着重阐述了石墨烯的典型拉曼特征,包括石墨烯自身晶体结构以及受外界因素的影响,拉曼特征峰所发生的具体变化,同时阐述了具体成因,由此也引发了一个疑问,除了以上描述的这些拉曼特征信号之外,石墨烯还有没有别的特征峰存在?针对这一问题,我们要具体判定它的振动性质,单层石墨烯是一种六角晶系,它们的布拉维原胞中仅有两个碳原子,和空间群D6h相对应。针对n层AB堆垛石墨烯来说,在n时偶数的情况下,和双层石墨烯的对称性是相当的;在n是奇数的情况下,和三层石墨烯的对称性是相当的。 七、石墨烯的对拼拉曼特征和其结构依赖性 Tan等多位学者在对仪器进行改进的基础上,结合交叉偏振的策略对Si基底背景进行控制,最终发现了少层石墨烯剪切振动末,同时基于斯托克斯以及反斯托克斯线来展开峰位的较重,最终得出结论:振动模的峰位和石墨烯的层数密切相关。低能层间振动模和石墨烯层数有紧密关联,层间振动涵盖剪切模与呼吸模在内。当年针对层间呼吸振动模的测定是基于倍频或是别的声子模的和频而达成的,尽管很多想?从理论层面对其进行了相应探究,不过在测量方面的探究却极为有限,Lui以其和面内纵光声子模LO的和频为基础,对层间呼吸为石墨烯层数,激发光能量包括堆垛方式层面的依赖性展开了具体探究,同时结合理论计算进行了具体阐述,最终发现,在激光能量持续提升的情况下,峰位也会往高波数位移,组成部分也更具分裂性。参考文献

石墨烯材料拉曼光谱测试详解

2004年英国曼彻斯特大学的A.K.Geim领导的小组首次通过机械玻璃的方法成功制备了新型的二维碳材料-石墨烯(graphene)。自发现以来,石墨烯在科学界激起了巨大的波澜,它在各学科方面的优异性能,使其成为近年来化学、材料科学、凝聚态物理以及电子等领域的一颗新星。 就石墨烯的研究来说,确定其层数以及量化无序性是至关重要的。激光显微拉曼光谱恰好就是表征上述两种性能的标准理想分析工具。通过测量石墨烯的拉曼光谱我们可以判断石墨烯的层数、堆垛方式、缺陷多少、边缘结构、张力和掺杂状态等结构和性质特征。此外,在理解石墨烯的电子声子行为中,拉曼光谱也发挥了巨大作用。 石墨烯的典型拉曼光谱图 石墨烯的拉曼光谱由若干峰组成,主要为G峰,D峰以及G’峰。G峰是石墨烯的主要特征峰,是由sp2碳原子的面内振动引起的,www.glt910.com它出现在1580cm-1附近,该峰能有效反映石墨烯的层数,但极易受应力影响。D峰通常被认为是石墨烯的无序振动峰,该峰出现的具体位置与激光波长有关,它是由于晶格振动离开布里渊区中心引起的,用于表征石墨烯样品中的结构缺陷或边缘。G’峰,也被称为2D峰,是双声子共振二阶拉曼峰,用于表征石墨烯样品中碳原子的层间堆垛方式,它的出峰频率也受激光波长影响。举例来说,图1[1]为514.5nm激光激发下单层石墨烯的典型拉曼光谱图。其对应的特征峰分别位于1582cm-1附近的G峰和位于2700cm-1左右的G’峰,如果石墨烯的边缘较多或者含有缺陷,还会出现位于1350cm-1左右的D峰,以及位于1620cm-1附近的D’峰。

图1 514nm激光激发下单层石墨烯的典型拉曼光谱图[1] 当然对于sp2碳材料,除了典型的拉曼G峰,D峰以及G’峰,还有一些其它的二阶拉曼散射峰,大量的研究表明石墨烯含有一些二阶的和频与倍频拉曼峰,这些拉曼信号由于其强度较弱而常常被忽略。如果对这些弱信号的拉曼光谱进行分析,也可以很好地对石墨烯中的电子-电子、电子-声子相互作用及其拉曼散射过程进行系统的研究。 石墨烯拉曼光谱与层数的关系 多层和单层石墨烯的电子色散不同,导致了拉曼光谱的明显差异。图2 [1,2]为532nm激光激发下,SiO2(300nm)/Si基底上1~4层石墨烯的典型拉曼光谱图,由图可以看出,单层石墨烯的G’峰尖锐而对称,并具有完美的单洛伦兹(Lorentzien)峰型。此外,单层石墨烯的G’峰强度大于G峰,且随着层数的增加,G’峰的半峰宽(FWHM:full width at half maximum)逐渐增大且向高波数位移(蓝移)。双层石墨烯的G’峰可以劈裂成四个洛伦兹峰,其中半峰宽约为24cm-1。这是由于双层石墨烯的电子能带结构发生分裂,导带和价带均由两支抛物线组成,因此存在着四种可能的双共振散射过程(即G’峰可以拟合成四个洛伦兹峰)。同样地,三层石墨烯的G’峰可以用六个洛伦兹峰来拟合。此外,不同层数的石墨烯的拉曼光谱除了G’峰的不同,G峰的强度也会随着层数的增加而近似线性增加(10层以内,如图3[3]所示),这是由于在多层石墨烯中会有更多的碳原子被检测到。综上所述,1~4层石墨烯的G峰强度有所不同,

单层与多层石墨烯的拉曼光谱

凝聚态物理学李龙飞10212027 专业英语翻译 单层与多层石墨烯的拉曼光谱 石墨烯是二维的材料,是组成其他维度的碳的各种同素异形体的积木。本文介绍拉曼光谱可以捕捉石墨烯的电子结构,并清楚显示出随着石墨烯层数变化拉曼光谱的变化。随着层数的增加,D峰在形状、宽度和位置的二阶变化,反映了电子能带通过双共振的拉曼过程而产生的改变。G峰则轻微下移。这就提供了一种清楚、高效、无破坏性的方法来确定石墨烯的层数,目前对这方面的研究还十分缺少。 石墨烯的研究热潮可以归因于三点。第一,它的电子输运通过狄拉克方程来描述,这就允许了通过简单的凝聚态实验来研究量子电动力学。第二,纳米尺度下的石墨烯器件有望得到应用,原因是其室温下的弹道输运性质,而且具有化学的和机械的稳定性。这种优越的性质可以扩展到双层或少数层石墨烯。第三,不同形式的石墨,纳米管,巴克球等等都可看成石墨烯的衍生物。而且无需惊讶,在过去60年里石墨烯这种基本材料已经在理论上被广泛研究。最近发现的石墨烯终于让我们可以从实验去研究它,为更好地理解其他同素异形体及解决争论铺平了道路。 石墨烯可以通过参考文献[1]所描述的方法,也就是对石墨的微机械分离而得到。其他方法,例如脱落和生长,目前只能得到多层的石墨,但在不远的将来,有效的生长方法有望得到发展,就像纳米管所发生的一样。尽管微机械分离的方法广泛使用,但是确定和计算石墨烯的层数仍然是最主要的障碍。单层石墨烯只少数地存在于石墨的薄片中,在大多数衬底上都难以用光学显微镜观察。只有当放置在精确厚度的氧化硅衬底上(典型地,300nmSiO2)才可见,这是因为对比空的衬底,单层的石墨烯加在反射光的光路上会导致干涉颜色的变化。原子力显微镜(AFM)是目前唯一的确定单层和少层的方法,但其效率很低。而且,事实上石墨烯和衬底之间的化学对比成像(导致一层明显的0.5-1nm的化学厚度,比石墨层间的间隔要大),使得如果薄膜包含折叠和皱褶,AFM只能区分单层和双层。这就造成了衬底选用范围的主要限制,这是这种材料得到广泛利用的一个障碍。这里,我们得出石墨烯的独特电子结构可以由拉曼光谱得到。单层,双层和少层的石墨烯的电子能带的变化导致拉曼指纹的变化,提供了一种清楚、高效、无破坏性的方法来确定石墨烯的层数,而目前对这方面的研究还十分缺少。 在这里样品通过微机械分离来制备。为了提供单层和双层石墨烯的最确定的识别(除了利用AFM的方法),我们通过透射电子显微镜(TEM)观察要用来做拉曼光谱测量的样品。

拉曼光谱在石墨烯表征中的应用

拉曼光谱在石墨烯表征中的拉曼光谱在石墨烯表征中的应用应用应用 石墨烯是由高度结晶态石墨单层组成的一种高等新型材料,首次报导于2004年的《科学》杂志上。它是构建其他碳同素异构体(如富勒烯、碳纳米管或石墨)的基本单元(图1)。石墨烯是由英国曼彻斯特大学物理系和俄罗斯琴诺格洛夫微电子科技研究所两组团队首次分离出来的。它具有优异的电子传输性能,其室温下的电子迁移速率高达15000 cm 2 V -1 s -1,因而成为未来纳米电子设备的理想材料。 图1 石墨烯是构建碳同素异构体(如富勒烯、碳纳米管或石墨)的基本单元[1] 石墨烯具有优异的机械强度和热导率,其机械强度要比钢铁高出200多倍。研制出运行速度高达兆赫兹的新一代超高速纳米晶体管是石墨烯研究中的一个热门领域。由于特殊的尺寸和光学性质,石墨烯在绝大多数衬底上都很难被观察到。 对于石墨烯设备研究来说,确定石墨烯片层数以及量化无序性对其特性的影响是至关重要的。显微拉曼光谱是表征上述两种性能的简单可靠方法。拉曼光谱的高度结构选择性,光谱和空间的高分辨率以及无损分析特征使得拉曼光谱成为石墨烯快速发展领域标准而理想的分析工具。 石墨烯和石墨烯片石墨烯和石墨烯片的拉曼光谱的拉曼光谱的拉曼光谱 如图2所示,石墨烯的拉曼谱图是由若干谱峰组成的。这些拉曼峰已被准 单层石墨烯 富勒烯 碳纳米管 石墨

确地表征和理解。以下将具体描述每个谱峰。 G峰 石墨烯的主要特征峰,即G峰,是由碳原子的面内振动引起的,它出现在1580cm-1附近(如图2)。该峰能有效反映石墨烯片层数,极易受应力影响。 2D峰 G峰 D峰 图2:石墨烯的拉曼光谱 随着石墨烯片层数n的增加,G峰位置会向低频移动,其位移与1/n相关[2](图3)。 单层 双层 石墨 图3常用于表征石墨烯片层数的G峰和2D峰 G峰的形状没有显著变化(尽管G峰易受石墨烯片的层数影响,用2D峰来表征石墨烯更为可取,其原因将在后面解释)。 此外,G峰容易受掺杂影响,其峰频与峰宽可用于检测掺杂水平[3]。

石墨烯研究中的分析测试技术

石墨烯研究中的分析测试技术 摘要:石墨烯是一种由单层碳原子紧密堆积成二维蜂窝状晶格结构的碳质新材料,具有比表面积大、载流子迁移速率高、导热率高等优良的半导体性能,使得石墨烯逐渐成为研究的热点。对于每一种材料而言,它的测试表征技术在材料的制备和质量检测都是不可或缺的,本文介绍了用于分析和表征石墨烯材料结构的常用的几种表征技术,重点介绍了透射电镜和拉曼光谱分析在石墨烯中的应用,及比较了拉曼光谱与红外光谱吸收的区别。 关键字:石墨烯,透射电镜,拉曼光谱,红外光谱 Analysis techniques of graphene materials Wu Yuming (School of Materials Science and Engineering, Shanghai University, Shanghai 200072) Abstract:Graphene is a new carbon-based materials which consists of a flat monolayer of carbon atoms tightly packed into a two-dimensional honeycomb lattice. It has larger surface area, high carrier mobility, high thermal conductivity and other excellent performances, making graphene gradually become a research hotspot. For each material, its test preparation materials characterization techniques in quality is essential, this paper describes the analysis and characterization of graphene materials, structure and preparation of several characterization techniques. This article focuses on the transmission electron microscopy and Raman spectroscopy applications in graphene , and compare the differences between Raman and IR spectroscopy. Key Words: Graphene, TEM, Raman spectroscopy, IR spectroscopy 1.前言 在地球上含有大量的C元素,而根据晶体中C原子不同的排列方式可以形成很多形貌和性质完全不同的物质,如金刚石、石墨、活性碳等。我们知道,铅笔芯的原材料是石墨,而石墨是一类层状的材料,即由一层又一层的二维平面碳原子网络有序堆叠而形成的。由于碳层之间的作用力比较弱,因此石墨层间很容易互相剥离开来,从而形成很薄的石墨片层,这也正是铅笔可以在纸上留下痕迹的原因。如果将石墨逐层地剥离,直到最后只形成一个单层,即厚度只有一个碳原子的单层石墨,这就是石墨烯。石墨烯的厚度只有0. 335 nm,比纸还要薄100万倍,把20万片石墨烯叠加到一起,也只有一根头发丝的厚度,但是它的强度却比钻石还要坚韧,同时,作为单质,它在室温下传递电子的速度要超过任何一种已知的导体[1]。 石墨烯已经成为当前科学界最热门的材料之一,而Andre Geim和Kostya Novoselov的工作的意义在于:他们通过独特的机械剥离的办法,获得了足够大的单层的石墨烯,并成功地通过输运测量表征了其独特的二维特性和奇妙的电子结构,从而引起了对石墨烯的研究热潮。石墨烯的独特电子结构使人们对石墨烯在未来的应用充满了遐想和希望[2]。 材料分析技术是研究物质的微观状态与宏观性能之间关系的一种手段。人们能通过改变分子或晶体的结构来达到控制物质宏观特性的目的,所以科学技术的发展离不开分析测试。 材料分析方法是通过对表征材料的物理性质或物理化学性质参数及其变化(称为测量信

石墨烯拉曼谱

Probing the electronic structure of bilayer graphene by Raman scattering L.M.Malard,1J.Nilsson,2D.C.Elias,1J.C.Brant,1F.Plentz,1E.S.Alves,1A.H.Castro Neto,2and M.A.Pimenta1 1Departamento de Física,Universidade Federal de Minas Gerais,30123-970Belo Horizonte,Brazil 2Department of Physics,Boston University,590Commonwealth Avenue,Boston,Massachusetts02215,USA ?Received14September2007;published1November2007? The electronic structure of bilayer graphene is investigated from a resonant Raman study of the G?band using different laser excitation energies.The values of the parameters of the Slonczewski-Weiss-McClure model for bilayer graphene are obtained from the analysis of the dispersive behavior of the Raman features, and reveal the difference of the effective masses of electrons and holes.The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data.Our results have implications for bilayer graphene electronic devices. DOI:10.1103/PhysRevB.76.201401PACS number?s?:73.21.?b,63.20.Kr,78.30.?j,81.05.Uw Differently from monolayer graphene,where the electrons behave like massless Dirac fermions and exhibit a linear dis-persion near the Dirac point,the electrons in bilayer graphene are described by nonzero effective mass Dirac fer-mions with a parabolic electronic dispersion.1Furthermore, while the unbiased bilayer graphene is a zero-gap semicon-ductor,a biased bilayer is a tunable gap semiconductor by electric?eld effect.2,3Hence the development of bilayer graphene-based bulk devices depends on the detailed under-standing of its electronic properties.This work shows that, by performing Raman scattering experiments in bilayer graphene with many different laser excitation energies,we can probe its electronic structure and we can obtain experi-mental values for the Slonczewski-Weiss-McClure?SWM?parameters4,5for bilayer graphene. Figure1shows the atomic structure of a bilayer graphene, in which we can distinguish the two nonequivalent atoms A and B in each plane giving rise to a unit cell with four atoms. Since this unit cell is the same for graphite in the Bernal stacking structure,we can describe the electronic spectrum of bilayer graphene in terms of the SWM model for graphite,4,5by determining the parameters?0,?1,?3,and?4, that are associated with overlap and transfer integrals calcu- lated for nearest neighbor atoms.The pair of atoms associ- ated with these parameters is indicated in the atomic struc- ture of a bilayer graphene shown in Fig.1?a?.These parameters,that are fundamental for the electronic processes in the system,are only roughly known to this date. The graphene samples used is this experiment were ob- tained by a micromechanical cleavage of graphite on the sur- face of a Si sample with a300nm layer of SiO2on the top.1 The bilayer?akes were identi?ed by the slight color change from monolayer graphene in an optical microscope,followed by a Raman spectroscopy characterization using the proce- dure described by Ferrari et al.6For the Raman measure- ments,we used a Dilor XY triple monochromator in the backscattering con?guration.The spot size of the laser was ?1?m using a100?objective and the laser power was kept at1.2mW in order to avoid sample heating.Raman spectra were obtained for11different laser lines of Ar-Kr and dye lasers in the range1.91–2.71eV. Recently,Ferrari et al.6showed that Raman spectroscopy can be used to identify the number of layers in a graphene sample and,in particular,to clearly distinguish a monolayer from a bilayer graphene sample.Figure2shows the Raman spectra of the monolayer?Fig.2?a??and bilayer?Fig.2?b??graphene samples,where the most prominent features are the G and G?Raman bands.7 The G?band of the monolayer graphene can be?tted by just one Lorentzian with a full width at half maximum ?FWHM?of24cm?1.A better adjustment can be obtained with V oigt functions,which have four?tting parameters. However,different sets of four V oigt parameters?t the G?band equally well,preventing a precise physical interpreta-tion of these parameters.Therefore we decided to analyze the data using the Lorentzian functions.The G?band for bilayer graphene was?tted using four Lorentzian peaks,all of them having the same FWHM of24cm?1used to?t the G?band of monolayer graphene,in agreement with the previous Ra-man studies of graphene systems.6,8,9The relative amplitudes of the four Lorentzians depend on the laser energy;two of them increase and the other two decrease with increasing laser energy.The?t was done by following the trend of the laser energy dependence of these relative intensities. The Raman spectra of both the monolayer and bilayer graphene have been measured with many different laser en-ergies in the visible range.Figure3shows the laser energy dependence of the G?-band frequency for the monolayer sample?Fig.3?a??and for each one of the four peaks that comprise the G?band for bilayer graphene?Fig.3?b??. The origin of the G?band in all graphitic materials is due to an intervalley double-resonance?DR?Raman process10, 11 FIG.1.?Color online??a?Atomic structure of bilayer graphene. The A atoms of the two layers are over each other,whereas the B atoms of the two layers are displaced with respect to each other.The SWM constants?0,?1,?3,and?4label the corresponding pair of atoms associated with the hopping processes.?b?First Brillouin zone of monolayer graphene,showing the high symmetry points?, K,K?,and M. PHYSICAL REVIEW B76,201401?R??2007?

相关文档
最新文档