谷氨酸发酵过程先进控制

谷氨酸发酵过程先进控制
谷氨酸发酵过程先进控制

发酵条件的控制与调节

发酵条件的控制与调节 1.水分调节 好氧堆肥质量和效率直接受堆肥物料水分含量的影响,水分的作用主要为溶解有机物并参与微生物的新陈代谢和调节堆肥温度。一般认为堆肥初始含水量在40%~70%就能保证堆肥顺利进行。当含水量低于40%时,微生物的代谢活动会受到抑制,堆肥将由好氧向厌氧转化,尤其当含水量低于15%时,菌体代谢活动会普遍停止;当含水量太高时,超过70%,物料空隙率低空气不足,不利于好氧微生物生长,减慢降解速度,延长堆腐时间,并产生二氧化硫等恶臭气体。按重量计,初始堆料的含水率应保持在50%~65%,过低和过高都会影响发酵过程,而牛粪的含水率一般在75%~80%,往往需要加入吸湿性强的调节料以降低混合堆料的水分含量。 2.发酵温度 温度是堆肥正常发酵的重要条件之一,堆肥温度的控制就是要保持堆体顺利升温、维持适当温度和温度的下降。不同种类微生物的生长对温度的要求不同,嗜温菌的最适温度是30~40℃,嗜热菌的最适温度是45~60℃,高温堆肥的温度最好控制在55~65℃,不宜超过65℃,超过65℃就会对微生物的生长产生抑制。堆肥化是一个放热过程,若不加以控制,温度可达75~80℃,温度过高会过度消耗有机质,并降低堆肥产品质量,根据卫生学要求,堆肥至少要达到55℃并保持5天以上才能保证杀灭堆层中大肠杆菌及病原菌。生产实践中常采用翻堆或强制通风办法控制温度。 3.碳氮比调节 碳氮比(C/N)是指堆肥原料与填充料混合物的总碳(C)与总氮(N)的比值。碳源是微生物利用的能源,氮源是微生物的营养物质,在堆肥过程中,碳源被消耗,转化成二氧化碳和腐殖质物质,而氮则以氨气形式散失,或变为硝酸盐和亚硝酸盐,或由生物体同化吸收。因此,碳和氮的变化是堆肥的基本特征之一。由于微生物的C/N范围为4~30,因此用作供其营养的有机物碳氮比最好也在此范围内,C/N过高或过低都不利于嗜氧菌的生长和繁殖,堆肥过程中适宜的碳氮比(C/N)为20~30:1,30:l较为理想。北方地区在生产实践中可采用在牛粪中添加有关原料调节碳氮比,一般牛粪堆肥处理时可不调整C/N。 4.通风调节 通风是好氧堆肥的关键性因素之一,其主要作用是提供好氧微生物生长繁殖所必需的氧气,通过供气量的控制,可去除堆料中多余的水分,调节堆体温度,减少恶臭产生。研究表明,堆料中氧含量为10%时,就可保证微生物代谢的需要。在供氧充分而其他条件也适宜的情况下,微生物迅速分解有机物,产生大量的代谢热,如果不能对多余热量进行控制,温度升高到超过微生物生长的适宜范围,将会抑制有机物的生物降解、延长处理时间,增加设备运行费用,并且产生难闻的气味。可适时采用翻堆方式通风或设有其他机械通风装置换气,调节堆肥物料的氧气浓度和散热,同时应注意堆体堆积要松紧适度,保持物料间有一定的空隙以利通气. 5.pH值调节 pH值是微生物生长的重要因素之一,一般堆肥中微生物最适宜的pH值是中性或弱碱性,pH值太高或太低都会使堆肥处理遇到困难。许多研究者提出,

发酵工艺优化

发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统 至于装液量的问题,应该从以下几个方面考虑: 1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。 2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。 3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。 4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。 关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。 你可以再查查看是否有其他的方法,我说的也不完全。!!

发酵工艺优化

发酵工艺优化---现代发酵工业调控策略 发布日期:2010-04-10 来源:[标签:来源] 作者:[标签:作者] 浏览次数:716 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH 值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率。在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。基于此,华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化的有关现象,研究细胞代谢物质流与生物

发酵过程中的优化

发酵过程中的优化 高望 (兰州理工大学生命科学与工程学院) 摘要:发酵过程优化控制技术是发酵工程的重要技术。综述了近年来微生物发酵过程优化控制技术的研究现状,综合运用微生物反应计量学、生化反应和传递动力学、生物反应器工程及代谢工程理论,(1) 基于微生物反应计量学的培养环境优化技术;(2) 基于微生物代谢特性的分阶段培养技术;(3) 基于反应动力学模型的优化技术;(4) 基于代谢通量分析的优化技术;(5) 基于系统观点的生物反应系统优化技术;(6)基于环境胁迫的优化技术;(7)基于辅因子调控的优化技术 关键词:发酵过程优化 1 发酵过程优化技术 1.1基于微生物反应计量学的培养环境优化技术 研究微生物从培养基中摄取营养物质的情况和营养物质通过代谢途径转化后的去向,确定不同环境条件对微生物生长和代谢产物分布的影响,进而优化微生物生长的物理和化学环境,保证微生物生长处于最适的环境条件下,为进一步的发酵过程优化奠定基础。:(1) 培养基组成的优化技术。 (2) 发酵环境条件的优化技术。研究表明,培养基中的氮含量与葡

萄糖消耗及丙酮酸积累密切相关。氮源缺乏时, 葡萄糖消耗和丙酮酸生产均受到抑制。在小型反应器流加发酵中采用氨水控制pH 值( 相当于同时提供氮源) , 细胞能够持续、快速地积累丙酮酸。[1]李寅;陈坚;梁大芳营养条件对光滑球拟酵母发酵生产丙酮酸的影响[J]生物工程学报2000,16(2):225-227 1.2 基于微生物代谢特性的分阶段培养技术 对分批发酵过程的研究发现,适合微生物生长的温度、pH 值、剪切和溶解氧浓度往往并不一定适合目标产物的形成,提出分阶段溶解氧和搅拌转速控制策略、分阶段温度控制策略及分阶段pH 值控制策略,将环境条件控制在最适合细胞生长或最适合产物合成的水平。研究表明,郑美英等以Streptoverticilliummobaraense为出菌株,研究了培养中温度控制策略,并在小型发酵罐上进行了验证。得出TG发酵过程中温度控制策略为:O~18h,控制温度为32℃,18h后将温度切换到28℃。采用此温度控制策略在2.5L小罐上进行TG发酵,酶活比未控制温度时的最好水平提高了14%,发酵时间也缩短了6h。由此可见,采用合理的温度控制策略确实能够显著提高TG的发酵过程中的各项指标。郑美英堵国成陈坚分批发酵生产谷氨酰胺转氨酶的温度控制策略[J]生物工程学报,200,16(6):759-761 刘延岭,邓林,周昌豹,陈丽微生物发酵生产谷氨酰胺转胺酶的研究进展四川食品与发酵 2004,4:1-4 1.3 基于反应动力学模型的发酵过程优化和控制技术 研究不同目标代谢产物发酵过程的反应动力学,应用统计热力学理论和功能单元扩展理论,建立目标代谢产物分批发酵过程的动力学模型,用龙格库特法求取模型方程数值解,然后用单纯形搜索法或最速下降法寻出动力学模型方程中的最优参数,并对动力学模型的适用性进行评价。基于分批发酵动力学模型,在下列3 个方面已取得一定成果:①采用奇异优化理论,优化透明质酸的流加培养过程,并通过重复操作和优化补料组合发酵模式,显著提高透明质酸的生产强度[23];②应用最小值原理,分别建立真氧产碱杆菌细胞生长期和聚羟基丁酸合成期底物流加的准优化控制策略,确定以指数速率流加和变速流加相结合的流加操作方式,得到以聚羟基丁酸最大生产强度和最高转化率为目标的准优化控制策略并成功应用[24-25];③在无反馈控制的情况下,比较了不同流加培养模式对重组大肠杆菌生产谷胱甘肽的影响,发现采用简单的指数速率流加方式即可实现重组大肠杆菌的高密度培养[26]。 1.4 基于代谢通量分析(MFA)的发酵过程优化技术 参考已知的生化反应计量关系和特定微生物的代谢途径和生理代谢特征,构建生物合成特定目标代谢产物的代谢网络。利用代谢通量分析方法,对代谢中间产物进行拟稳态假设,然后通过测定细胞和代谢产物浓度的变化速率,计算得出胞内各条代 谢途径的通量变化。根据代谢通量分析的计算数据,分析特定目标代谢产物,如丙酮酸、透明质酸和生物絮凝剂生物合成途径中主要代谢节点的性质(刚性、弱刚性或弹性),结合发酵

发酵工艺优化

发酵工艺优化 发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

微生物发酵过程优化控制技术进展

微生物发酵过程优化控制技术进展 摘要发酵工程是生化工程和现代生物技术及其产业化的基础。在发酵工程领域,为了提高发酵水平和生产率,更多的研究工作集中在菌种的筛选和改造上。随着生物科学技术的发展,基因工程与代谢工程研究领域都出现了长足的进步与发展,利用基因重组与诱发等技术可以实现高产菌株普遍生产。但只有通过发酵过程的优化控制,才能实现产品质量最高、生产力最大、成本消耗最低的生产过程,因此对微生物发酵过程的优化控制成为发酵工程中研究人员日益关注的焦点。 关键词微生物发酵;影响因素;优化控制技术 1 培养基对发酵的影响 1.1 发酵培养基碳源和氮源的选择 碳源用于提供微生物能量来源、构建细胞以及形成产物。碳源包括单糖、双糖、多糖、天然复合物、油脂等,比如葡萄糖、蔗糖、淀粉以及豆油等。氮源是微生物蛋白质和其他含氮有机物的重要来源,与此同时,氮源也参与形成含氮产物。氮源包括无机氮源以及有机氮源,比如氨盐、硝酸盐、蛋白胨以及豆粉等。 1.2 发酵培养基中无机盐对发酵的影响 无机盐对代谢产物的生成及微生物的正常生长都具有相当重要的影响。在微生物的生长代谢过程中,磷参与了微生物细胞中核酸等辅酶的构成,是微生物能量代谢、生长的重要因素之一。在苏云金芽泡杆菌的发酵产物苏云金素的分子结构中包含磷酸根,所以在其发酵培养基中添加更多磷酸盐,更有利于产物苏云金素的合成。钙离子在微生物发酵过程中的主要作用是调节细胞的生理状态,比如说维持细胞的胶体状态、降低细胞膜的通透性等。与此同时,在大多数发酵培养基里面,添加适量的CaCO3,能够对发酵液含菌量的变化起到相当明显的影响,其主要原因是CaCO3的添加对发酵液的pH具有非常良好的缓冲作用,从而大大改善了菌体的生长环境。镁元素是许多酶的催化剂。锰、锌、铁、钼以及钴等元素是微生物所需要的微量元素[1]。 2 培养条件对发酵的影响 2.1 种子质量对发酵的影响 在发酵培养基中接入合适的接种量以及种龄适宜的优质种子液,能够使目标微生物更加迅速地进入到对数生长期,从而使发酵周期大大地减短,进而促使产物质量得以有效提升。如果种龄过长则会直接导致菌体过早的发生衰退,菌体的生产能力也随之而有一定程度的下降;如果种龄过短,则会直接导致菌体生长缓慢,产物合成时间大大推迟。若接种量过小,那么便会使得菌体细胞的生长量变

发酵调控学复习题 2011 10

发酵调控学复习题 2011年 一、简答题 1.发酵调控学的原理 2.柠檬酸的发酵生产原理(生理学P148) 3.乳酸的生物发酵生产原理(生理学P144或工艺P115) 按照细菌在发酵过程中生成产物类型的不同,可以将乳酸发酵分为同型发酵和异型发酵两大类型。 同型乳酸发酵是葡萄糖经糖酵解途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的催化下还原为乳酸。 葡萄糖一→丙酮酸—→乳酸 在此发酵过程中,1 mol葡萄糖可以生成2mol乳酸,理论转化率为100%。单由于发酵过程中微生物有其他生理活动存在,实际上转化率不可能达到100%。一般认为转化率在80%以上者,即视为同型乳酸发酵。 异型乳酸发酵除了生成乳酸外,还生成二氧化碳和乙酸,其生物合成途径分为6-磷酸葡萄糖酸途径和双歧途径两种。 葡萄糖-6-磷酸途径是某些乳酸细菌利用HMP途径,分解葡萄糖为木酮糖-5-磷酸,然后经磷酸酮解酶催化裂解反应,生成甘油醛-3-磷酸和乙酰磷酸。乙酰磷酸进步生成乙酸,而甘油醛-3-磷酸经糖酵解途径后半部分转化为乳酸。 4.肌苷酸的生物发酵生产原理(生理学P239) 5.尿苷的生物发酵生产原理 6.鸟苷酸发酵原理(生理P243) 7.四环素的生物发酵生产原理(工艺P140)

8.红霉素的生物发酵生产原理(工艺P139) 9.青霉素的生物发酵生产原理(生理P253) 青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空;气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。 青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。 10.谷氨酸的生物发酵生产原理(生理P198) 目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸。α-酮戊二酸在谷氨 酸脱氢酶的催化及有NH4+存在的条件下,生成谷氨酸。当生物素缺乏时,菌种生长十分缓慢; 当生物素过量时,则转为乳酸发酵。因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。 11.厌氧代谢的特点 1、 12.连续发酵的特点 连续发酵适当微生物培养到对树生长其实,在发酵罐中一方面以一定速度连续不断的流加新鲜培养基,另一方面又以同样的速度连续不断的将发酵液排出,是发酵罐中微生物的生长和代谢活动始终保持旺盛的稳定,而PH\温度、营养成分的浓度、溶解氧等都保持一定,并从系统外部予以调整,使菌种维持在恒定温度下进行连续生长和发酵,这样就大大提高了发酵的生长效率和设备利用率。 12发酵终点的判定方法(调控P277) 13、VC生物合成原理(产品9)

发酵过程控制

发酵过程控制和优化技术的有关知识 发酵的生产水平高低除了取决于生产菌种本身的性能外,还要受到发酵条件、工艺的影响。只有深入了解生产菌种在生长和合成产物的过程中的代谢和调控机制以及可能的代谢途径,弄清生产菌种对环境条件的要求,掌握菌种在发酵过程中的代谢变化规律,有效控制各种工艺条件和参数,使生产菌种始终处于生长和产物合成的优化环境中,从而最大限度地发挥生产菌种的生产能力,取得最大的经济效益。 一.发酵过程进行优化控制的意义 随着生物和基因工程技术在各工业行业中的应用,发酵产品生产规模和品种不断增加,对发酵过程进行控制和优化也显得越来越重要。作为发酵中游技术的发酵过程控制和优化技术,既关系到能否发挥菌种的最大生产能力,又会影响到下游处理的难易程度,在整个发酵过程中是一项承上启下的关键技术。 与物理和化学反应过程不同,生物过程的反应速率比较慢,目的产物的浓度、生产强度、反应物质(底物或基质)向目的产物的转化率也比较底。工业微生物学从两个方面解决上述问题,一方面通过菌种选育和改良获得高产的发酵菌种;另一方面,通过控制培养条件使微生物最大限度地生产目标产物。相对来讲,通过发酵过程控制和优化,将生物过程准确地控制在最优的环境或操作条件下,是提高整体生产水平的一个捷径或者说是一种更容易的方法,其重要性也绝不亚于利用分子生物学和基因工程进行菌种改良的方法。 二.生化过程的特征 与物理和化学反应过程相比,生化反应过程有以下不同特征:①动力学模型高度非线性; ②动力学模型参数的时变性;③除简单的物理和化学状态变量(温度、pH、压力、气体分压、DO外,绝大多数生物状态变量(生物量、营养物浓度、代谢产物浓度、生物活性等)很难在线测量;④过程参数的滞后性,一个生物过程可能涉及成千上万个小的物理和化学反应,其相互间的作用和影响造成了生物过程的响应速率慢。 生物过程的控制和优化还具有以下特点:①不需要太高的控制精度;②各状态变量之间存在一定的连带关系;③由于没有合适的定量的数学模型可循,其控制与优化操作还必须完全依靠操作人员的经验和知识来进行。 三.生物过程控制和优化的目的和研究内容 生物过程控制和优化的目的就是以生物反映工程、发酵工程、生物化学、微生物学等学科的原理和知识为基础,以自动控制理论、过程控制和优化理论、工程数学以及人工智能技术为手段,将目的生物过程控制在最优的操作环境之下,以实现提高生物过程生产水平的目

总结-发酵条件控制探讨

发酵工艺的控制 发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。 反映发酵过程变化的参数可以分为两类:一类是可以直接采用特定的传感器检测的参数。它们包括反映物理环境和化学环境变化的参数,如温度、压力、搅拌功率、转速、泡沫、发酵液粘度、浊度、pH、离子浓度、溶解氧、基质浓度等,称为直接参数。另一类是至今尚难于用传感器来检测的参数,包括细胞生长速率、产物合成速率和呼吸嫡等。这些参数需要根据一些直接检测出来的参数,借助于电脑计算和特定的数学模型才能得到。因此这类参数被称为间接参数。上述参数中,对发酵过程影响较大的有温度、pH、溶解氧浓度等。 1、温度 温度对发酵过程的影响是多方面的,它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制。除这些直接影响外,温度还对发酵液的理化性质产生影响,如发酵液的粘度、基质和氧在发酵液中的溶解度和传递速率、某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。 最适发酵温度是既适合菌体的生长,又适合代谢产物合成的温度,它随菌种、培养基成分、培养条件和菌体生长阶段不同而改变。理论上,整个发酵过程中不应只选一个培养温度,而应根据发酵的不同阶段,选择不同的培养温度。在生长阶段,应选择最适生长温度,在产物分泌阶段,应选择最适生产温度。但实际生产中,由于发酵液的体积很大,升降温度都比较困难,所以在整个发酵过程中,往往采用一个比较适合的培养温度,使得到的产物产量最高,或者在可能的条件下进行适当的调整。发酵温度可通过温度计或自动记录仪表进行检测,通过向发酵罐的夹套或蛇形管中通人冷水、热水或蒸汽进行调节。工业生产上,所用的大发酵罐在发酵过程中一般不需要加热,因发酵中释放了大量的发酵热,在这种情况下通常还需要加以冷却,利用自动控制或手动调整的阀门,将冷却水通人夹套或蛇形管中,通过热交换来降温,保持恒温发酵。 2、pH值 pH值对微生物的生长繁殖和产物合成的影响有以下几个方面: ①影响酶的活性,当pH值抑制菌体中某些酶的活性时,会阻碍菌体的新陈代谢; ②影响微生物细胞膜所带电荷的状态,改变细胞膜的通透性,影响微生物对营养物质的吸收及代谢产物的排泄; ③影响培养基中某些组分和中间代谢产物的离解,从而影响微生物对这些物质的利用; ④PH值不同,往往引起菌体代谢过程的不同,使代谢产物的质量和比例发生改变。 另外,pH值还会影响某些霉菌的形态。 发酵过程中,pH值的变化取决于所用的菌种、培养基的成分和培养条件。培养基中的营养物质的代谢,是引起pH值变化的重要原因,发酵液的pH值变化乃是菌体产酸和产碱的代谢反应的综合结果。每一类微生物都有其最适的和能耐受的pH值范围,大多数细菌生长的最适pH值为6.3~7.5,霉菌和酵母菌为3~6,放线菌为7~8。而且微生物生长阶段和产物合成阶段的最适pH值往往不一样,需要根据实验结果来确定。

发酵过程优化

第一章、绪论 第一节发酵过程优化在生物工业中的地位及其研究内容 一、发酵过程优化在工业中的地位 现代生物技术不仅能在生产新型食品、饲料添加剂、药物的过程中发挥重要的作用,还能经济、清洁地生产传统生物技术或一般化学方法很难生产的特殊化学品,在解决人类面临的人口、粮食、健康、环境等重大问题的过程中必将发挥积极的作用 二、发酵过程优化的研究内容 第一个方面是细胞生长过程研究 第二个方面是微生物反应的化学计量 第三个方面是生物反应过程动力学的研究(主要研究生物反应速率及其影响因素) 第四个方面的内容是生物反应器工程(包括生物反应器及参数的检测与控制) 第二节、发酵过程优化的研究进展 一、发酵过程优化是生物反应工程的研究前沿之一 生物反应动力学的研究内容:是有关生物的、化学的与物理过程之间的相互作用,诸如生物反应器中发生的细胞生长、产物生成、传递过程等及影响微生物反应宏观动力学的重要因素 生物反应动力学研究的目的:是为描述细胞动态行为提供数学依据,以便进行数量化处理 二、流加发酵 1、概述 流加发酵即补料分批发酵(fed-batch fermentation),有时又称版连续培养或连续发酵,是指在分批发酵过程中间歇或连续地补加新鲜培养基的发酵方法 2、流加发酵与连续发酵和分批发酵的比较 流加发酵介于分批发酵和连续发酵之间,兼两者的优点,又克服了两者的缺点.

3、流加发酵的研究进展 (1)、在20世纪70年代以前流加发酵的理论研究几乎是个空白,流加过程控制仅仅以经验为主,流加方式也仅仅局限于间歇或恒速流加 1973年日本学者Yoshida 等人首次提出了“Fed-Batch Fermentation ”这个术语,并从理论上建立了第一个数学模型,流加发酵的研究才开始进入理论研究阶段 其后,随着研究深入,流加发酵在一下三个方面有重大进展 20世纪70年代中后期对流加发酵过程的动力学解析 结合发酵过程的可测参数对流加过程进行反馈控制(如DO 法、CO2法、RQ(呼吸商)法、pH 法、代谢物法、萤光法等) (2)流加发酵的最优化研究 流加发酵最优化研究的核心问题是找出最佳的底物流加方式,以维持发酵过程始终处于最佳状态 流加发酵最优化的研究内容包括: 状态方程的建立;目标泛函的确定;最优化底物流加方式的求解 (3)对流加过程进行反馈控制 流加发酵的物料衡算式可以表达为: 方程试中, μ , π , σ 分别代表菌体,产物生成比速度及其 质消耗比速,在等式中是以个相对于X,P,S 的函数,它可以是X,P,S 中某单一因子的函数,也可以是X,P,S 中两个或三个因子的函数. 4.高生产率和细胞密度发酵 细胞生长环境的优化策略 (1)培养基组成的优化 (2)特殊营养物的添加 (3)限制代谢副产物的积累 培养模式 (1)所培养细胞的具体代谢行为 (2)利用抑制性底物合成目的产物的潜力 (3)诱导条件以及测量细胞培养各项参数的能力 诱导策略 细胞循环发酵 (应用限制:作用于进入过滤单元的细胞的剪应力太大;系统的放大存在许多实际困难) XV dt XV d μ=)(F S XV dt SV d F +-=σ)(XV dt PV d π=)(F dt dV =

发酵优化与控制

发酵过程的优化与控制 1.举例说明反馈控制系统是如何工作、间接优化发酵性能的。 答:以《应用溶氧反馈控制高密度培养重组大肠杆菌过程中乙酸的产生》为例简介如下: 在供氧充足的条件下,当大肠杆菌比摄糖速率q g≥临界值q g crit时(图1A),就会产生乙酸,溶氧信号pO2在产生乙酸时为图1B中的2,不产生乙酸为图1B中的1; 在葡萄糖限制培养的条件下,脉冲补入葡萄糖,当q g≤q g crit时,大肠杆菌比摄氧速率q o升高,pO2值降低。 脉冲过后,葡萄糖浓度的下降,q g下降,pO2值也逐渐回升(图1B)。 当脉冲补入的葡萄糖过多,大肠杆菌的摄糖速率超过临界值时,大肠杆菌的摄氧能力处于饱和状态,pO2值的响应就不会随着葡萄糖的脉冲补入而产生振荡变化(图1B)。 如图:在补料的前阶段(15~28h),以对数增加的流速补入葡萄糖时,pO2值随着葡萄糖脉冲补入而上下振荡;加入IPTG开始诱导(26h)重组大肠杆菌表达人表皮生长因子后,在接近30h时,振荡的幅度变小,这标志着重组菌的比摄糖速率逐渐接近产生乙酸的临界比摄糖糖速率(q g crit),而此后降低补料速率则又使pO2的振荡幅度有所增加。根据pO2值的振荡变化来控制葡萄糖的补料速率(30~44h),能使重组大肠杆菌继续保持较高的生长速率,同时发酵液中的乙酸和葡萄糖的浓度也维持在较低的水平,大肠杆菌的细胞干重在44h时达到48g/L,人表皮生长因子的表达量比第二批提高45%。

2、实现发酵过程优化的目标有哪些?如何根据发酵过程的特点实现这些目标 的相对统一?举一例进行表述。 答: ⑴实现发酵过程优化的目标: 使细胞生理调节、细胞环境、反应器特性、工艺操作条件与反应器控制之间这种复杂的相互作用尽可能的简化,并对这些条件和相互关系进行优化,使之最适于特定发酵过程的进行,以达到高产量(提高设备利用率;降低产品提取费用),高转化率(降低原料成本;减少环境污染),高生产强度(缩短生产周期;降低设备投资)的目的。 ⑵举例说明实现发酵目标相对统一:《L-组氨酸发酵优化》 ①L-组氨酸测定方法的研究 产物的快速测定,可以帮助生产者及时知道发酵过程进行的水平。快速测定方法的建立不仅给生产带来方便,也节约了生产成本。 本研究中应用“Paully试剂比色法”对发酵液中L-组氨酸进行了定量分析研究,确立了L-组氨酸定量测定条件和计算方法,并对其精确度进行研究,证明Paully试剂比色法能够快速,准确的测定发酵液中L-组氨酸含量。 ②L-组氨酸发酵条件的优化 组氨酸工业优生产的关键是发酵,发酵水平的高低是决定产品成本的主要因素。提离发酵水平的途径有二条:一是选育适合工业化生产的优良菌种,二是获得与生产菌种相匹配的最佳发酵工艺条件和控制手段。前者是建立在代谢控制发酵研究基础上的现代菌种选育技术,后者是建立在生化反应工程基础上的发酵过程技术。只有二者紧密结合才能最终实现发酵生产的高水平。 本研究中进行了分批发酵和补料分批发酵的条件优化,通过研究培养方式、营养条件控制、无机盐影响、生长因子影响以及环境条件控制对于L-组氨酸发酵的影响,从而提高了组氨酸的产量。 如图3-1所示为不同碳源对种子培养基的影响,从种子活力分析,以葡萄糖和果糖作为碳源,菌体浓度较高,而蔗糖作为碳源时种子活力最低。从产酸角度看,蔗糖产酸最高,葡

牛粪发酵条件的控制与调节

牛粪好氧堆肥处理技术 发酵条件的控制与调节 1.水分调节 好氧堆肥质量和效率直接受堆肥物料水分含量的影响,水分的作用主要为溶解有机物并参与微生物的新陈代谢和调节堆肥温度。一般认为堆肥初始含水量在40%~70%就能保证堆肥顺利进行。当含水量低于40%时,微生物的代谢活动会受到抑制,堆肥将由好氧向厌氧转化,尤其当含水量低于15%时,菌体代谢活动会普遍停止;当含水量太高时,超过70%,物料空隙率低空气不足,不利于好氧微生物生长,减慢降解速度,延长堆腐时间,并产生二氧化硫等恶臭气体。按重量计,初始堆料的含水率应保持在50%~65%,过低和过高都会影响发酵过程,而牛粪的含水率一般在75%~80%,往往需要加入吸湿性强的调节料以降低混合堆料的水分含量。 2.发酵温度 温度是堆肥正常发酵的重要条件之一,堆肥温度的控制就是要保持堆体顺利升温、维持适当温度和温度的下降。不同种类微生物的生长对温度的要求不同,嗜温菌的最适温度是30~40℃,嗜热菌的最适温度是45~60℃,高温堆肥的温度最好控制在55~65℃,不宜超过65℃,超过65℃就会对微生物的生长产生抑制。堆肥化是一个放热过程,若不加以控制,温度可达75~80℃,温度过高会过度消耗有机质,并降低堆肥产品质量,根据卫生学要求,堆肥至少要达到55℃并保持5天以上才能保证杀灭堆层中大肠杆菌及病原菌。生产实践中常采用翻堆或强制通风办法控制温度。 3.碳氮比调节 碳氮比(C/N)是指堆肥原料与填充料混合物的总碳(C)与总氮(N)的比值。碳源是微生物利用的能源,氮源是微生物的营养物质,在堆肥过程中,碳源被消耗,转化成二氧化碳和腐殖质物质,而氮则以氨气形式散失,或变为硝酸盐和亚硝酸盐,或由生物体同化吸收。因此,碳和氮的变化是堆肥的基本特征之一。由于微生物的C/N范围为4~30,因此用作供其营养的有机物碳氮比最好也在此范围内,C/N过高或过低都不利于嗜氧菌的生长和繁殖,堆肥过程中适宜的碳氮比(C/N)为20~30:1,30:l较为理想。北方地区在生产实践中可采用在牛粪中添加有关原料调节碳氮比,一般牛粪堆肥处理时可不调整C/N。 4.通风调节 通风是好氧堆肥的关键性因素之一,其主要作用是提供好氧微生物生长繁殖所必需的氧气,通过供气量的控制,可去除堆料中多余的水分,调节堆体温度,减少恶臭产生。研究表明,堆料中氧含量为10%时,就可保证微生物代谢的需要。在供氧充分而其他条件也适宜的情况下,微生物迅速分解有机物,产生大量的代谢热,如果不能对多余热量进行控制,温度升高到超过微生物生长的适宜范围,将会抑制有机物的生物降解、延长处理时间,增加设备运行费用,并且产生难闻的气味。可适时采用翻堆方式通风或设有其他机械通风装置换气,调节堆肥物料的氧气浓度和散热,同时应注意堆体堆积要松紧适度,保持物料间有一定的空隙以利通气. 5.pH值调节

发酵自动控制系统要求

发酵自动控制系统要求 本公司新增设备:4台50L发酵罐、2台2T发酵罐(自动控制温度、pH、DO、搅拌转速、补料、消泡、罐压),要求对该套发酵系统配备如下要求的全自动控制系统,包括相应的电器元件及控制部件以及调试培训。 一、罐温度自动控制系统 1. 控制方式:夹套水浴加热、冷却,PID 全自动设定控制。 2. 显示范围:0-199.9℃控制精度:±0.1℃,控制范围:水浴水箱温度+5℃~65℃±0.5%。 3. 控制内容:智能模糊控制、数据自动记录、曲线显示,可分段控制 4. 执行机构:Pt100 温度传感器, 电磁阀加手动控制冷却水降温(冷却水池及冷却塔由用户自建)。恒温水箱提供热水用于罐体升温。 二、转速控制 1. 采用斜齿轮减速电机; 2. 采用台达变频调速器; 3. 转速输出并无极可调,转速数据有相应的信号输出,供下位机采集、记录。 罐名电机功率变频器功率转速 50L 种子罐0.55KW 50-500rpm 4台 2000L 发酵罐4KW 50-350rpm 2台 三、补料控制 1. PID 全自动设定控制; 2. 发酵过程分段控制(根据发酵时间,补料自动变量控制,至少10 段)补料量、曲线分析、加入量累计、显示记录、数据保存。 四、压力显示 1. 控制方式:手动控制 2. 执行机构:不锈钢指针式压力表,现场指示压力。 五、pH 显示 1. 控制方式;全自动控制,全数字化设定。 2. 显示范围:pH 数显变送器,0.00-14.00PH±0.01,显示精度:0.01PH。全自动控制范围: 2.00-12.00±0.02,上下限设定,自动报警。 3. 控制内容:发酵过程顺序控制;可以进行pH 值曲线分析;批报表分析;自动控制蠕动泵添加酸和碱,精确控制pH,pH 值异常报警,。酸加入量累计显示记录、碱加入量累计显示记录,发酵过程可分段控制(根据发酵时间,自动变量控制,至少10 段),数据保存。 4. 执行机构:外源自动补酸碱,梅特勒PH 玻璃凝胶电极及电极连接原厂专用屏蔽线,电极可高温在位灭菌,灭菌温度:121℃,在线检测,不锈钢PH 电极护套。 六、DO 显示 1. 控制方式;在线检测。 2. 显示范围:DO 数显变送器,0-100%,显示精度:0.1%。 3. 控制内容:发酵过程顺序控制;可以进行DO 值曲线分析;批报表分析;数据保存,并可向上位机发送,DO 值异常报警。 4. 执行机构:瑞士梅特勒DO 6800电极及电极连接原厂屏蔽线,溶氧可与空气流量关联控

发酵过程优化原理复习(1)剖析

1、发酵过程优化的目标 答:①建立生物反应过程的数量化处理和动力学模型。②实现发酵过程优化,以更好地控制发酵过程; ③规避生物技术产业化过程的技术风险,追求其经济效益; 2、发酵过程优化主要涉及的研究内容 答:①细胞生长过程研究,了解微生物从非生物培养基中摄取营养物质的情况和营养物质通过代谢途径转化后的去向,确定不同环境条件下微生物的代谢产物分布②根据微生物代谢反应符合质量守恒定律,对微生物反应的化学计量进行研究,简化对发酵过程的质量衡算③研究生物反应速率及其影响因素,建立生物反应动力学,这也是是发酵过程优化研究的核心内容。④生物反应器工程,包括生物反应器及参数的检测与控制,它们是发酵过程优化最基本的手段。 3、Hasting(1954年)指出生化工程要解决的十大问题是哪些? 答:深层培养、通气、空气除菌、搅拌、结构材料、容器、冷却方式、设备及培养基除菌、过滤、公害。 其中通气搅拌与放大是生化工程学科的核心,其中放大是生化工程的焦点。 4、Cooney指出,要实现发酵过程的优化与控制,必须解决好哪些问题? 答:必须解决好5个问题:①生物模型;②传感器技术;③适用于生物过程的最优化技术;④系统动力学;⑤计算机-监测系统-发酵罐之间的接口技术 5、流加发酵、分批发酵、连续发酵方式的优缺点比较 答:①与传统的分批发酵相比,流加发酵可以解除底物抑制、葡萄糖效应和代谢阻遏等;与连续发酵相比,流加发酵则具有染菌可能性更小,菌种不易老化变异等优点。 ②与流加发酵和连续发酵相比,分批发酵工艺操作简单,比较容易解决杂菌污染和菌种退化等问题,对营养物的利用效率较高,产物浓度也比连续发酵要高。但其人力、物力、动力消耗较大,生产周期较长,生产效率低。 ③连续发酵最大的优点是,微生物细胞的生长速度、代谢活性处于恒定状态,可达到稳定高速培养微生物或产生大量代谢产物的目的,且便于进行微生物代谢、生理生化和遗传特性的研究,在工业上可减少分批培养中每次清洗、装料、消毒、接种、放罐等操作时间,提高了生产效率和自动化程度。 6、重组生物药物生产过程的优化包括哪6个方面 答:①适宜宿主的选择;②重组蛋白积累位点(如可溶的胞内积累、胞内聚合积累、周质积累或胞外积累)的确定;③重组基因最大表达的分子策略;④细胞生长和生产环境的优化;⑤发酵条件的优化;⑥后处理过程的优化。 7、操作细胞循环生物反应器时必须考虑哪两个因素?为什么? 答:①稀释率(流速/体积),因为稀释率的大小影响细胞的生长速率,不同的实验目的对稀释率的要求也不同; ②循环速率(指通过过滤系统的培养基速率),因为高的循环速率可使组分混合均匀,但循环速率过高会使作用在细胞上的剪切力过高,也会导致过滤单元膜的迅速损坏。因此,很难同时确定合适的稀释率与循环速率,这也是限制细胞循环技术应用的一个重要因素。 8、细胞生长过程可以分为哪3个步骤,运输过程包括其中的两个步骤,在细胞膜上的运输过程是研究者普遍关心的内容,在细胞膜上可能存在哪些运输机制?各有何特点? 答:(1)细胞生长过程的3个步骤:①底物传递进入细胞;②通过胞内反应,将底物转变为细胞质和代谢产物;③代谢产物排泄进入非生物相; (2)研究表明在膜上存在3种不同的运输机制:①自由扩散;②协助扩散;③主动运输。 特点:①自由扩散和协助扩散只有存在浓度梯度时,由高浓度向低浓度的运输才可能发生,统称被动运输,在运输过程中不需要提供外部能量; 自由扩散分子扩散的质量通量遵守Fick第一定律,通过自由扩散进行运输的化学物质主要有氧气、二氧化碳、水、有机酸和乙醇等;协助扩散是通过膜上的转运蛋白来进行物质运输的,具有选择性,其运输速率比自由扩散又快又多,运输速率遵循典型的饱和型动力学。 ③主动运输是逆着浓度梯度进行运输,需要输入一定的吉布斯自由能,以特定的膜内蛋白作为运输过程的媒介,可以逆着浓度梯度的方向进行运输,因此是一个耗能的过程,根据运输动力来源可以分为一级主动运输和次级主动运输两大类,还有一种特别的主动运输过程为基团转移。 9、发酵过程数量化处理包括哪些方面的内容?常规的参数一般包括哪些?通常如何测量这些参数? 发酵过程的数量化处理包括:①发酵过程的速度;②化学计量学和热力学;③生产率、转化率和产率; one

相关文档
最新文档