时间序列分析(0002)

时间序列分析(0002)
时间序列分析(0002)

时间序列分析

1.1时间序列定义:

时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列.

构成要素:现象所属的时间,反映现象发展水平的指标数值.要素一:时间t;要素二:指标数值。

1.2时间序列的成分:

一个时间序列中往往由几种成分组成,通常假定是四种独立的成分——趋势T、循环C、季节S 和不规则I。

T 趋势通常是长期因素影响的结果,如人口总量的变化、方法的变化等。

C任何时间间隔超过一年的,环绕趋势线的上、下波动,都可归结为时间序列的循环成分。

S许多时间序列往往显示出在一年内有规则的运动,这通常由季节因素引起,因此称为季节成分。目前,可以称之为“季节性的周期”,年或者季节或者月份。

I时间序列的不规则成分是剩余的因素,它用来说明在分离了趋势、循环和季节成分后,时间序列值的偏差。不规则成分是由那些影响时间序列

的短期的、不可预期的和不重复出现的因素引起的。它是随机的、无法预测的。

四个组成部分与观测值的关系可以用乘法模型或者加法模型或者综合。

1.3预测方法的选择与评估

方法P216

三种预测方法:移动平均法、加权移动平均法和指数平滑法。因为每一种方法的都是要“消除”由时间序列的不规则成分所引起的随机波动,所以它们被称为平滑方法。平滑方法对稳定的时间序列——即没有明显的趋势、循环和季节影响的时间序列——是合适的,这时平滑方法很适应时间序列的水平变化。但当有明显的趋势、循环和季节变差时,平滑方法将不能很好地起作用。移动平均法使用时间序列中最近几个时期数据值的平均数作为下一个时期的预测值。移动平均数的计算公式如下:

指数平滑法模型:

式中Ft+1——t+1期时间序列的预测值;

Yt——t期时间序列的实际值;

Ft——t期时间序列的预测值;

α——平滑常数(0≤α≤1)。

均方误差是常用的(MSE)

标准误差定义为各测量值误差的平方和的平均值的平方根。

设n个测量值的误差为ε1、ε2……εn,则这组测量值的标准误差σ等于:

数理统计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。MSE是衡量“平均误差”的一种较方便的方法,MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。与此相对应的,还有均方根误差RMSE、平均绝对百分误差等等。

时间序列平稳性的定义

假定某个时间序列由某一随机过程(stochastic process)生成,即假定时间序列{Xt}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得到的。如果经由该随机过程所生成的时间序列满足下列条件:

均值E(Xt)=m是与时间t 无关的常数;

方差Var(Xt)=s^2是与时间t 无关的常数;

协方差Cov(Xt,Xt+k)=gk 是只与时期间隔k有关,与时间t 无关的常数;

则称经由该随机过程而生成的时间序列是(弱)平稳的(stationary)。该随机过程便是一个平

稳的随机过程(stationary stochastic process)。

例如,白噪声(white noise)过程就是平稳的:

Xt=ut , ut~IIN(0,s^2)

因为它的均值为常数零;方差为常数s^2;所有时间间隔的协方差均为零。

但随机游走(random walk)过程是非平稳的:

Xt=Xt-1+ut , ut~IIN(0,s^2),因为尽管其均值为常数E(Xt)=E(Xt-1),但其方差Var(Xt)=ts^2非常数。

不过,若令DXt=Xt-Xt-1,则随机游走过程的一阶差分(first difference)是平稳的:

DXt=Xt-Xt-1=ut ,ut~IIN(0,s^2)

一般地,在经济系统中,一个非平稳的时间序列通常均可通过差分变换的方法转换成为平稳序列。

指数平滑法有几种不同形式:一次指数平滑法针对没有趋势和季节性的序列,二次指数平滑法针对有趋势但没有季节性的序列。术语“Holt-Winters法”有时特指三次指数平滑法。

所有的指数平滑法都要更新上一时间步长的计算结果,并使用当前时间步长的数据中包含的新信息。它们通过“混合”新信息和旧信息来实现,而相关的新旧信息的权重由一个可调整的拌和参数来控制。各种方法的不同之处在于它们跟踪的量的个数和对应的拌和参数的个数。

一次指数平滑法的递推关系特别简单:

其中,是时间步长i上经过平滑后的值,是这个时间步长上的实际(未平滑的)数据。你可以看到是怎么由原始数据和上一时间步长的平滑值混合而成的。拌和参数可以是0和1之间的任意值,它控制着新旧信息之间的平衡:当接近1时,我们就只保留当前数据点(即完全没有对序列进行平滑);当接近0时,我们就只保留前面的平滑值(也就是说整个曲线都是平的)。

为何这个方法被称为“指数”平滑法?要找出答案,展开它的递推关系式即可知道:

从这里可以看出,在指数平滑法中,所有先前的观测值都对当前平滑值产生了影响,但它们所起的作用随着参数的幂的增大而逐渐减小。那些相对较早的观测值所起的作用相对较小,这也就是指数变动形态所表现出来的特性。从某种程度上来说,指数平滑法就像是拥有无限记忆且权值呈指数级递减的移动平均法。(同时也要注意到所有权值的和,等于1,因为当q<1 时,几何序列。参见附录B的几何序列方面的信息。)

一次指数平滑所得的计算结果可以在数据集范围之外进行扩展,因此也就可以用来进行预测。预测也非常简单:

其中,是最后一个已经算出来的值。也就是说,一次指数平滑法得出的预测在任何时候都是一条直线。

刚刚描述的一次指数平滑法适用于没有总体趋势的时间序列。如果用来处理有总体趋势的序列,平滑值将往往滞后于原始数据,除非的值接近1,但这样一来就会造成不够平滑。

二次指数平滑法保留了趋势的详细信息,从而改正了这个缺点。换句话说,我们保留并更新两个量的状态:平滑后的信号和平滑后的趋势。它有两个等式和两个拌合参数:

我们先看看第二个等式。这个等式描述了平滑后的趋势。当前趋势的未平滑“值”是当前平滑值和上一个平滑值的差;也就是说,当前趋势告诉我们在上一个时间步长里平滑信号改变了多少。要想使趋势平滑,我们用一次指数平滑法对趋势进行处理,并使用拌合参数。为获得平滑信号,我们像上次那样进行一次混合,但要同时考虑到上一个平滑信号及趋势。第一个等式的最后那个项可以对当前平滑信号进行估计——假设在单个时间步长里我们保持着上一个趋势。若要利用该计算结果进行预测,我们就取最后那个平滑值,然后每增加一个时间步长,就在该平滑值上增加一次最后那个平滑趋势:

最后,我们给三次指数平滑法添加第三个量,用

来描述季节性。我们有必要区分一下累加式和累乘式季节性,累加式对应的等式:

累乘式的等式:

其中,pi 是指“周期性”部分,是这个周期的长度。前面的等式中也包含预测的等式。

所有的指数平滑方法都是基于递推关系的,这表明我们要先设定初始值才能使用它们。选择什么样的初始值并不特别重要:指数式衰减规律说明所有的指数平滑方法的“记忆”能力都是很短的,只需经过几个时间步长,初始值的影响就会变得微乎其微。一些合理的初始值:

对三次指数平滑法而言,我们必须初始化一个完整的“季节”的值,不过我们可以简单地设置为全1(针对累乘式)或全0(针对累加式)。只有当序列的长度较短时,我们才需要慎重考虑初始值的选取。

最后一个问题是如何选择拌合参数。我的建议是反复试验。先试试0.2和0.4之间的几个值(非常粗略地),然后看看会得到什么结果。或者也可以为(实际数据和平滑算法的结果之间的)误差定义一个标准,再使用一个数值优化过程来将误差最小化。就我的经验而言,一般没有必要弄得这么麻烦,原因至少有两个:数值优化是一个不能保证收敛的迭代过程,最终你可能还需要花非常多时间将算法设计成收敛的。此外,任何这样的数值优化都受限于你选对误差进行最小化的表达式。问题是使误差最小化的参数值可能并不能满足在解决方案中你想要看到的其他特性(也就是近似值的精确性和结果曲线的平滑程度之间的平衡),那么,到最后你才会发现,手动的计算方法往往更好。不过,如果你要预测很多序列,花些精力构建一个能自动决定

最优参数值的系统也是值得的,但要实现这个系统恐怕也并不容易。

最后,我想用一个例子来展示我们想从指数平滑法得到的结果。下图是一个经典的数据集,它显示的是每个月国际航班的旅客数量(单位:千人) 。该图显示了实际数据和三次指数近似值。1949—1957年用来“训练”生成它的算法,而1958—1960年都是预测数值。注意,这里的预测值与实际数据相当接近——特别是它强烈的季节形态——持续了一段如此长的预测时段(整整三年!)。对于像这样简单的方法来说,是很不错的。

时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)

在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在之后的走势,三次指数平滑(Triple/Three Order Exponential Smoothing,Holt-Winters)算法可以很好的进行时间序列的预测。

时间序列数据一般有以下几种特点:1.趋势(Trend) 2. 季节性(Seasonality)。

趋势描述的是时间序列的整体走势,比如总体上升或者总体下降。下图所示的时间序列是总体上升的:

季节性描述的是数据的周期性波动,比如以年或者周为周期,如下图:

三次指数平滑算法可以对同时含有趋势和季节性的时间序列进行预测,该算法是基于一次指数平滑和二次指数平滑算法的。

一次指数平滑算法基于以下的递推关系:

si=αx

i +(1-α)s

i-1

其中α是平滑参数,s

i

是之前i个数据的平滑值,取值为[0,1],α越接近1,平滑后的值越接近当前时间的数据值,数据越不平滑,α越接近0,平滑后的值越接近前i个数据的平滑值,数据越平滑,α的值通常可以多尝试几次以达到最佳效果。

一次指数平滑算法进行预测的公式为:

x

i+h =s

i

,其中i为当前最后的一个数据记录的坐

标,亦即预测的时间序列为一条直线,不能反映时间序列的趋势和季节性。

二次指数平滑保留了趋势的信息,使得预测的时间序列可以包含之前数据的趋势。二次指数

平滑通过添加一个新的变量t来表示平滑后的趋势:

s

i =αx

i

+(1-α)(s

i-1

+t

i-1

)

t

i =?(s

i

-s

i-1

)+(1-?)t

i-1

二次指数平滑的预测公式

为x

i+h =s

i

+ht

i

二次指数平滑的预测结果是一

条斜的直线。

三次指数平滑在二次指数平滑的基础上保留了季节性的信息,使得其可以预测带有季节性的时间序列。三次指数平滑添加了一个新的参数p 来表示平滑后的趋势。

三次指数平滑有累加和累乘两种方法,下面是累加的三次指数平滑

s

i =α(x

i-

p

i-k

)+(1-α)(s

i-1

+t

i-1

)

t

i =?(s

i

-s

i-1

)+(1-?)t

i-1

p

i =γ(x

i

-s

i

)+(1-γ)p

i-k

其中k为周期

累加三次指数平滑的预测公式为:

x

i+h =s

i

+ht

i

+p

i-k+(h mod k)

注意:数据之魅P88此处

有错误,根据Wikipedia修正。

下式为累乘的三次指数平滑:

s

i =αx

i

/p

i-k

+(1-α)(s

i-1

+t

i-1

)

t

i =?(s

i

-s

i-1

)+(1-?)t

i-1

p

i =γx

i

/s

i

+(1-γ)p

i-k

其中k为周期

累乘三次指数平滑的预测公式为:

x

i+h =(s

i

+ht

i

)p

i-k+(h mod k)

注意:数据之魅P88

此处有错误,根据Wikipedia修正。

α,?,γ的值都位于[0,1]之间,可以多试验几次以达到最佳效果。

s,t,p初始值的选取对于算法整体的影响不

是特别大,通常的取值为s

0=x

,t

=x

1

-x

,累加时

p=0,累乘时p=1.

我们使用DataMarket的International Airline Passengers数据来测试累加和累乘三次指数平滑算法的性能,该数据记录的是每月的国际航线乘客数:

下图为使用累加三次指数平滑进行预测的效果:其中红色为源时间序列,蓝色为预测的时间序列,α,?,γ的取值为0.45,0.2,0.95:

下图为累乘三次指数平滑进行预测的效果,α,?,γ的取值为0.4,0.05,0.9:

可以看到三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息,在

International Airline Passengers数据集上累乘平滑指数算法的效果更好。

残差检验

a. 用相关计量软件: 比如说E-VIEWS检查残差的分布。如果残差分布具有明显和圆润的线性分布图像,说明自相关性存在的可能性很高。反之,无规则波动大的分布图像显示出相关性微弱。

自相关性判断方法1例子比如,以上图片,左边较为圆润的分布就显示出自相关性的存在,右边波动大的则反之。

b.Durbin-Watson Statistics(德宾—瓦特逊检验):假设time series模型存在自相关性,我们假设误差项可以表述为Ut=ρ*Ut-1+ε. 利用统计检测设立假设,如果ρ=o.则表明没有自相关性。Durbin-Watson统计量(后面建成DW 统计量)可以成为判断正、负、零(无)相关性的工具。DW统计量:d=∑(Ut-Ut-1)^2/∑ut^2≈2*(1-ρ).如果d=2

则基本没有自相关关系,d靠近0存在正的相关关系,d靠近4则有负的相关关系。[1]

c. Q-Statistics 以(box-pierce)- Eviews( 7th version第七版本)为例子:很多统计计量软件软件提供Q test来检测,这里用Eviews为例子。 Q的统计量(test statistics)为Q=n*∑ρ^2. 零假设null hypothesis H0=0和方法2的含义一样。如果零假设证明失败,则对立假设ρ≠0成立,意味着有自相关性。

D,BOX-LJUNG统计量

LB检验的原假设和备择假设分别为:

H0: 原本的数据都是独立的,即总体的相关系数为0,能观察到的某些相关仅仅产生于随机抽样的误差。即\hat{\rho}^2_1=\hat{\rho}^2_2=...=\hat{\r ho}^2_h,其中h是人为给定的,有的时候我们在软件中仅仅给定一个上界,而不是具体的h。 Ha: 原本的数据不是独立的,即至少存在某个

\hat{\rho}^2_k \neq 0,其中k\leqslant h。

构造的统计量是:

,其中n是样本数量,\hat{\rho}^2_k是样本k 阶滞后的相关系数,该统计量服从自由度为h的卡方分布。给定显著性水平\alpha,则拒绝域是Q > \chi_{1-\alpha,h}^2。接受原假设意味着,认为原序列是白噪声序列,否则认为序列存在相关性。

统计基础知识第五章时间序列分析习题及答案

第五章时间序列分析 一、单项选择题 1.构成时间数列的两个基本要素是( C )(2012年1月) A.主词和宾词 B.变量和次数 C.现象所属的时间及其统计指标数值 D.时间和次数 2.某地区历年出生人口数是一个( B )(2011年10月) A.时期数列 B.时点数列 C.分配数列 D.平均数数列 3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10) A.时期指标 B.时点指标 C.前者是时期指标,后者是时点指标 D.前者是时点指标,后者是时期指标 4.累计增长量( A ) (2010年10) A.等于逐期增长量之和 B.等于逐期增长量之积 C.等于逐期增长量之差 D.与逐期增长量没有关系 5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10) 万元万元万元万元 6.下列指标中属于时点指标的是( A ) (2009年10) A.商品库存量 B.商品销售量 C.平均每人销售额 D.商品销售额 7.时间数列中,各项指标数值可以相加的是( A ) (2009年10) A.时期数列 B.相对数时间数列 C.平均数时间数列 D.时点数列 8.时期数列中各项指标数值( A )(2009年1月) A.可以相加 B.不可以相加 C.绝大部分可以相加 D.绝大部分不可以相加 10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月) %+15%+18%%×15%×18% C.(108%+115%+118%)-1 %×115%×118%-1 二、多项选择题 1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月) A.序时平均数 B.动态平均数 C.静态平均数 D.平均发展水平 E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月) A.相邻两个环比发展速度之商等于相应的定基发展速度 B.环比发展速度的连乘积等于定基发展速度

应用时间序列分析第4章答案

河南大学: 姓名:汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x@@; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

第六章 时间序列分析 补充作业 参考答案

第六章 时间序列分析 补充作业 参考答案 1、解: (1)、各季平均每月总产值 一季度平均每月总产值:)(34003 3600 340032001 210万元=++= ++++= n a a a a a n 二季度平均每月总产值:)(38503 3900385038001 210万元=++=++++= n a a a a a n 三季度平均每月总产值:)(42003 4400420040001 210万元=++=++++= n a a a a a n 四季度平均每月总产值:)(33.463334800460045001 210万元=++=++++= n a a a a a n (2)、全年平均每月总产值: )(83.40204 33 .46334200385034001210万元=+++=++++= n a a a a a n 或: )(83.402012 4800 46004500440042004000390038503800360034003200万元=+++++++++++= a 2、解: 2006年平均存款余额: ) (21.9612 5.115435313 2102 10052100903290971297952221 1221110万元==+++?++?++?++?+=+++++=∑=-n i i n n n f f a a f a a f a a a 3、解: 年份 2001 2002 2003 2004 2005 2006 0a 1a 2a 3a 4a 5a 发展水平(万元) 500 550 625 775 968.75 1023 逐期增长量(万元) —— 50 75 150 193.75 54.25 累计增长量(万元) —— 50 125 275 468.75 523 平均增长量(万元) —— 50 62.5 91.67 117.19 104.6 环比发展速度(%) —— 110 113.64 124 125 105.6 定基发展速度(%) 100 110 125 155 193.75 204.6 环比增长速度(%) —— 10 13.64 24 25 5.6 定基增长速度(%) 0 10 25 55 93.75 104.6 增长1%的绝对值(万元) —— 5 5.5 6.25 7.75 9.69

spss教程第四章时间序列分析

第四章时间序列分析 由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。.为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。因此学习时间序列分析方法是非常必要的。 本章主要内容: 1. 时间序列的线图,自相关图和偏自关系图; 2. SPSS 软件的时间序列的分析方法季节变动分析。 §4.1 实验准备工作 §4.1.1 根据时间数据定义时间序列 对于一组示定义时间的时间序列数据,可以通过数据窗口的Date菜单操作,得到相应时间的时间序列。定义时间序列的具体操作方法是: 将数据按时间顺序排列,然后单击Date Define Dates打开Define Dates对话框,如图4.1所示。从左框中选择合适的时间表示方法,并且在右边时间框内定义起始点后点击OK,可以在数据库中增加时间数列。 图4.1 产生时间序列对话框 §4.1.2 绘制时间序列线图和自相关图 一、线图 线图用来反映时间序列随时间的推移的变化趋势和变化规律。下面通过例题说明线图的制作。 例题4.1:表4.1中显示的是某地1979至1982年度的汗衫背心的零售量数据。

试根据这些的数据对汗衫背心零售量进行季节分析。(参考文献[2]) 表4.1 某地背心汗衫零售量一览表单位:万件 1979 1980 1981 1982 1 23 30 18 22 2 3 3 37 20 32 3 69 59 92 102 4 91 120 139 155 5 192 311 324 372 6 348 334 343 324 7 254 270 271 290 8 122 122 193 153 9 95 70 62 77 10 34 33 27 17 11 19 23 17 37 12 27 16 13 46 解:根据表4.1的数据,建立数据文件SY-11(零售量),并对数据定义相应的时间值,使数据成为时间序列。为了分析时间序列,需要先绘制线图直观地反映时间序列的变化趋势和变化规律。具体操作如下: 1. 在数据编辑窗口单击Graphs Line,打开Line Charts对话框如图4. 2.。从中选择Simple单线图,从Date in Chart Are 栏中选择Values of individual cases,即输出的线图中横坐标显示变量中按照时间顺序排列的个体序列号,纵坐标显示时间序列的变量数据。 图4.2 Line Charts对话框 2. 单击Define,打开对话框如图4.4所示。选择分析变量进入Line Represents,,在Category Labels 类别标签(横坐标)中选择Case number数据个数(或变量年 度 月 份

第六章时间序列分析题库1-0-8

第六章时间序列分析 题库1-0-8

问题: [单选]下列数列中属于时间数列的是() A.学生按学习成绩分组形成的数列 B.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列 C.工业企业按产值高低形成的数列 D.降水量按时间先后顺序排列形成的数列

问题: [单选]评比城市间的社会发展状况,将各城市每人分摊的绿化面积按年排列的时间数列是属于。 A.时期数列 B.时点数列 C.相对指标时间数列 D.平均指标时间数列 相对指标时间数列是指将同一相对指标的数值按其发生的时间先后顺序排列而成的数列。题中,平均每人分摊绿化面积是一个强度相对指标,将其按年排列的时间数列属于相对指标时间数列。

问题: [单选]已知某商业集团2008-2009年各季度销售资料,如表5-1所示。 表5-1 则表5-1中,属于时期数列的有。 A.A.1、2、3 B.1、3、4 C.2、4 D.1、3 1、3的每个数值反映的是现象在一段时期内发展过程的绝对数之和,故属于时期指标数列;2的每个数值反映的是现象在某一时间上所达到的绝对水平,故属于时点指标数列;4是把同一相对指标在不同时间上的数值按时间先后顺序排列而形成的数列,故属于相对指标数列。 (天津11选5 https://www.360docs.net/doc/cc5647558.html,)

问题: [单选]下列对时点数列特征的描述,错误的一项是。 A.时点数列中的指标数值可以相加 B.时点数列中指标数值的大小与计算时间间隔长短无关 C.时点数列中各指标数值的取得,是通过一次性调查登记而来的 D.时点数列属于总量指标时间数列 A项,时点数列中的指标数值不能相加,相加没有意义。

《时间序列分析及应用:R语言》读书笔记

《时间序列分析及应用:R语言》读书笔记 姓名:石晓雨学号:1613152019 (一)、时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型;基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报。通常我们不能假定观测值独立取自同一总体,时间序列分析的要点是研究具有相关性质的模型。 (二)、下面是书上的几个例子 1、洛杉矶年降水量 问题:用前一年的降水量预测下一年的降水量。 第一幅图是降水量随时间的变化图;第二幅图是当年降水量与去年降水量散点图。 win.graph(width=4.875, height=2.5,pointsize=8) #这里可以独立弹出窗口 data(larain) #TSA包中的数据集,洛杉矶年降水量 plot(larain,ylab='Inches',xlab='Year',type = 'o') #type规定了在每个点处标记一下 win.graph(width = 3,height = 3,pointsize = 8) plot(y = larain,x = zlag(larain),ylab = 'Inches',xlab = 'Previous Year Inches')#zlag 函数(TSA包)用来计算一个向量的延迟,默认为1,首项为NA

从第二幅图看出,前一年的降水量与下一年并没有什么特殊关系。 2、化工过程 win.graph(width = 4.875,height = 2.5,pointsize = 8) data(color) plot(color,ylab = 'Color Property',xlab = 'Batch',type = 'o') win.graph(width = 3,height = 3,pointsize = 8) plot(y = color,x = zlag(color),ylab = 'Color Property',xlab = 'Previous Batch Color Property') len <- length(color) cor(color[2:len],zlag(color)[2:len])#相关系数>0.5549 第一幅图是颜色属性随着批次的变化情况。

第六章 时间序列分析

第六章时间序列分析 重点: 1、增长量分析、发展水平及增长量 2、增长率分析、发展速度及增长速度 3、时间数列影响因素、长期趋势分析方法 难点: 1、增长量与增长速度 2、长期趋势与季节变动分析 第一节时间序列的分析指标 知识点一:时间序列的含义 时间序列是指经济现象按时间顺序排列形成的序列。这种数据称为时间序列数据。 时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。 时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。表现了现象在时间上的动态变化,故又称为动态数列。 一个完整的时间数列包含两个基本要素: 一是被研究现象或指标所属的时间; 另一个是该现象或指标在此时间坐标下的指标值。 同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。 研究时间数列的意义:了解与预测。 [例题·单选题]下列数列中哪一个属于时间数列(). a.学生按学习成绩分组形成的数列 b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列 c.工业企业按产值高低形成的数列 d.降水量按时间先后顺序排列形成的数列 答案:d 解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。 知识点二:增长量分析(水平分析)

一.发展水平 发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用y t (t=1,2,3,…,n) 。 在绝对数时间数列中,发展水平就是绝对数; 在相对数时间数列中,发展水平就是相对数或平均数。 几个概念:期初水平y 0,期末水平y t ,期间水平(y 1 ,y 2 ,….y n-1 ); 报告期水平(研究时期水平),基期水平(作为对比基础的水平)。 二.增长量 增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为: 增长量=报告期水平-基期水平 根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。 1.逐期增长量:是报告期水平与前一期水平之差,用公式表示为: △ = y n - y n-1 (i=1,2,…,n) 2.累计增长量:是报告期水平与某一固定时期水平(通常是时间序列最初水平)之差,用公式表示为: △ = y n - y (i=1,2,…,n)(i=1,2,…,n) 二者关系:逐期增长量之和=累计增长量 3.平均增长量 平均增长量是时间序列中的逐期增长量的序时平均数,它表明现象在一定时段内平均每期增加(减少)的数量。 一般用累计增长量除以增长的时期数目计算。 (y n - y )/n [例题·单选题]某社会经济现象在一定时期内平均每期增长的绝对数量是()。 a.逐期增长量 b.累计增长量 c.平均增长量 d.增长速度 答案:c 解析:平均每期增长的绝对数量是平均增长量。 知识点三:增长率分析(速度分析) 一.发展速度

第五章 时间序列的模型识别

第五章时间序列的模型识别 前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下: 图5.1 建立时间序列模型流程图 在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。 对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关

应用时间序列分析 第5章

佛山科学技术学院 应用时间序列分析实验报告 实验名称第五章非平稳序列的随机分析 一、上机练习 通过第4章我们学习了非平稳序列的确定性因素分解方法,但随着研究方法的深入和研究领域的拓宽,我们发现确定性因素分解方法不能很充分的提取确定性信息以及无法提供明确有效的方法判断各因素之间确切的作用关系。第5章所介绍的随机性分析方法弥补了确定性因素分解方法的不足,为我们提供了更加丰富、更加精确的时序分析工具。 5.8.1 拟合ARIMA模型 【程序】 data example5_1; input x@@; difx=dif(x); t=_n_; cards; 1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.38 5.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -1 6.22 -19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44 -23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29 -9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80 ; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; estimate p=1 noint; forecast lead=5id=t out=out; proc gplot data=out; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay; symbol1c=black i=none v=star; symbol2c=red i=join v=none; symbol3c=green I=join v=none;

时间序列分析——基于R(王燕)第四章

第四章:非平稳序列的确定性分析 题目一: ()()()()()()()12312123121231 ?14111??2144451 . 1616T T T T T T T T T T T T T T T T T T T T T x x x x x x x x x x x x x x x x x x x x x -------------=+++?? =+++=++++++????=+++ 题目二: 因为采用指数平滑法,所以1,t t x x +满足式子()11t t t x x x αα-=+-,下面式子 ()()1 1111t t t t t t x x x x x x αααα-++=+-??? =+-?? 成立,由上式可以推导出()()11111t t t t x x x x αααα++-=+-+-????,代入数据得:2 =5 α. 题目三: ()()()2122192221202019200 1 ?1210101113=11.251 ? 1010111311.2=11.04.5 ???10.40.6.i i i x x x x x x x x αα-==++++=++++===+-=?∑(1)(2) 根据程序计算可得:22?11.79277.x = ()222019181716161?2525x x x x x x =++++(3)可以推导出16,0.425a b ==,则4 25 b a -=-. 题目四: 因为,1,2,3, t x t t ==,根据指数平滑的关系式,我们可以得到以下公式: ()()()()()()() ()()()()()()()() 2 2 1 2 21 11121111 1111311. 2t t t t t t t x t t t x t t αααααααααααααααααααα----=+-------=-+---+--+++2+, + +2+用(1)式减去(2)式得: ()()()()()2 21=11111. t t t t x t αααααααααααα------------- 所以我们可以得到下面的等式: ()()()()()()1 2 2111=11111=. t t t t t x t t αααααααα +---------- -------

时间序列分析及其应用

时间序列分析及其应用 摘要:本文介绍了目前时间序列分析的发展状况以及应用情况,对常见的几种趋势拟合及其预测方法进行了简要叙述。 关键词:时间序列趋势建模 1 引言 时间序列分析是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来 事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。 2 时间序列分析的趋势及建模 时间序列分析的成分有:(1)长期趋势,即时间序列随时间的变化而逐渐增加或减少的长期变化的趋势;(2)季节变动,即时间序列在一年中或固定时间内,呈现出的固定规则的变动;(3)循环变动,即

沿着趋势线如钟摆般地循环变动;(4)不规则变动,即在时间序列中由于随机因素影响所引起的变动。 时间序列建模基本步骤是:用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据;根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。然后辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。 主要的趋势拟合方法有平滑法、趋势线法和自回归模型。对于很多情况,时间序列具有季节趋势,比如气象学中的气温、降雨量,水文学中雨季和干季的河流水量等等。这就需要分析时间序列时,将季节趋势考虑在内。季节性预测法的基本步骤是(1)对原时间序列求移动平均,以消除季节变动和不规则变动,保留长期趋势;(2)将原序列y除以其对应的趋势方程值(或平滑值),分离出季节变动(含不规则变动),即季节系数=tsci/趋势方程值(tc或平滑值);(3)将月度(或季度)的季节指标加总,以由计算误差导致的值去除理论加总值,得到一个校正系数,并以该校正系数乘以季节性指标从而获得调整后季节性指标;(4)求预测模型,若求下一年度的预测值,延长趋势线即可;若求各月(季)的预测值,需以趋势值乘以各月份(季

应用时间序列分析简答题

1.简述非平稳时间序列的确定性因素分解方法及其优缺点:确定性因素分解方法产生于长期的实践。序列的各种变化可以归纳为三大因素的影响:(1)长期趋势波动,包括长期趋势和无固定周期的循环波动(2)季节性变化,包括所有具有固定周期的循环波动(3)随机波动,包括除了长期趋势波动和季节性变化之外的其他因素的综合因素。优点:原理简单;操作方便;易于理解。缺点:(1)只能提取强劲的确定性信息,对随机性信息浪费严重(2)它把所有序列的变化归纳为四大因素的综合影响,却始终无法提供明确有效的方法判断各大因素之间明确的作用关系。 2.比较传统的统计分析与时间序列分析数据结构并说明引入序列平稳性的意义: (1)根据数理统计学常识,传统的统计分析的随机变量越少越好,而每个变量获得的样本信息越多越好。因为随机变量越少,分析的过程越简单,而样本容量越大,分析的结果越可靠。(2)时间序列数据分析的结构有它的特殊性。对随机序列{…,1x ,2x ,…t x …}而言,它在任意时刻t 的序列值t x 都是一个随机变量,而且由于时间的不可重复性,该变量在任意一个时刻只能获得唯一的一个样本观察值。(3)时间序列分析的数据结构的样本信息太少,如果没有其他的辅助信息,通常这种数据结构是没有办法进行分析的。序列的平稳性概念的提出可以有效地解决这个困难。 3.什么是模型识别?模型识别的基本原则是什么?计算出样本自相关系数和偏自相关系数的值之后,就要根据他们表现出来的性质,选择适当的ARMA 模型拟合观察值序列。这个根据样本自相关关系数和偏自相关系数的性质估计自相关阶数p ?和移动平均阶数q ?的过程即是模型识别过程。ARMA 模型定阶基本原则如下表: 4.简述单整和协整分析的含义。(1)单整是处理伪回归问题的一种方式。如果一个时间序列经过一次差分变成平稳的,则称原序列是1阶单整的,记为I (1)。一般地,如果时间序列经过d 次差分后变成平稳序列,而经过d-1次差分仍不平稳,则称原序列是d 阶单整序列,记为I (d )。(2)假定回归模型t k 1i it i 0t y εχββ++=∑=

时间序列分析第五章作业

时间序列分析第五章作业 班级:09数学与应用数学 学号: 姓名: 习题5.7 1、 根据数据,做出它的时序图及一阶差分后图形,再用ARIMA 模型模拟该序列的发展,得出 预测。根据输出的结果,我们知道此为白噪声,为非平稳序列,同时可以得出序列t x 模型 应该用随机游走模型(0,1,0)模型来模拟,模型为:,并可以预测到下一天 的收盘价为296.0898。 各代码: data example5_1; input x@@; difx=dif(x); t=_n_; cards ; 304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271 273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289 ; proc gplot ; plot x*t difx*t; symbol v =star c =black i =join; proc arima data =example5_1; identify Var =x(1) nlag =8 minic p = (0:5) q = (0:5); estimate p =0 q =0 noint; forecast lead =1 id =t out =results; run ; proc gplot data =results; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay ; symbol1 c =black i =none v =star; symbol2 c =red i =join v =none; symbol3 c =green i =join v =none l =32; run ; 时序图:

应用时间序列分析第4章答案

大学: :汪宝班级:七班学号:1122314451 班级序号:68 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 解:具体解题过程如下:(本题代码我是做一问写一问的) 1:观察时序图: data wangbao4_5; input x; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; 分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展. X t=a+b t+I t t=1,2,3,…,60 E(I t)=0,var(I t)=σ2 其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

时间序列分析方法第章谱分析完整版

时间序列分析方法第章 谱分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τ Y 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。 在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为: 上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞ -}{t Y 性质时所发挥的重要程度如何。如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。 § 母体谱 我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱: 注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: 利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 (1)非平稳 (2) (3)典型的具有单调趋势的时间序列样本自相关图 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

(1)自相关系数为: (2)平稳序列 (3)白噪声序列 ,序列不能视为纯随机序列。LB=,LB统计量对应的分位点为,P值为。显著性水平=0.05 (1)时序图与样本自相关图如下 (2)非平稳 (3)非纯随机

(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 1715φ=,2115 φ= ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 证明: 该序列的特征方程为:32--c 0c λλλ+=,解该特征方程得三个特征根: 11λ= ,2λ= 3λ= 无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。证毕。 (1)错 (2)错 (3)对 (4)错 (5) 该模型有两种可能的表达式:11 2 t t t x εε-=-和12t t t x εε-=-。 将123100.50.8t t t t t x x C εεε---=++-+等价表达为 ()23 23223310.82010.510.8(10.50.50.5)t t t B CB x B B CB B B B εε-+-=-=-+++++ 展开等号右边的多项式,整理为

时间序列分析第五章上机指导

上机指导 第五章 拟合ARIMA模型 由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在了ARIMA过程中。我们已经在第3章进行了ARMA模型拟合时介绍了ARIMA过程的基本命令格式。再次以临时数据集example5_1的数据为例介绍ARIMA模型拟合与ARMA模型拟合的不同之处。 data example5_1; input x@@; difx=dif(x); t=_n_; cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; run; 输出时序图显示这是一个典型的非平稳序列。如图5-49所示

图5-49 序列x时序图 考虑对该序列进行1阶差分运算,同时考察查分后序列的平稳性,在原程序基础上添加相关命令,程序修改如下: data example5_1; input x@@; difx=dif(x); t=_n_; cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1);

estimate p=1; forecast lead=5 id=t ; run; 语句说明: (1)DATA步中的命令“difx=dif(x);”,这是指令系统对变量x进行1阶差分,差分后的序列值赋值给变量difx。其中dif()是差分函数,假如要差分的变量名为x,常见的几种差分表示为: 1阶差分:dif(x) 2阶差分:dif(dif(x)) k步差分:difk(x) (2)我们在GPLOT过程中添加绘制了一个时序图“difx*t”,这是为了直观考察1阶差分后序列的平稳性。所得时序图如图5-50所示。 图5-50 序列difx时序图 时序图显示差分后序列difx没有明显的非平稳特征。 (3)“identify var=x(1);”,使用该命令可以识别查分后序列的平稳性、纯随机性和适当的拟合模型阶数。其中x(1)表示识别变量x的1阶差分后序列。SAS支持多种形式的差分序列识别: var=x(1),表示识别变量x的1阶查分后序列Δxt;

时间序列分析方法 第06章 谱分析

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: ∑∞ =-+=0 j j t j t Y εψ μ 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞∞ -}{t Y 的性质。 在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为: ωωωδωωωαμπ π d t d t Y t )sin()()cos()(0 ??+ + = 上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞ -}{t Y 性质时所发挥的重要程度如何。如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。 §6.1 母体谱 我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第 j 个自协方差为: )])([(),cov(μμγ --==--j t t j t t j Y Y E Y Y 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: ∑+∞ -∞==j j j Y z z g γ)( 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)e xp (ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱: ∑+∞ -∞ =--= = j j i j i Y Y e e g s ωω γ π π ω21)(21)( 注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞ ∞-}{j γ,原则上都可 以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: )sin()cos(j i j e j i ωωω-=- 因此,谱函数可以等价地表示成为: ∑+∞ -∞ =-= j j Y j i j s )]sin()[cos( 21)(ωωγ π ω 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: ? ?????----++-=∑+∞=1 0)]sin()sin()cos()[cos(21)]0sin()0[cos(21 )(j j Y j i j i j j i s ωωωωγπγπω

(完整版)应用时间序列第四章第5题答案

第四章 5:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。 data wangbao4_5; input x@@; time=1949+_n_-1; cards; 54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802 ; proc gplot data=wangbao4_5; plot x*time=1; symbol1c=black v=star i=join; run; proc autoreg data=wangbao4_5; model x=time; output out=out p=wangbao4_5_cup; run; proc gplot data=out; plot x*time=1 wangbao4_5_cup*time=2/overlay; symbol2c=red v=none i=join w=2l=3; run; proc forecast data=wangbao4_5 method=stepar trend=2 lead=5 out=out outfull outest=est; id time; var x; proc gplot data=out; plot x*time=_type_/href=2008; symbol1i=none v=star c=black; symbol2i=join v=none c=red; symbol3i=join v=none c=black l=2; symbol4i=join v=none c=black l=2; run; 分析过程: 1、时序图

相关文档
最新文档