血清脂蛋白电泳原理和操作方法

血清脂蛋白电泳原理和操作方法

如对您有帮助,可购买打赏,谢谢

血清脂蛋白电泳原理和操作方法

导语:血清脂蛋白,当前在临床应用方面,它的作用还是比较大的,所以对于很多的患者,就想全面了解一下血清脂蛋白电泳原理和操作方法,为了你能尽

血清脂蛋白,当前在临床应用方面,它的作用还是比较大的,所以对于很多的患者,就想全面了解一下血清脂蛋白电泳原理和操作方法,为了你能尽快的了解,下面内容就做了详细的介绍,你可以充分的了解一下,相信会对自己以后有帮助.

原理

脂蛋白是在碱性pH条件下,以琼脂糖凝胶或醋酸纤维条带作为载体,从阳性方向来进行分离的。形成的蛋白区带可以用脂肪染料如苏丹黑或者油红染色,它们只用于脂蛋白染色。在琼脂中可能会有附加的聚阴离子和二价阳离子沉淀。脂蛋白沉淀带用光密度计可立即定量分析。脂蛋白区带也可以被切开后重新溶解,对各区带进行胆固醇浓度的直接酶法检测。另外,有报道在用薄层琼脂糖凝胶上进行电泳分离后,可直接检测各脂蛋白组分中的胆固醇含量的方法。

操作方法

(1)将缓冲液加入电泳槽内,调节两侧槽内的缓冲液,使其处于同一平面。

(2)醋酸纤维素薄膜的准备:取醋酸纤维素薄膜(2cm×8cm)在毛面的一端(负极侧)1.5cm处用铅笔轻划一横线,做点样标记。编号,并标明正、负极后,将薄膜置于巴比妥-巴比妥钠缓冲液中浸泡,待充分浸透后(一般为20min)取出,夹于洁净滤纸中间吸去多余的缓冲液。

(3)将醋酸纤维素薄膜毛面向上贴于电泳槽支架上拉直。用微量吸管吸取无溶血血清3~5μl于横线处沿横线加样,样品应与薄膜的边缘保

预防疾病常识分享,对您有帮助可购买打赏

血清蛋白醋酸纤维薄膜电泳及其定量 实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心 实验名称血清蛋白醋酸纤维薄膜电泳及其定量 实验日期实验地点 合作者指导老师 评分教师签名批改日期 一、实验目得 1、1、学习醋酸纤维薄膜电泳得基本原理与操作方法; 1、2、了解电泳技术得一般原理; 1、3、掌握电泳分离血清蛋白质及其定性定量得方法。 二、实验原理 2、1、血清中各种蛋白质得等电点不同,一般都低于pH7、4。它们在pH8、6得缓冲液中均解离带负电荷,在电场中向正极移动.由于血清中各种蛋白质分子大小、形状及所带得电荷量不同,在醋酸纤维素薄膜上电泳得速度也不同。因此可以将它们分离

为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带. 2、2、血清中不同蛋白质得等电点、分子量及含量 血清蛋白质等电点分子量占总蛋白 得% 清蛋白4、6469,000 57~72 α1-球蛋白5、06 200,000 2~5 α2—球蛋白 5、06 300,000 4~9 β-球蛋白 5、12 90,000~150,000 6、5~12 γ—球蛋白 6、85~7、3 156,000~950,000 12~20 缓冲液pH=8、6,pI<pH. 血清蛋白带负电荷,在电场中向正极移动。 预测血清蛋白电泳区带图 血清蛋白依次分为清蛋白,球蛋白得α1、α2、β、γ五个区带 2、3、①膜条经过氨基黑10B染色后显出清晰色带;②各色带蛋白质含量与染料结 合量基本成正比;③可将各色带剪开,分别溶于碱性溶液中;④用分光光度法计算各种 蛋白质得百分数。

三、材料与方法: 3、1、实验材料: 3、1、1、实验试剂:①样品:健康人血清(新鲜、无溶血);②巴比妥—巴比妥钠缓冲液(pH8、6,离子强度0、06mol/L);③氨基黑10B染色液;④漂洗液;⑤洗脱液:0、4mol/NaOH溶液。 3、1、2、实验器材:①V-1100分光光度计(×1);②恒温水浴箱(×1); ③试管(×6)、试管架(×1);④1000μL加样枪(×1)、加样枪架(×1);⑤醋酸纤维薄膜(2cm*8cm,厚度120μm);⑥培养皿(×5);⑦点样器或载玻片(×1);⑧平头镊子(×2);⑨剪刀(×1);⑩电泳槽(×1);?直流稳压电泳仪(×1) 3、2、实验步骤

电泳设备基本原理

电泳设备基本原理
阴极电泳涂料所含的树脂带有碱性基团,经酸中和后成盐而溶于水。通直流 电后,酸根负离子向阳极移动,树脂离子及其包裹的颜料粒子带正电荷向阴极移 动,并堆积在阴极上,这便是电泳涂装的基本原理(俗称镀漆)。电泳涂装是一 个很杂乱的电化学反响,一般以为至少有电解、电泳、电堆积、电渗这四种效果 一起发作。 1、 电解
任何一种导电液体在通电时发作分化的现象,如水的电解 能分化成 H2 和 O2。 2、 电泳
在导电介质中,带电荷的胶体粒子在电场的效果下向相反电极移动的现 象,如阴极电泳中带正电荷的胶体粒子(R3N H)夹藏和吸附颜料粒子由电泳进 程移向阴极。 3、电堆积
漆粒子在电极上的堆积现象。电堆积的第一步是 H2O 的电化学分化,这一 反响至使在阴极外表区发作高碱性(OH)界面层,当阳离子(树脂和颜料)与 OH 反响变成不溶性时,就发作涂膜的堆积。 4、电渗
刚堆积到被涂物外表的涂膜是半浸透的膜,在电场的继续效果下,涂膜内 部所含的水分从涂膜中渗分出来移向槽液,使涂膜脱水,这种现象称电渗。电渗 使亲水的涂膜变为涂膜,脱水而使涂膜细密化。
制造进程 它包含四个进程:
1 )电解(分化) 在阴极反响开始为电解反响,生成氢气及氢氧根离 子 OH ,此反响构成阴极面构成一高碱性边界层,当阳离子与氢氧根效果成为 不溶于水的物质,涂膜堆积,方程式为:H2O→OH+H 2 )电泳动(泳动、搬迁)阳离子树脂及 H+ 在电场效果下,向阴极移动, 而阴离子向阳极移动进程。 3 )电堆积(分出) 在被涂工件外表,阳离子树脂与阴极外表碱性效果, 中和而分出不堆积物,堆积于被涂工件上。 4 )电渗(脱水) 涂料固体与工件外表上的涂膜为半透明性的,具有大都 毛细孔,水被从阴极涂膜中排渗出来,在电场效果下,引起涂膜脱水,而涂膜则 吸附于工件外表,而完结整个电泳进程。
工艺特色 电泳外表处理工艺的特色: 电泳漆膜具有涂层饱满、均匀、平坦、润
滑的长处,电泳漆膜的硬度、附着力、耐腐、冲击功能、浸透功能显着优于其它 涂装工艺。
(1)选用水溶性涂料,以水为溶解介质,节省了很多有机溶剂,大大下降了 大气污染和环境危害,安全卫生,一起避免了火灾的危险;
(2)涂装功率高,涂料丢失小,涂料的利用率可达 90%~95%; (3)涂膜厚度均匀,附着力强,涂装质量好,工件各个部位如内层、洼陷、 焊缝等处都能取得均匀、滑润的漆膜,处理了其他涂装办法对杂乱形状工件的涂

实验三 聚丙烯酰胺凝胶盘状电泳分离血清脂蛋白

实验三聚丙烯酰胺凝胶盘状电泳分离血清脂蛋白 课程名称:生物化学与分子生物学实验课年级:2005 专业、层次:授课教师:符伟玉 职称:讲师学时:3学时 基本教材:自编《生物化学与分子生物学实验指导》 教学目的与要求: 1、掌握聚丙烯酰胺凝胶电泳的原理,了解其操作方法。 2、了解血清脂蛋白各组分的分离情况。 大体内容与时间安排: 1、聚丙烯酰胺凝胶电泳的原理5min 2、聚丙烯酰胺凝胶电泳的操作步骤及示范10min 3、聚丙烯酰胺凝胶电泳的注意事项5min 4、学生做实验100min 教学方法:讲授式+启发式 教学重点、难点: 重点:1、聚丙烯酰胺凝胶电泳的原理 2、聚丙烯酰胺凝胶电泳的操作步骤 难点:1、聚丙烯酰胺凝胶电泳的原理 2、实验操作中的灌胶和点样

一、实验原理 (一)浓缩效应 在pH=6.7的浓缩胶中带电粒子的泳动速度为: Cl->protein>Gly,蛋白质样品夹在Cl-和Gly之间被挤压成一条狭窄的区带,使蛋白质样品浓缩。 (二)电荷效应 不同蛋白质pI不同,在相同pH值下所带电荷不同,因此在相同电场强度作用下,在电场中的移动(泳动)速度不同,可以根据这一效应把蛋白质分成不同的区带。 (三)分子筛效应所聚合形成的PAG为多孔网状结构,对大分子物质的穿透有一定阻力,蛋白质在通过具有均一孔径的凝胶时,因颗粒大小不同,形状规则程度不同,所受阻力也不相同。利用本效应也可以将蛋白质分离为不同的区带。 颗粒大形状不规则的分子→阻力↑→电泳v ↓颗粒小, 球形分子→阻力↓→电泳v ↑将血清脂蛋白用苏丹黑B丙二醇预染,加于聚丙烯酰胺凝胶柱上进行电泳。由于聚丙烯酰胺凝胶电泳具有浓缩效应、电荷效应和分子筛效应,因此它的分辨率高,可将血清脂蛋白各组分清晰分开。 二、操作步骤 1、4%凝胶制备:将清洁的0.5 ×1.5cm玻璃管若干支垂直插在橡皮座上,以备 制胶。从冰箱中取出下列试剂,在室温中平衡,然后在一小三角瓶中依次加入: 30% Acr 1.3ml Tris-EDTA-Na2缓冲液 1.2m1 蒸馏水7.3ml TEMED(四甲基乙二胺) 0.01ml 10%过硫酸铵溶液0.5m1 (加入过硫酸铵轻轻混合后即开始聚合。因此, 装柱要求在5min内完成。) 2、装柱:迅速用吸管吸取上述混合液沿管柱注入玻管中,每管0.8ml-1.0ml,随即 用滴管经针头沿管壁缓慢加入蒸馏水约0.5cm高度以隔氧,室温静置30min,

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用 摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。 关键词:毛细管电泳原理分离模式应用 1概述 毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。但他没有完全克服传统电泳的弊端[1]。现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。C E只需高压直流电源、进样装置、毛细管和检测器。 毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

血清蛋白质醋酸纤维薄膜电泳实验报告

血清蛋白质醋酸纤维薄膜电泳实验报告 实验名称血清蛋白醋酸纤维薄膜电泳及其定量 实验日期实验地点xx实验室 合作者xxx 指导老师xxx 评分教师签名批改日期 一、实验目的 1.1.学习醋酸纤维薄膜电泳的基本原理和操作方法; 1.2.了解电泳技术的一般原理; 1.3.掌握电泳分离血清蛋白质及其定性定量的方法。 二、实验原理 2.1.血清中各种蛋白质的等电点不同,一般都低于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,在醋酸纤维素薄膜上电泳的速度也不同。 血清蛋白质等电点分子量占总蛋白的% 清蛋白 4.64 69,000 57~72 α1-球蛋白 5.06 200,000 2~5 α2-球蛋白 5.06 300,000 4~9 β-球蛋白 5.12 90,000~150,000 6.5~12 γ-球蛋白 6.85~7.3 156,000~950,000 12~20 缓冲液pH=8.6,pI<pH。

血清蛋白带负电荷,在电场中向正极移动。 预测血清蛋白电泳区带图 血清蛋白依次分为清蛋白,球蛋白的α1、α2、β、γ五个区带 2.3.①膜条经过氨基黑10B染色后显出清晰色带;②各色带蛋白质含量与染料结合量基本成正比;③可将各色带剪开,分别溶于碱性溶液中;④用分光光度法计算各种蛋白质的百分数。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①样品:健康人血清(新鲜、无溶血);②巴比妥-巴比妥钠缓冲液(pH8.6,离子强度0.06mol/L);③氨基黑10B染色液;④漂洗液;⑤洗脱液:0.4mol/NaOH溶液。 3.1.2.实验器材:①V-1100分光光度计(×1);②恒温水浴箱(×1);③试管(×6)、试管架(×1);④1000μL加样枪(×1)、加样枪架(×1);⑤醋酸纤维薄膜(2cm*8cm,厚度120μm);⑥培养皿(×5);⑦点样器或载玻片(×1);⑧平头镊子(×2);⑨剪刀(×1);⑩电泳槽(×1);?直流稳压电泳仪(×1) 3.2.实验步骤 1.准备与点样:①取2×8cm的膜条;②亚光面距一端1.5cm处取一点样线;③充分浸透在巴比妥缓冲液中;④取出膜条,用滤纸吸去多余的缓冲液;⑤点样器下端粘上薄层血清;⑥垂直点样。 点样示意图:

电泳原理.pdf

电泳原理 阳极电泳用水溶性树脂是一种高酸值的羧酸盐,在水中溶解后以分子和离子平衡 状态存在于直流电场中,通电后,由于两极的电位差,离子定向移动,阴离子沉积在阳极表面,而阳离子在阴极表面获得电子还原成胺,它是一个电化学反应,包括电泳、电解、电沉 积和电渗四个同时进行的过程。 1.电泳:在直流电压作用下,分散在介质中的带电胶体粒子在电场作用下向与其所 带电荷相反的电极方面移动,叫电泳。 2.电沉积:阴离子树脂放出电子沉积在阳极表面,形成不溶水的漆膜,此过程叫电 沉积。 3.电渗:电泳逆过程,当阴离子树脂在阳极上,吸附在阳极上的介质在内渗力的作 用下,从阳极穿过沉积的漆膜进入漆液,称电渗。 4.电解:电流通过漆液时水便发生电解阴极放出氢气,阳极放出氧气,此过程 即为电解。 电泳涂料 有人说,电泳涂料可划分为三代,第一代为环氧树脂涂料,第二代为丙烯酸树脂涂料, 第三代为聚氨酯涂料。由于环氧涂料主要应用于汽车底盘,第三代主要用于阴极电泳漆,涂覆于首饰表面,故目前主要介绍第二代,即丙烯酸树脂涂料。此树脂如一团乱麻,羧基藏于里,胺基接于外,其中最先的羧基有70%被胺基取代,因其树脂中存在-COONHR,使树脂成为水溶性。铝型材表面涂覆的丙烯酸树脂多采用胺基树脂为固化剂进行交联固化,同时, 涂料分子均匀性对工艺操作有很大影响,一般说,乳化越好,分子越均匀。 涂装工艺流程 1 .除油:如有酸回收装置,推荐采用碱性除油,因碱性除油后,铝型材表面比较光亮,且 不会与后面的碱蚀发生副作用,如用碱性除油,其主要成份是 Na 2 CO 3 和NaOH。 2 .水洗:自来水洗去前道工序的酸或碱。 3 .蚀:加入碱蚀剂的碱蚀工序,会降低型材表面光亮度,但效果并不十分明显,主要应注意不可使槽中Al 3 含量过大,温度过高,否则易产生洗不去的花斑,涂漆烘干后呈黄色。 二道水洗:最好有喷淋或加大溢流,以保证清洗彻底。 除灰:用HNO 3 效果较好,但要注意加强水洗(最少二道+喷淋)。 水洗:自来水用H 2 SO 4 除灰,一道水洗即可,用HNO 3 除灰,需二道水洗 氧化:H 2 SO 4 氧化一般为20min,使氧化膜达到9u,某些公司推销的所谓的 高温氧化剂,其主要成份是一种混酸,建议不要使用,对氧化膜的色泽、硬度、可着色性均 无好处。 水洗:自来水二道加大溢流。 着色:用单锡盐、单镍盐、锡镍复合盐均可,注意不要有色差,因为色差会在 电泳涂漆后加大。 水洗:最好加喷淋,以期尽量减少对后道工序酸的带入量。 热纯水洗:要求电导率<100us/cm,温度70-80℃,PH=4-6,尤其是银白涂漆型材或氧化中电压较大的型材应在此槽中处理较长的时间,PH值可用三乙胺进行调整。

血清脂蛋白琼脂糖凝胶电泳.

实验五血清脂蛋白琼脂糖凝胶电泳 [原理]血清脂蛋白经饱和乙酰苏丹黑B染色后,以琼脂糖凝胶为载体,在pH8.6 巴比妥缓冲液中电泳分离,各种脂蛋白将分成不同区带。 [器材] 1.玻片 2.水平式电泳仪 [试剂] 1.0.5%琼脂糖(Agarose)溶液:称取0.5g琼脂糖,加巴比妥缓冲液100ml,盛于三角烧杯中,置沸水浴中煮沸溶解,备用。 2.新鲜血清(无溶血) 3.pH8.6、I=0.075 巴比妥缓冲液:称取15.4g巴比妥钠,2.76g巴比妥,0.292gEDTA,以水溶解后加至100ml,调pH至8.6,4℃保存。 4.苏丹黑B染色液:苏丹黑B 100mg,异丙醇10ml,混合。置37℃水浴使之充分溶解后,离心取上清液置室温备用。 [操作] 1. 制板 配制0.5%的琼脂糖或预先配好置4℃冰箱,用时置沸水溶解,再冷却到50℃~60℃,取约4ml琼脂糖迅速铺在玻璃片上,然后放上开槽器(注意:①开 槽放在中央,距一侧1.5cm处;②避免产生气泡),静置室温待凝固,把开槽器 小心取下,样品槽即制成。 2. 加样 取预染血清20 l加入样品槽(预染血清:血清0.2ml + 苏丹黑B染色液 0.02ml) 3. 电泳 将载有琼脂糖凝胶玻片(已加血清样品)放在电泳槽中,槽内倒入巴比妥缓 冲液,用四层纱布搭板,加样端接负极,电压120V,待最前端区带泳动至玻片 2/3处时可终止电泳,观察实验结果。 [参考值] 正常人血清脂蛋白可分出三条区带:

β脂蛋白(占55%,着色最深) 前β脂蛋白(占15%,着色最浅)α脂蛋白(占30~40%,着色居中)在原点处应无乳糜微粒可见

正确分析血清蛋白电泳扫描图

正确分析血清蛋白电泳扫描图 苏洁平,张晓静 (吉林大学中日联谊医院,吉林长春130031) 血清蛋白电泳虽然是一个传统的检验项目,但目前在临床上对一些疾病的诊断(如对肝病、肾病、多发性骨髓瘤,以及一些自身免疫性疾病等)仍起着不可替代的作用。血清蛋白电泳就是根据血清中各组分蛋白质分子量的不同,将各组分蛋白质分离开, 分子大的泳动慢、分子小的泳动快,依次分为白蛋白、α12球蛋白、α22球蛋白、β2球蛋白(有时可出现前β2球蛋白带区属正常)和γ2球蛋白5个带区(或6个带区)[1,2]。常见几种疾病的蛋白电泳变化见表1。 表1 几种常见疾病的血清蛋白电泳扫描图的变化特征 病名白蛋白 球蛋白 α 12球蛋白α22球蛋白β2球蛋白γ2球蛋白 肾病↓↓↑↑↑↑↓弥慢性肝损伤↓↓↑↓↓↑肝硬化↓↓↓↓β2γ桥原发性肝癌↓↓AFP↑多发性骨髓瘤↓↓↑↑↑慢性炎症↓↑↑↑妊娠↓↑↓无丙种球蛋白血症↓↓双血蛋白血症双峰 注:↑轻度增高,↑↑明显增高,↓轻度降低,↓↓明显降低 下面对几种血清蛋白电泳扫描图作简要说明[3,4]。 1 图1:为正常人血清蛋白电泳扫描图,由左至右为白蛋白峰、α12球蛋白峰、α22球蛋白峰、β2球蛋白峰、γ2球蛋白峰。其含量分别为52%~63%,4%~5%, 6%~9%,9%~12%,15%~23%。 2 图2及图3:见增高的γ2球蛋白峰。肝病患者病程较长,当白蛋白和α12球蛋白降低,γ2球蛋白增高,提示病情较重。当肝细胞严重受损时,β2球蛋白可降低,重症肝炎转为肝坏死后γ2球蛋白增高。 3 图4:可见β区到γ区连续一片,难以分开,是由于IgA、IgM、IgG同时增高所致,称β2γ桥。β2γ桥为肝硬化所独有的特点。如伴有α12球蛋白、α22球蛋白降低即可诊断肝硬化。若治疗后白蛋白回升,标志治疗有效。 4 图5:见明显增高的α22球蛋白峰,β2球蛋白峰同时增高,而白蛋白峰明显减低。由于肾病患者长期丢失白蛋白,故血清中的蛋白明显减少。肾病综合征时高血脂症的发生与肝脏合成脂蛋白增加及脂蛋白分解减少有关,参与脂类分解代谢的某些酶的辅助因子从尿中丢失以致脂蛋白分解减弱,血中胆固醇、甘油三酯明显增高。α22球蛋白、β2球蛋白均是脂蛋白运输载体,为脂蛋白的主要成分。所以肾病患者血清蛋白电泳会出现白蛋白峰减低,α22球蛋白、β2球蛋白峰增高现象。 5 图6及图7:为典型的M峰。由于多发性骨髓瘤患者浆细胞浸润,血清IgM显著增多。γ2球蛋白的主要组成为免疫球蛋白、抗体、补体等,所以在β2球蛋白区和γ2球蛋白区有一明显M带。在扫描图上出现M峰,可分为β型和γ型两种。为多发性骨髓瘤的一项重要诊断指标。 6 图8:见明显降低的γ2球蛋白峰,主要见于体液免疫功能低下患者。 7 其它异常区带: — 2 5 3 —Chin J Lab Diagn,August,2003,V ol7,N o14

RNA的变性电泳原理

RNA的琼脂糖凝胶电泳 实验原理 RNA电泳可以在变性及非变性两种条件下进行。非变性电泳使用1.0%--1.4%的凝胶,不同的RNA条带也能分开,但无法判断其分子量。只有在完全变性的条件下,RNA的泳动率才与分子量的对数呈线性关系。因此要测定RNA分子量时,一定要用变性凝胶。在需快速检测所提总RNA样品完整性时,配制普通的1%琼脂糖凝胶即可。 基本过程同DNA电泳一样,但应明确一点的是,因为RNA分子对RNA酶的作用非常敏感,因此必须用对RNA酶有抑制作用DEPC水来配置所有溶液,所有与RNA接触的仪器和装置都要严格处理以尽量减少RNA酶对样品的降解;另外,因为RNA分子有二、三级结构可以影响其电泳结果,因此电泳时应在变性剂存在下进行,常用的变性剂为甲醛和戊二醛。 RNA非变性琼脂糖凝胶检测 实验材料、器具及药品 蘑菇的总RNA溶液。电泳仪,电泳槽,电子天平,移液器,枪头,微波炉,紫外透射检测仪等。琼脂糖,1XTAE电泳缓冲液,0.5μg/ml溴化乙锭(EB)10X载样缓冲液。 实验步骤 (1)用1×TAE电泳缓冲液制作琼脂糖凝胶,加1×TAE电泳缓冲液至液面覆盖凝胶。(2)在超净工作台上,用移液器吸取总RNA样品4 ul于封口膜上。在实验台上再加入5 ul 1×TAE电泳缓冲液及1 ul 的10X载样缓冲液,混匀后,小心加入点样孔。 (3)打开电源开关,调节电压至100V,使RNA由负极向正极电泳,约30min后将凝胶放入EB染液中染色5min,用清水稍微漂洗。在紫外透射检测仪上观察RNA电泳结果。

非变性电泳:上样量超过3ug,电压超过6V/cm,电泳缓冲液时间太长,均可能导致28S 和18S 条带分不开。使用2ug 上样量,电压小于6V/cm,使用新鲜的电泳缓冲液并且频繁混匀两极的缓冲液,是获得好的电泳结果的前提。(以DNA 标准为参照,28S 和18S 分别位于2.0kb 和0.9kb 左右。) 变性电泳条带变淡:EB 与单链的结合能力要差一些,故同样的上样量,变性电泳比非变性电泳要淡一些。另外的可能是甲醛的质量不高。 RNA的变性琼脂糖凝胶检测 试剂: (1)MOPS缓冲液(10*):0.4mol/L 吗啉代丙烷磺酸(MOPS)(PH7.0),0.1mol/L NaAc, 10mol/L EDTA。 (2)上样染料:50%甘油,1mmol/L EDTA ,0.4%溴酚蓝,0.4%二甲苯蓝。 (3)甲醛。 (4)去离子甲酰胺。

-生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

-生物化学实验--聚丙烯酰胺凝胶电泳法分离血清蛋白质

————————————————————————————————作者:————————————————————————————————日期:

聚丙烯酰胺凝胶电泳法分离血清蛋白质 【目的】 1 .掌握圆盘电泳分离血清蛋白的操作技术。 2 .熟悉聚丙烯酰胺凝胶电泳的原理。 【原理】 带电粒子在电场中向着与其自身电荷方向相反的电极移动,称为电泳。聚丙烯酰胺凝胶电泳( PAGE )就是以聚丙烯酰胺凝胶作为电泳介质的电泳。在电泳时,蛋白质在介质中的移动速率与其分子的大小,形状和所带的电荷量有关。 聚丙烯酰胺凝胶是一种人工合成的凝胶,是由丙烯酰胺( Acr )单体和少量交联剂 N,N- 亚甲基双丙烯酰胺( Bis )在催化剂过硫酸铵( Ap )和加速剂四甲基乙二胺( TEMED )的作用下发生聚合反应而制得的(其化学结构式见第 2 篇第 1 章)。 聚丙烯酰胺凝胶具有网状结构,其网眼的孔径大小可用改变凝胶液中单体的浓度或单体与交联剂的比例来加以控制。根据血清蛋白分子量的大小,学生实验一般选用 7 %聚丙烯酰胺凝胶分离血清蛋白质。 不连续聚丙烯酰胺凝胶电泳利用浓缩效应、分子筛效应和电荷效应的三重作用分离物质(见第 2 篇第 1 章),使样品分离效果好,分辨率较高。一般醋酸纤维薄膜电泳只能把血清蛋白质分离出 5 ~ 7 条带,而聚丙烯酰胺凝胶电泳却能分离出十几条到几十条来(图 3-4 ),是目前较好的支持介质,应用十分广泛。

图 3-4 血清蛋白聚丙烯酰胺凝胶电泳图谱 根据凝胶支持物的形状不同,分为垂直板电泳和盘状电泳两种,二者原理相同。本实验采用的盘状电泳是在直立的玻璃管中,以孔径大小不同的聚丙烯酰胺凝胶作为支持物,采用电泳基质的不连续体系,使样品在不连续的两相间积聚浓缩(浓缩效应)成厚度为 10 -2 cm 的起始区带,然后再利用分子筛效应和电荷效应的双重作用在分离胶中进行电泳分离。 【器材】 1 .电泳仪 直流稳压电源,电压 400 ~ 500V ,电流 50mA 。 2 .垂直管型圆盘电泳装置 目前这类装置的种类很多,可根据不同的实验要求选择其中的一种。这类装置均由两个基本的部分组成,一部分为载胶玻璃管,须选用内径均匀( 5 ~ 6mm ) , 外径 7 ~ 8mm ,长 80 ~ 100mm 的玻璃管作为材料,也可以使用更细的玻璃管。另一部分为电泳液槽,可分为上下两槽。电泳时,上下两槽通过凝胶柱沟通电流(图 3-5 )。 图 3-5 聚丙烯酰胺凝胶圆盘电泳示意图 (A 为正面, B 为剖面 ) 3 .大号试管和中号试管 4 .微量移液器 5 . 5ml 注射器和 9 号注射针头 6 .洗耳球、滤纸条、封口膜等

电泳的基本原理

电泳的基本原理 mm,近年来新研制的电泳槽,胶面更小、更薄,以节省试剂和缩短电泳时间。制胶时在凝胶溶液中放一个塑料梳子,在胶聚合后移去,形成上样品的凹槽。水平式电泳,凝胶铺在水平的玻璃或塑料板上,用一薄层湿滤纸连接凝胶和电泳缓冲液,或将凝胶直接浸入缓冲液中。由于pH值的改变会引起带电分子电荷的改变,进而影响其电泳迁移的速度,所以电泳过程应在适当的缓冲液中进行的,缓冲液可以保持待分离物的带电性质的稳定。E =V/L为了更好的了解带电分子在电泳过程中是如何被分离的,下面简单介绍一下电泳的基本原理。在两个平行电极上加一定的电压(V),就会在电极中间产生电场强度(E),上式中L是电极间距离。在稀溶液中,电场对带电分子的作用力(F),等于所带净电荷与电场强度的乘积:F=q*E上式中q是带电分子的净电荷,E是电场强度。这个作用力使得带电分子向其电荷相反的电极方向移动。在移动过程中,分子会受到介质粘滞力的阻碍。粘滞力(F’)的大小与分子大小、形状、电泳介质孔径大小以及缓冲液粘度等有关,并与带电分子的移动速度成正比,对于球状分子,F’的大小服从Stokes定律,即:F’=6πrηυ式中r是球状分子的半径,η是缓冲液粘度,υ是电泳速度(υ= d / t,单位时间粒子运动的距离,cm / s )。当带电分子匀速移动时:F =

F’,∴qE =6πrηυ电泳迁移率(m)是指在单位电场强度 (1V/cm)时带电分子的迁移速度:所以: v/E=Q/6πrη这就是迁移率公式,由上式可以看出,迁移率与带电分子所带净电荷成正比,与分子的大小和缓冲液的粘度成反比。用SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量时,实际使用的是相对迁移率mR。即:上式中:d-带电粒子泳动的距离,t -电泳的时间,V-电压,L-两电极交界面之间的距离,即凝胶的有效长度。因此,相对迁移率mR就是两种带电粒子在凝胶中泳动迁移的距离之比。 带电分子由于各自的电荷和形状大小不同,因而在电泳过程中具有不同的迁移速度,形成了依次排列的不同区带而被分开。即使两个分子具有相似的电荷,如果它们的分子大小不同,由于它们所受的阻力不同,因此迁移速度也不同,在电泳过程中就可以被分离。有些类型的电泳几乎完全依赖于分子所带的电荷不同进行分离,如等电聚焦电泳;而有些类型的电泳则主要依靠分子大小的不同即电泳过程中产生的阻力不同而得到分离,如SDS-聚丙烯酰胺凝胶电泳。分离后的样品通过各种方法的染色,或者如果样品有放射性标记,则可以通过放射性自显影等方法进行检测。

《诊断学》 第二节 血清脂质和脂蛋白检测

第二节血清脂质和脂蛋白检 测 一、血清脂质检测 血清脂质包括胆固醇、三酰甘油、磷脂(phospholipid)和游离脂肪酸(free fattyacid,FFA)。血清脂质检测除了可作为脂质代谢紊乱及有关疾病的诊断指标外,还可协助诊断原发性胆汁性肝硬化、肾病综合征、肝硬化及吸收不良综合征等。 (一)总胆固醇测定 胆固醇(cholesterol,CHO)是脂质的组成成分之一。胆固醇中70%为胆固醇酯(cholesterol esterase,CE)、30%为游离胆固醇(free cholesterol,FC),总称为总胆固醇(total cholesterol,TC)。CHO检测的适应证有:①早期识别动脉粥样硬化的危险性。②使用降脂药物治疗后的监测。 【参考值】 ①合适水平:<5.20mmol/L。②边缘水平:5.23~5.69mmol/L。③升高:>5.72mmol/L。 【临床意义】 血清TC水平受年龄、家族、性别、遗传、饮食、精神等多种因素影响,且男性高于女性,体力劳动者低于脑力劳动者。因此,很难制定统一的参考值。根据CH0高低及其引起心、脑血管疾病的危险性分为合适水平(desirable)、边缘水

平(boar-denline)和升高(或减低)即危险水平(risk)。作为诊断指标,TC不特异,也不灵敏,只能作为某些疾病,特别是动脉粥样硬化的一种危险因素。因此,测定TC常作为动脉粥样硬化的预防、发病估计、疗效观察的参考指标。TC变化的临床意义见表4-7-5。肝脏病胆固醇变化的临床意义见第六章第一节。 (二)三酰甘油测定 三酰甘油(triglyceride,TG)是甘油和3个脂肪酸所形成的酯,又称为中性脂肪(neutral fat)。TG是机体恒定的供能来源,主要存在于β一脂蛋白和乳糜颗粒中,直接参与CHO 和CE的合成。TG也是动脉粥样硬化的危险因素之一。TG检测的适应证有:①早期识别动脉粥样硬化的危险性和高脂血症的分类。②对低脂饮食和药物治疗的监测。 【参考值】

电泳

电泳技术简介 带电颗粒在电场作用下,向着与其电性相反的电极移动,称为电泳(electrophoresis, EP)。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。1937 年瑞典学者A.W.K.蒂塞利乌斯设计制造了移动界面电泳仪,分离了马血清白蛋白的3种球蛋白,创建了电泳技术。 目录 什么是电泳 电泳种类 电泳原理 电泳 展开 什么是电泳 电泳种类 电泳原理 电泳 展开 电泳Electrophoresis 什么是电泳 在确定的条件下,带电粒子在单位电场强度作用下,单位时间内移动的距离(即迁移率)为常数,是该

电泳图谱 带电粒子的物化特征性常数[1]。不同带电粒子因所带电荷不同,或虽所带电荷相同但荷质比不同,在同一电场中电泳,经一定时间后,由于移动距离不同而相互分离。分开的距离与外加电场的电压与电泳时间成正比。 在外加直流电源的作用下,胶体微粒在分散介质里向阴极或阳极作定向移动,这种现象叫做电泳。利用电泳现象使物质分离,这种技术也叫做电泳。胶体有电泳现象,证明胶体的微粒带有电荷。各种胶体微粒的本质不同,它们吸附的离子不同,所以带有不同的电荷。 电荷移动规律 利用电泳可以确定胶体微粒的电性质,向阳极移动的胶粒带负电荷,向阴极移动的胶粒带正电荷 电泳仪 。 一般来讲, 金属氢氧化物、金属氧化物等胶体微粒吸附阳离子,带正电荷 非金属氧化物、非金属硫化物等胶体微粒吸附阴离子,带负电荷。 因此,在电泳实验中,氢氧化铁胶体微粒向阴极移动,三硫化二砷胶体微粒向阳极移动。利用电泳可以分离带不同电荷的溶胶。 例如,陶瓷工业中用的粘土,往往带有氧化铁,要除去氧化铁,可以把粘土和水一起搅拌成悬浮液,由于粘土粒子带负电荷,氧化铁粒子带正电荷,通电后在阳极附近会聚集出很纯净的粘土。工厂除尘也用到电泳。利用电泳还可以检出被分离物,在生化和临床诊断方

【2017年整理】实验三 聚丙烯酰胺凝胶盘状电泳分离血清脂蛋白

教案首页 第__3__次课授课时间:2006年11月13日~11月17日

总黄酮 生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。在自然界中最常见的是黄酮和黄酮醇,其它包括双氢黄(醇)、异黄酮、双黄酮、黄烷醇、查尔酮、橙酮、花色苷及新黄酮类等。 简介 近年来,由于自由基生命科学的进展,使具有很强的抗氧化和消除自由基作用的类黄酮受到空前的重视。类黄酮参与了磷酸与花生四烯酸的代谢、蛋白质的磷酸化、钙离子的转移、自由基的清除、抗氧化活力的增强、氧化还原作用、螯合作用和基因的表达。它们对健康的好处有:( 1 )抗炎症( 2 )抗过敏( 3 )抑制细菌( 4 )抑制寄生虫( 5 )抑制病毒( 6 )防治肝病(7 )防治血管疾病(8 )防治血管栓塞(9 )防治心与脑血管疾病(10 )抗肿瘤(11 )抗化学毒物等。天然来源的生物黄酮分子量小,能被人体迅速吸收,能通过血脑屏障,能时入脂肪组织,进而体现出如下功能:消除疲劳、保护血管、防动脉硬化、扩张毛细血管、疏通微循环、活化大脑及其他脏器细胞的功能、抗脂肪氧化、抗衰老。近年来国内外对茶多酚、银杏类黄酮等的药理和营养性的广泛深入的研究和临床试验,证实类黄酮既是药理因子,又是重要的营养因子为一种新发现的营养素,对人体具有重要的生理保健功效。目前,很多著名的抗氧化剂和自由基清除剂都是类黄酮。例如,茶叶提取物和银杏提取物。葛根总黄酮在国内外研究和应用也已有多年,其防治动脉硬化、治偏瘫、防止大脑萎缩、降血脂、降血压、防治糖尿病、突发性耳聋乃至醒酒等不乏数例较多的临床报告。从法国松树皮和葡萄籽中提取的总黄酮" 碧萝藏"-- (英文称PYCNOGENOL )在欧洲以不同的商品名实际行销应用25 年之久,并被美国FDA 认可为食用黄酮类营养保健品,所报告的保健作用相当广泛,内用称之为" 类维生素" 或抗自由基营养素,外用称之为" 皮肤维生素" 。进一步的研究发现碧萝藏的抗氧化作用比VE 强50 倍,比VC 强20 倍,而且能通过血脑屏障到达脑部,防治中枢神经系统的疾病,尤其对皮肤的保健、年轻化及血管的健康抗炎作用特别显著。在欧洲碧萝藏已作为保健药物,在美国作为膳食补充品(相当于我国的保健食品),风行一时。随着对生物总黄酮与人类营养关系研究的深入,不远的将来可能证明黄酮类化合物是人类必需的微营养素或者是必需的食物因子。性状:片剂。 功能主治与用法用量 功能主治:本品具有增加脑血流量及冠脉血流量的作用,可用于缓解高血压症状(颈项强痛)、治疗心绞痛及突发性耳聋,有一定疗效。用法及用量:口服:每片含总黄酮60mg,每次5片,1日3次。 不良反应与注意 不良反应和注意:目前,暂没有发现任何不良反应.

血清蛋白醋酸纤维薄膜电泳实验

血清蛋白醋酸纤维薄膜电泳实验 一.实验原理 1、电泳是指带电质点在电场中向本身所带电荷相反的电极移动的现象。在一定pH条件下,不同的质点由于具有不同的等电点而带不同性质的电荷,因而在一定的电场中它们的移动方向和移动速度也不同,即它们的电泳迁移率不同,因此,可使它们分离。 2、影响电泳迁移率的外界因素:电场强度、溶液的pH值、溶液的离子强度和电渗现象。 3、影响电泳迁移率的内在因素:质点所带净电荷的量、质点的大小和形状。 4、采用醋酸纤维薄膜作为支持物的电泳方法称为醋酸纤维素薄膜电泳。醋酸纤维素薄膜电泳具有微量、快速、简便、分辨力高,对样品无拖尾和吸附现象等优点。 5、醋酸纤维素是纤维素的羟基乙酰化所形成的纤维素醋酸酯,将它溶于有机溶剂(如:丙酮、氯仿、氯乙烯、乙酸乙酯等)后,涂抹成均匀的薄膜则成为醋酸纤维素薄膜。该膜具有均一的泡沫状的结构,厚度约为120 μm,有很强的通透性,对分子移动阻力很小。 6、本实验以醋酸纤维素为电泳支持物,分离各种血清蛋白。血清中含有清蛋白、α-球蛋白、β-球蛋白、γ-球蛋白和各种脂蛋白等。各种蛋白质由于氨基酸组成、分子量、等电点及形状不同,在电场中的迁移速度不同。以醋酸纤维素薄膜为支持物,正常人血清在pH8.6的缓冲体系中电泳,染色后可显示5条区带。其中清蛋白的泳动速度最快,其余依次为α1-、α2-、β-及γ-球蛋白。 二.实验仪器和试剂 ?器材 醋酸纤维素薄膜(3×8cm),培养皿,载玻片,电泳仪,电泳槽,粗滤纸,镊子 ?材料 新鲜血清(未溶血) ?试剂 1、巴比妥缓冲液(pH 8.6,离子强度0.06): 巴比妥1.66g, 巴比妥钠12.76g,加水至1000ml。置4℃冰箱保存,备用。(已配置) 2、染色液:氨基黑10B 0.5g, 甲醇50ml, 冰醋酸10ml,蒸馏 水40ml,混匀。 3、漂洗液:含95%乙醇45ml,冰醋酸5ml,蒸馏水50ml,混匀。 4、NaOH溶液:称取NaOH 16g,定容至1000ml。 三.实验过程 一.准备与点样 1.将薄膜剪成3×8cm的小条,在薄膜无光泽面距一端1.5cm处用铅笔轻轻划一条直线,表示点样位置。

RNA的琼脂糖凝胶电泳实验原理和步骤

RNA的琼脂糖凝胶电泳实验原理和步骤 关键词:RNA琼脂糖电泳2012-03-09 00:00 来源:互联网点击次数:38148 一、实验目的 掌握植物总RNA非变性胶电泳的原理和方法。 二、实验原理 RNA电泳可以在变性及非变性两种条件下进行。非变性电泳使用1.0%--1.4%的凝胶,不同的RNA条带也能分开,但无法判断其分子量。只有在完全变性的条件下,RNA的泳动率才与分子量的对数呈线性关系。因此要测定RNA分子量时,一定要用变性凝胶。在需快速检测所提总RNA样品完整性时,配制普通的1%琼脂糖凝胶即可。

三、实验材料、器具及药品 蘑菇的总RNA溶液。电泳仪,电泳槽,电子天平,移液器,枪头,微波炉,紫外透射检测仪等。琼脂糖,1XTAE电泳缓冲液,0.5μg/ml溴化乙锭(EB)10X载样缓冲液。 四、实验步骤 (1)用1×TAE电泳缓冲液制作琼脂糖凝胶,加1×TAE电泳缓冲液至液面覆盖凝胶。 (2)在超净工作台上,用移液器吸取总RNA样品4μl于封口膜上。在实验台上再加入5μl 1×TAE电泳缓冲液及1μl 的10X载样缓冲液,混匀后,小心加入点样孔。 (3)打开电源开关,调节电压至100V,使RNA由负极向正极电泳,约30min 后将凝胶放入EB染液中染色5min,用清水稍微漂洗。在紫外透射检测仪上观察RNA电泳结果。

RNA的变性琼脂糖凝胶检测 试剂: (1)MOPS缓冲液(10*):0.4mol/L 吗啉代丙烷磺酸(MOPS)(Ph7.0),0.1mol/L NaAc, 10mol/L EDTA。 (2)上样染料:50%甘油,1mmol/L EDTA ,0.4%溴酚蓝,0.4%二甲苯蓝。(3)甲醛。 (4)去离子甲酰胺。v电泳槽清洗:去污剂洗干净(一般浸泡过夜)——水冲洗——乙醇干燥——3%H2O2灌满——室温放置10分钟——0.1%DEPC水冲洗。 操作:

血清蛋白琼脂糖凝胶电泳

【原理】 琼脂糖(agarose)是经过挑选,以质地较纯的琼脂(agar)作为原料而制成的。琼脂在化学上是由琼脂糖和琼脂胶组成的复合物。琼脂胶是一含有硫酸根和羟基的多糖,它具有离子交换性质,这种性质会给电泳及凝胶过滤以不良的影响。琼脂糖是直链多糖,它由D-半乳糖和3,6-脱水-L-半乳糖的残基交替排列组成。 琼脂糖主要通过氢键而形成凝胶。电泳时因凝胶含水量大(98-99%),近似自由电泳,因为固体支持物的影响少,故电泳速度快,区带整齐。而且由于琼脂糖不含带电荷的基团,电渗影响很少,是一种较好的电泳材料,分离效果较好。 血清中脂类物质与血清载脂蛋白结合成水溶性的脂蛋白(lipoprotein)形式存在。各种脂蛋白中所含载脂蛋白的种类及数量不同,各种脂蛋白颗粒大小也相差很大,因此,以琼脂糖凝胶为支持物,在电场中可使各种脂蛋白颗粒分离开来。 琼脂糖凝胶电泳分离血清蛋白方法简单。将血清脂蛋白用脂类染料苏丹黑(或油红等)进行预染。再将预染过的血清加样于琼脂糖凝胶板加样槽中,通电后可以看到脂蛋白向正极移动,并分离出几个区带。 正常人血清脂蛋白可出现三条区带,从阴极到阳极依次为β-脂蛋白(最深),前β-脂蛋白(最浅)及α-脂蛋白(比前β-脂蛋白略深些),在原点处应无乳糜微粒。有时前β-脂蛋白也显示不出来。 琼脂糖主要通过氢键而形成凝胶。电泳时因凝胶含水量大(98-99%),近似自由电泳,因为固体支持物的影响少,故电泳速度快,区带整齐。而且由于琼脂糖不含带电荷的基团,电渗影响很少,是一种较好的电泳材料,分离效果较好。 血清中脂类物质与血清载脂蛋白结合成水溶性的脂蛋白(lipoprotein)形式存在。各种脂蛋白中所含载脂蛋白的种类及数量不同,各种脂蛋白颗粒大小也相差很大,因此,以琼脂糖凝胶为支持物,在电场中可使各种脂蛋白颗粒分离开来。 琼脂糖凝胶电泳分离血清蛋白方法简单。将血清脂蛋白用脂类染料苏丹黑(或油红等)进行预染。再将预染过的血清加样于琼脂糖凝胶板加样槽中,通电后可以看到脂蛋白向正极移动,并分离出几个区带。 正常人血清脂蛋白可出现三条区带,从阴极到阳极依次为β-脂蛋白(最深),前β-脂蛋白(最浅)及α-脂蛋白(比前β-脂蛋白略深些),在原点处应无乳糜微粒。有时前β-脂蛋白也显示不出来。 【操作】 1、预染血清血清0.2ml中加苏丹黑染色液0.2ml,混合置37℃水浴中染色30分钟,离心(2000转/分)约5分钟。以除去悬浮于血清中染料沉渣。 2、制备琼脂糖凝胶板将已配制好的0.5%琼脂糖凝胶于沸水浴中加热融化,用吸管吸取凝胶溶液浇注在载玻片上,约3 ml。静置半小时后凝固(天热时需延长,也可放入冰箱中数分钟以加速凝固)。 3、点样将剪好的滤纸条对折,以折边在距凝胶一端2cm处切一点样口。将毛细管插入预染好的血清中,待吸入部分血清后,取毛细管使其有样品的一端靠于点样口端部,停靠3秒左右。 4、电泳将凝胶板平放入电泳槽中,使加样端接在阴极一侧,用四层滤纸或纱布做成“引桥”,敷于胶板的两端,各搭住凝胶板约1cm左右,“引桥”的另一端浸于电泳槽内的巴比妥缓冲液中。接通电源,首先调节电流为3-4mA/凝胶板,电泳10-15分钟;然后调节电流为6-7mA/凝胶板,电泳30-40分钟,即可观察到分离的区带。 5、如果需要保留电泳图谱,可将电泳后的凝胶板(连同载玻片)放入清水中浸泡脱盐2小时,然后放烘箱(80℃左右)中烘干即可。 【试剂】

SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理

SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理 SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳)是目前最常用的分离蛋白质的电泳技术 SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS, SDS 能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW 为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。 SDS-PAGE电泳成功的关键是什么? ①溶液中SDS单体的浓度SDS在水溶液中是以单体和SDS-多肽胶束的混合形式存在,能与蛋白质分子结合的是单体。为了保证蛋白质

与SDS的充分结合,它们的重量比应该为1∶4或1∶3。②样品缓冲液的离子强度因为SDS结合到蛋白质上的量仅仅取决于平衡时SDS单体的浓度,不是总浓度,而只有在低离子强度的溶液中,SDS 单体才具有较高的平衡浓度。所以,SDS电泳的样品缓冲液离子强度较低,常为10-100 mM。③二硫键是否完全被还原只有二硫键被完全还原以后,蛋白质分子才能被解聚,SDS才能定量地结合到亚基上从而给出相对迁移率和分子质量对数的线性关系。Sample buffer中的β-巯基乙醇的浓度常为4-5%,二硫苏糖醇的浓度常为2-3%。前者有挥发性,最好使用前加入。 SDS-PAGE缓冲液系统的选择,Tris-Glycine、Tris-Tricine、Tris-硼酸盐或者其他? 一般来说,在被分析的蛋白质稳定的pH范围,凡是不与SDS发生相互作用的缓冲液都可以使用,但缓冲液的选择对蛋白带的分离和电泳的速度是非常关键的。Tris-甘氨酸系统是目前使用最多的缓冲系统。Tris-甘氨酸系统是目前使用最多的缓冲系统。如果要测定糖蛋白的分子量,最好采用Tris-硼酸盐缓冲系统,对于分子质量小于15 kDa 的蛋白样品,可以使用SDS-尿素系统,也可以采用Tris-tricine缓冲系统。 积层胶(或称浓缩胶)的作用原理?

相关文档
最新文档