离子交换树脂化学性能

离子交换树脂化学性能
离子交换树脂化学性能

化学性能

(1)离子交换反应的可逆性:离子交换反应是可逆的,例如当含有硬度的水通过H型离子交换剂时其反应如下表示:

2RH+Ca2+==========R2Ca+2H+

当反应进行到失效时,为了恢复离子交换剂的交换能力,就可以利用离子交换反应的可逆性,用硫酸或盐酸溶液通过此失效的离子交换剂,以恢复其交换能力。

如下式化学平衡的移动,当水中Ca2+和H型离子交换剂多时,反应正向进行,反之则逆向进行。

2RH+Ca2+======= R2Ca+2H+

正反应为运行,逆反应为再生,

离子交换的可逆性,是离子交换剂可以反复使用的重要性质。

(2)酸碱性:H型阳离子交换剂和OH型阴离子交换剂的性能与电解质酸碱相同,在水中有电离出H+和OH-的能力,因此,根据此能力的大小可以有强弱之分。

强酸性H型交换剂在水中电离出H+的能力较大,所以它是很容易和水中其它各种离子进行交换反应,而弱酸性H型交换剂在水中电离出H+的能力较小,故当水中有一定量的H+时,就显示不出来交换反应,强碱性和弱碱性阴离子交换剂的情况与此相似。

(3)中和与水解:离子交换剂的中和与水解的性能和通常的电解质一样,H离子交换剂和碱液会进行中和反应,如强酸性H离子和强碱性NaOH相遇,则中和反应进行得更完全,如下式;

RSO3H+NaOH==========RSO3Na+H2O

它的水解反应也和通常电解质的水解反应一样,当水解产物有弱酸或弱碱时,水解能力较大,如下式表示。

RCOONa+H2O==========RCOOH+NOH

RNH3CL+H2O========RNH3OH+HCL

所以,具有弱碱性基团的离子交换树脂的盐性,易于水解。

(4)离子交换剂的选择性:离子交换剂吸附各种离子的能力不一样,有些离子易被交换剂吸附,但吸附后要把它交换下来就较困难,而另一些离子很难被吸附,但被置换下来却比较容易,这种性能称为离子交换的选择性。这种选择性影响到离子交换剂的交换和再生(或称为还原)过程,故在实际应用中是一个重要问题。

离子交换剂的选择性主要决定于被吸附的离子结构。它有两个规律;一个是离子带的电荷越大,越易被交换剂吸附,例如二价离子比一价离子易吸附,另一个是对于带有相同电荷量的离子,则原子序数大(即分子量大)的元素,形成离子的水合半径小,较易被吸附。

对于阳离子交换剂来说,它对各种常见离子的选择性次序为;

Fe3+>AI3+>Ca2+>Mg2+>K+≈NH4+>Na+>Li+

这个次序只适合在含盐量不是很高的水溶液中,如在浓溶液中,离子间的干扰较大,且水合半径的大小顺序和上述的次序有些差别,此时各离子间选择性差别较小。

离子交换剂的选择性除了和吸附离子的本质有关外,有时还与离子交换剂的活性基团有关系。特别是H型阳离子交换剂和OH型阴离子交换剂,例如带磺酸根(-SO3-)的强酸性离子交换剂,对H+的吸附能力并不很强,在选择性次序中H+居于Li+和Na+之间,即其选择性次序为:

Fe3+>AI3+>Ca2+>Mg2+>K+≈NH4+>Na+>Li+

所以在实际应用中,用酸再生弱酸性阳离子交换剂,要比再生强酸性阳离子交换树脂容易得多。

强碱性阴离子交换树脂选择性次序为:

SO42->NO3->CI->OH->F->HCO3->HSiO3-

弱碱性阴离子交换树脂的选择性次序为

OH-> SO42->NO3->CI->F->HCO3->HSiO3-

所以用碱再生弱碱性阴离子交换树脂要比再生强碱性阴离子交换树脂容易。

(5)交换容量:交换容量是表示一种离子交换剂中可交换离子量的多少,是离子交换剂的一个重要技术指标。交换容量有两种表示法;一种是重量表示法,即单位重量离子交换剂的吸附能力,通常用毫克当量/克(mg-N/g)表示,另一种是体积表示法,即单位体积离子交换剂的吸附能力,通常用克当量/米3(g-N/m3)表示。

离子交换是遵循当量定律的,等当量的交换和再生,不同的离子交换剂交换能力不同。由于离子交换剂的形态不同,其体积和重量也不相同,在表示交换容量时,为了统一起见,一般阳离子交换剂以H型为准,阴离子交换树脂以Cl型为准。必要时,应标明所呈状态。

常见的交换容量有以下几种:

(a)全交换容量(E)将交换剂中所有活性基团全部再生可交换的离子后,测定其全部交换下来的容量,称为全交换容量。此指标表示交换剂中所有活性基团的量。对于同一种离子交换剂,它是个常数。这种交换容量主要用于离子交换剂的研究方面。

(b)平衡交换容量(m)将交换剂完全再生后,求它和一定组成的水溶液作用到平衡状态时的交换容量。此指标表示在某种给定溶液中,离子交换剂是最大交换容量,故不是常数,而和与它平衡的溶液组成有关。

平衡交换容量和全交换容量有关,后者是前者的最大极限,设一种H型离子交换剂和Na型离子交换剂溶液相作用,当达到平衡时,交换剂中含Na+的量为mNa毫克当量/克,则平衡交换容量即为mNa,若此时交换剂中残留的H型为mH毫克当量/克,则mNa与mH 之和必等于此离子交换剂的全交换容量。

即E=mNa+mH,当溶液中Na+含量很多,而使平衡时交换剂残留的H型mH≈0时,即E=mNa。

(c)工作交换容量(EG)工作交换容量是在实验室中,模拟水处理实际运行条件下测得的交换容量。就是把交换剂放在动态交换柱中,通过需要处理的水,直到滤出液中有要交换的离子漏出为止,此时交换剂所发挥的交换容量,称为工作交换容量,影响工作交换容量的因素很多,如进水中离子的浓度,交换终点的控制指标,树脂层的高度,水流的速度等,工作交换容量常用体积表示法,即克当量/米3、或毫克当量/升。

离子交换剂的再生程度,对其交换容量有很大的影响,如经充分再生,则可得最大的工作交换容量。

在实际运行中,要使交换剂充分再生,所需再生剂的量很多,是不经济的,因为再生愈彻底、完全,再生剂的用量必须大大增加,因此在实际运行中采用的再生剂量,要做到既能使交换剂得到较好的再生,而又不消耗较多的再生剂,即要选取最优化的再生剂量,此时的交换容量称为实用工作交换容量。此交换容量应根据设备情况,原水水质、对出水水质的要求等,通过实验来确定。

(整理)蓄电池性能检测装置详细资料

蓄电池性能检测系统锂电池充放电柜SBCT-3030TS 一、概述 蓄电池使用寿命一般为5-6年,在这么长的使用过程中往往会出现:电池端电压不均匀、电池壳变形、电解液渗漏、容量不足等现象,为供电带来安全隐患。蓄电池容量,是蓄电池充足电后放出电能大小的数值,因此蓄电池的容量反映了蓄电池的健康状况。 蓄电池长期浮充,容易造成活性物质钝化,电解液固化;蓄电池均充频繁,造成电解液干涸、极板栅格腐蚀; 大电流充电或过放电,造成极板变形、硫化。以上原因,导致电池容量降低甚至失效,给系统启动、通讯造成安全隐患; 蓄电池由于长期频繁使用,电解液比重不断增加,浮充电流加大,因此电极腐蚀更为迅速,电极腐蚀也会消耗氧气从而使电解液变干,这是蓄电池特有的故障。 当电池的实际容量下降到其标称容量的90%以下时,电池便进入衰退期。 当电池容量下降到标称容量的80%以下时,便进入急剧的衰退状态,这时电池已存在安全隐患,当电池容量下降到标称的70%以下时,电池已达到报废状态。 《电源维护规程》要求: 1)新安装的蓄电池验收应做100%容量实验; 2)蓄电池每年做一次放电深度为30%-40%实验; 3)超过三年后每年做一次放电深度为100%的容量试验; 4)蓄电池放电期间应每小时测量一次端电压和放电电流。 一、蓄电池检测方案 2.1.电池安装前检测、定期维护——电池容量寿命检测 充满电的蓄电池放置不用,逐渐失去电量的现象,称之自行放电。自行放电是不可避免的,在正常情况下,每天放电率不应超过0.35%~0.5%。自行放电的主要原因: 1)极板或电解液中含有杂质,杂质与极板间或不同杂质间产生了电位差,变成一个局部电池, 通过电解液构成回路,产生局部放电电流,使蓄电池放电。 2)隔板破裂,导致正负极板短路。 3)蓄电池壳表面上有电解液或水,在极桩间成为导体,导致蓄电池放电。 4)活性物质脱落过多,并沉积在电池底部,使极板短路造成放电。 因此安装备用蓄电池前,需要采用“电池容量寿命检测柜”进行100%的核对性实验,先对蓄电池进行补充电,再进行放电、放电完毕后再充电经检测确认蓄电池达到核定容量后,方可投入使用。

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

蓄电池的检测

蓄电池de检测方案 一、检测目的 由于汽车上的需要,我们购买到了一台蓄电池。但出于对蓄电池质量、安全等方面的考虑,特对其进行检测。并制定出一套完整的检测方案。并选择其几项重要的性能指标进行检测。 二、检测要求 符合以下三个标准: ①GB/T2828.1-2003 按接收质量限(AQL)检索的逐批检验抽样计划 ②ZBT35001 电器硬设备基本技术条件 ③ZBT36009 电器接线柱标记 三、蓄电池的性能指标 ①蓄电池的电压 ②蓄电池的容量 ③蓄电池的使用寿命 ④蓄电池的效率 ⑤蓄电池的自放电 ⑥蓄电池的放电深度与荷电态 ⑦蓄电池内阻的检测 ⑧蓄电池的串联与并联 四、蓄电池的检测项目 ①蓄电池的外观检测 ②蓄电池的主要性能指标检测 ③蓄电池的好坏检测 五、检测具体的方法 1、蓄电池的外观检测:

检查产品的标志和标识,其内容包括生产厂家、规格型号、商标、正负极。如果上述内容缺漏,这项检测即为不格。外观检查中应特别小心所标内容与实际不符的情况。外观检查还应该考核蓄电池外壳质量。确保外壳硬度、注液孔等指标。 2、蓄电池的电压检测: 方法一:如图所示,蓄电池的输出电压为12V,利用万用表进行检测。先把万用表打到20V档,让后红棒头与黑棒头分别接到蓄电池的正极和负极。根据万用表显示出的电压判断蓄电池的电压是否正常。但这种测量不准确!因为测量内无负载,所以测量的不一定是蓄电池的实际电压。 方法二:用蓄电池检测仪测量蓄电池接线柱间的断路电压时,如果检测出来的电压等于或大于12.5V时,这是说明蓄电池正常。但是如果电压低于12.5V,则说明蓄电池存在问题或欠压。 3、蓄电池容量检测: 测试需要的准备: 1、测试必要的工具准备 测试所需工具包括:绝缘手套、万用表、测温仪、钳形直流表、蓄电池内阻仪、棘轮扳手、测试记录表、警示标示、防护眼镜、手电筒、PH试纸。 2、环境检查 机房环境检查:机房应该凉爽、干燥,机房内的通风和制冷设备需运行正常,温湿度监控设备运行正常。 UPS设备检查:协调UPS厂家技术人员对设备参数进行确认,根据电池方提供的数据设置UPS参数,其中包括:放电截止电压、均充限流、均充时间限制、均浮充电压的设置。 3、电池检查 电池外观检查:检查外观是否清洁,有无液体或污渍,如有液体或污渍可借助PH试纸帮助判断,并做好设备间的清洁工作帮助对故障点的判断。 4、人员准备 方法一:传统容量测试法。将蓄电池接上假负载,并接上电压表与电流表。调整负载大小使得放电电流保持在一个定值,当蓄电池的端电压到达放电终止电压时放电测试结束。然后根据测出的放电时间和放电电流来计算其容量。 方法二:电源监控控制测试法。此方案利用电源本身的监控,实现对蓄电池在设定时间,设定放电电流(满负荷)的放电,通过放电后电池组的参量变化,来初步估算蓄电池的容量。电源监控控制测试法不需另外增加其它电池容量检测设备。 方法三:曲线比较法。利用蓄电池容量检测设备对蓄电池进行几分钟的放电后再充电,将此过程中记录的数据绘制成曲线,对比该型号蓄电池的特性曲线数据库,进而分析蓄电池的剩余容量。曲线比较方法的特点: (1)用测试后所得的曲线可以比较直观的分析蓄电池的状态; (2)测试蓄电池时,需要该型号的容量分析数据库,制作此数据库需要一定的时间; (3)如负载太小,小于10小时放电率的电流或负载电流波动太大,需连接智能负载。 方法四:交流检测法。交流检测法特点: (1)不改变电源系统的任何工作状态;

液氨应急处理

液氨应急处理 液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。氨在20℃水中的溶解度为34%。 液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。为了促进对液氨危害和处置措施的了解,本文特介绍液氨的理化特性、中毒处置、泄漏处置和燃烧爆炸处置4个方面的基础知识。 一、氨的理化性质 分子式:NH3气氨相对密度(空气=1):0.59 分子量:17.04液氨相对密度(水=1):0.7067(25℃) CAS编号:7664-41-7自燃点:651.11℃ 熔点(℃):-77.7爆炸极限:16%~25% 沸点(℃):-33.4 1%水溶液PH值:11.7 蒸气压:882kPa(200℃) 二、中毒处置 (一)毒性及中毒机理 液氨人类经口TDLo:0.15 ml/kg 液氨人类吸入LCLo:5000 ppm/5m 氨进入人体后会阻碍三羧酸循环,降低细胞色素氧化酶的作用。致使脑氨增加,可产生神经毒作用。高浓度氨可引起组织溶解坏死作用。 (二)接触途径及中毒症状 1.吸入 吸入是接触的主要途径。氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。 (1)轻度吸入氨中毒表现有鼻炎、咽炎、气管炎、支气管炎。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。 (2)急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。 (3)严重吸人中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度可直接影响肺毛细血管通透性而引起肺水肿。 2.皮肤和眼睛接触 低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。 皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。 高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并

镉电极在铅酸蓄电池性能检测中的应用

镉电极在铅酸蓄电池性能检测中的应用 我们知道,任何一种金属晶体都含有金属离子和自由电子,当金属插入该金属离子的溶液中,由于金属受到电解液溶质,溶剂离子及分子的作用,会出现下列情况:一种情况是组成金属晶格的金属离子脱离金属表面进入溶液中,由于金属离子离开金属表面造成金属表面剩有多余电子而使金属在该溶液中带有负电荷,另一种情况是由于金属离子的溶解度不大,而溶液中的金属阳离子向金属表面沉积使金属表面因阳离子过剩而带正电荷。这样一来,无论那种情况,都会因金属所带的电荷,使得金属与溶液分界处形成“双电层”。 如果金属带负电荷,则溶液中金属附近的阳离子会被金属吸引而集聚在它的附近.而阴离子则由于金属的排斥,在金属附近溶液中的浓度较低。这样,金属附近的溶液—中所带的电荷与金属本身所带的电荷与金属本身所带的电荷恰好相反,这就形成了“双电层”,由于金属与溶液的分界面上“双电层”的存在。则在金属与溶液的分界面上产生一定的电势差,这个电势差的太小与金属及溶液的性质有关。 金属在电解质溶液中形成的“双电层”产生的电势差就是该金属在该溶液中的电极电位。 金属插在溶液中,在同一时间内,有的金属离子从金属表面进入溶液中;有:曲存在于溶液中的金属离子沉积到金属表面上去,当金属离子进入溶液中的速度与溶液中的离子沉积到金属上去的速度相等时,这时的电极电位称为平衡电极电位。 目前,人们尚没有方法直接测量单个电极与溶液之间的电位差,也就是绝对电极电位。这是因为测量时使用电位差计,需要把电位差计测量端的一根导线接到电极上,而把另一根导线插入溶液中,但插入溶液中的导体本身又构成了一个电极,它与我们所测量跑电极组成了一个电池;实际电位差计测出的是这个电池两极的电位差也即电池电动势,而不是被测电极与溶液间的电位差。 因此,在实际中我们可以指定某一电极的电位为零,称为参比电极或标准电极,用参比电极与所测量的电极组成一个电池,用电位差计的负端接作为零点的参比电极,正端接被测量电极,当被测量电极的电位比参比电极高时,相对电极电位为正值,当被测量电极的电位低于参比电极电位时,则相对电极电位为负值。 同一个电极用不同的参比电极来测量,测得的电极电位不同,因此,一般电极电位应注明是相对于哪种参比电极测得的。例如,相对于镉电极铅负极的电极电位=0.1 V,相对于硫酸亚汞电极铅负极的电极电位=-0.101 V,而相对于镉电极硫酸亚汞电极电位=1.11 V。它们之间的关系为:? Pb(相对于Hg2S04电极)=?Pb(相对于Cd电极)-? Hg2S04(相对于Cd电极)=0.1-1.1=-1.01 V。 为了有一个统一的标准,国际上惯常使用标准氢电极作为参比电极,规定在任何温度下标准氢电极的平衡电极电位都为零,由于标准氢电极的精度很高,且制造结构复杂,溶液纯度要求很严,因此不便于实际应用,通常都是根据实际情况选用其它的参比电极进行测量,然后再利用已知的(统一测量完的)参比电极与氢标电极的电极电位再换算成氢标电极电位。 平时我们从标准电极电位表中查得某电极在某溶液中的电极电位有以下几个条件: 1、该电极电位是与标准氢电极电位的相对值。 2、标准电极电位是指标准状态下即各物质浓度为1M,101.33 KPa压力的状态下测得值。 3、该电极电位是平衡电极电位。 所以我们以往知道的铅蓄电池中铅的标准电极电位为-0.358 V,二氧化铅的标准电极电位为+1.69 V,都是符合上述三个条件下的数值。 在实际测量中,要求选用的参比电极电位要稳定,重现性要好,并且参比电极的电解液最好能与被测电极的电解液一致。在铅酸蓄电池电极电位测量中最好用硫酸亚汞电极,即(Hg、Hg2S04·H2S04),它的精度很高,但制作和使用比较麻烦,所以在一般试验室常采用镉电极(Cd、CdS04·H2S04)来测量铅蓄电地充放电时正负极的电位。其应用很方便,但准确性较低,误差可达十几毫伏以上。 参比电极的工作面积一般都不大,因此.有很小的电流通过,它的电位就会发生波动,在测量时,参比电极与被测电极之间存在龟位差会有电流经过测量仪表构成回路,测量电压表的内阻越大,经过的电流越小,对电位测量造成的误差越小,所以,在测量铅蓄电池的膈电压时要求电压表的阻抗在每伏1 000Ω以上。 在铅蓄电池的充放电过程中,常采用镉电极来测量正负极电位变化情况,通过测量结果可以判断极板是否工作正常。 金属镉(Cd),密度为8.65,溶点约为388℃,镉电极用纯金属镉制成,新制的镉电极在使用前应浸泡在密度为1.10的稀硫酸溶液中3昼夜以上,否则因极化作用而量值不准,当镉电极不使用时,也必须把它浸在稀

液氨的特性及危害分析汇编

液氨的特性及危害分 析

液氨的品质参数、主要特性、危害及泄漏处理措施 一、液氨的品质参数 二、氨的主要特性 氨属可燃、易爆、有毒物质,危险类别为2.3类,其主要性质见下表: 1、易气化扩散 发生泄漏时,由液态变为气态,液氨会迅速气化,体积迅速扩大,没有及时气化的液氨以液滴的形式雾化在蒸汽中;在泄漏初期,由于液氨的部分蒸发,使得氨蒸汽的云团密度高于空气密度,

氨气随风飘移,易形成大面积染毒区和燃烧爆炸区,需及时对危害范围内的人员进行疏散,并采取禁绝火源措施。 2、易中毒伤亡 氨有毒,有刺激性和恶臭味的气体,容易挥发,氨泄漏至大气中,扩散到一定的范围,易造成急性中毒和灼伤,每立方米空气中最高允许浓度为30mg/m3,当空气中氨的含量达到0.5-0.6%,30分钟内即可造成人员中毒;氨气侵入人体的主要途径是皮肤,感觉器官,呼吸道和消化道等部位.轻度中毒症状为:眼口有干辣感,流泪,流鼻涕,咳嗽,声音嘶哑,吞咽食物困难,头昏疼痛,检查时可见眼膜充血水肿,肺部可听到少数干罗音;重度中毒症状为:在高浓度氨气作用下,头,面部等外露部位皮肤或造成重二度化学灼伤,还可出现昏迷,精神错乱,痉挛,也可造成心肌炎或心力衰竭,少数因反射性声门痉挛或呼吸停止呈触电式死亡。 3、易燃烧爆炸 氨既是有毒气体,又是一种可燃气体,氨的自燃点为651℃,燃烧值为2.37-2.51J/m3,临界温度为132.5℃,临界压力为11.4Mpa,氨在空气中的含量达11-14%时,遇明火即可燃烧,其火焰呈黄绿色,有油类存在时,更增加燃烧危险;当空气中氨的含量达15.7%-27.4%时,遇火源就会引起爆炸,最易引燃浓度17%,产生最大爆炸压力0.58Mpa;液氨容器受热会膨胀,压力会升高,能使钢瓶或储罐爆炸. 4、易污染环境

离子交换树脂的概述

主要用于酒类去除,高级脂肪酸脂类等。 产品详细描述 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。 树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。离子交换树脂根据其基体的种类分为乙烯系树脂和丙烯酸系树脂,及根据树脂的物理结构分为凝胶型和大孔型。 离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。应用树脂要根据工艺要求和物料的性质选用适当的类型和品种。 1、离子交换树脂的基本类型 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

浅谈液氨泄漏的危害性及预防措施

浅谈液氨泄漏的危害性及预防措施 一、液氨的主要危害分析 液氨是一种无色液体,有强烈刺激性气味,其沸点为-33.5℃,在常温下氨为气态,易溶于水、乙醇等,具有毒害性、燃爆性的特点。 1、毒害性 氨气具有强刺激性,对人体有毒害作用。吸入人体后主要与血红蛋白结合,破坏血液运氧功能。短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等。若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命。国家规定短时间接触容许浓度(PC-STEL)为30 mg/m3,时间加权平均容许浓度(PC-TWA)为20mg/m3。 举例说明:由于液氨泄漏后会迅速气化,向周围空间蔓延,所以在封闭的车间内危害更大,假如车间内存在的一个液氨罐上出现直径1cm的圆口泄漏,在内部压力为0.5MPa(常用的储罐压力一般不会大于0.5MPa)的情况下,液氨的泄漏速度约为1.49kg/s,在一座3600m3(30m×15m×8m)的车间内达到接触容许浓度的时间为0.072s,不到一秒。 根据氨的毒理特性,人暴露于氨浓度大于3500mg/m3下会立即死亡,3600m3的车间内达到死亡浓度的时间仅为8.45s,也就说不到10秒的时间内泄漏的量就可以在3600m3的大车间内达到人死亡浓度,可以说是非常快。 2、燃爆性 氨气具有燃爆性,与空气混合能形成爆炸性的气体,遇火源能发生爆炸,其爆炸下限体积浓度为15.7%,质量浓度为119.2g/ m3。 举例说明:同样是上面的例子,经过计算,只需要429kg氨充满在车间内就达到爆炸下限,泄漏时间需要288s,不到5分钟。爆炸性的氨混合气遇到火源就会发生燃爆。

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

液氨的化学性质

液氨的化学性质 液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。氨在20℃水中的溶解度为34%。 液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。为了促进对液氨危害和处置措施的了解,本文特介绍液氨的理化特性、中毒处置、泄漏处置和燃烧爆炸处置4个方面的基础知识。 一、氨的理化性质 分子式:NH3 气氨相对密度(空气=1):0.59 分子量:17.04 液氨相对密度(水=1):0.7067(25℃) CAS编号:7664-41-7 自燃点:651.11℃ 熔点(℃):-77.7 爆炸极限:16%~25% 沸点(℃):-33.4 1%水溶液PH值:11.7 蒸气压:882kPa(20℃) 二、中毒处置 (一)毒性及中毒机理 液氨人类经口TDLo:0.15 ml/kg 液氨人类吸入LCLo:5000 ppm/5m 氨进入人体后会阻碍三羧酸循环,降低细胞色素氧化酶的作用。致使脑氨增加,可产生神经毒作用。高浓度氨可引起组织溶解坏死作用。

(二)接触途径及中毒症状 1.吸入 吸入是接触的主要途径。氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。 (1)轻度吸入氨中毒表现有鼻炎、咽炎、气管炎、支气管炎。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。 (2)急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。 (3)严重吸入中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度可直接影响肺毛细血管通透性而引起肺水肿。 2.皮肤和眼睛接触 低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。 皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。 高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。

氨气的特性

氨气的特性 氨是无色有强烈刺激性气味的气体。密度克/升(标准状况),熔点°C,沸点°C,临界温度℃,临界压力大气压)。氨在常温下很容易加压成为无色液体,也易凝固为雪状固体。极易溶于水,在标准情况下1体积水可溶解1200体积氨,在20°C时,1体积水可溶解700体积氨。溶液显碱性。易溶于乙醇和乙醚。液氨是良好的极性溶剂。液氨有微弱的电离作用。 氨气与空气混合物爆炸极限16~25%(最易引燃浓度17%),氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。与硫酸或其它无机酸反应放热,混合物可达到沸腾。 粘膜和皮肤有碱性刺激及腐蚀作用,可造成组织溶解性坏死。高浓度时可引起反射性呼吸停止和心脏停搏。 使用主要预防措施: 1、注意生产过程中的密闭化和自动化,防止跑、冒、滴、漏。 2、注意通排风,进入高浓度环境必须佩带防毒面具。 3、使用、运输和贮存时应注意安全,防止容器破裂和冒气。 4、现场安装氨气检测仪及时报警装置。 氨气中毒常见特征:

急性中毒:短期内吸入大量氨气后可出现流泪、咽痛、声音嘶哑、咳嗽、痰可带血丝、胸闷、呼吸困难,可伴有头晕、头疼、恶心、呕吐、乏力等,可出现紫绀、眼结膜及咽部充血及水肿、呼吸率快、肺部罗音等。 严重者可发生肺水肿、成人呼吸窘迫综合症,喉水肿痉挛或支气管粘膜坏死脱落窒息,还可并发气胸、纵膈气肿。胸部X线检查呈支气管炎、支气管周围炎、肺炎或肺水肿表现。血气分析显示动脉血氧分压降低。 误服氨水可致消化道灼伤,有口腔、胸、腹部疼痛,呕血、虚脱,可发生食道、胃穿孔。同时可能发生呼吸道刺激症状。吸入极高浓度可迅速死亡。 眼接触液氨或高浓度氨气可引起灼伤,严重者可发生角膜穿孔。 皮肤接触液氨可致灼伤。 急救处理及医疗措施: 吸入者应迅速脱离现场,至空气新鲜处,呼吸停止应做人工呼吸(注意:发现有肺水肿者,不准做人工呼吸),呼吸困难应输氧、维持呼吸功能、卧床静息。及时观察血气分析及胸部X线片变化。给对症、支持治疗。防治肺水肿、喉痉挛、水肿或支气管粘膜脱落造成窒息,合理氧辽; 对由气管粘膜脱落引起的窒息或自发性气胸应做好应急处理的

铅酸蓄电池用极板检验技术条件

铅酸蓄电池用极板检验技术条件

目次 1.范围 2.引用标准 3.术语、定义 4.产品分类 5.技术要求 6.试验条件 7.试验方法 8.判定标准 9.标志、包装和贮存

铅酸蓄电池用极板 1范围 本附件规定铅酸蓄电池用极板的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本附件适用于涂膏式负极板、涂膏式正极板、管式正极板。 2引用标准 下列文件中的条款通过本附件的引用而成为本附件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本附件,然而,鼓励根据本附件达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本附件。 GB/T 626 化学试剂硝酸 GB/T 631 化学试剂氨水 GB/T 643 化学试剂高锰酸钾 GB/T 676 化学试剂乙酸(冰醋酸) GB/T 694 化学试剂无水乙酸钠 GB 1245 化学基准试剂(容量)草酸钠 GB/T 1266 化学试剂氯化钠 GB/T 1294 化学试剂酒石酸 GB/T 1400 化学试剂六次甲基四胺 GB/T 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T ,ISO2859_1:1999,IDT) GB/T 蓄电池名词术语(GB/T , eqvIEC60486:1986) GB/T 6684 化学试剂过氧化氢 GB/T 6685 化学试剂氯化羟胺(盐酸羟胺) GB 6782 食品添加剂柠檬酸钠 GB/T 10111 利用随机数骰子进行随机抽样的方法

GB/T 15347 化学试剂抗坏血酸3术语、定义 下列术语和定义适用于本附件 干式荷电极板 极板为干态且处于高层建筑荷电状态的极板.普通型极板 极板为干态且处于低荷电状态的极板. 涂膏式极板外观术语和定义 3.3.1极板弯曲 极板弧状变形 3.3.2极板活性物质掉块 极板上活性物质脱高板栅,且形成穿透性缺陷. 3.3.3极板表面脱皮有气泡 活性物质之间层状剥离,但未形成穿透性缺陷. 3.3.4极板活性物质凹陷 极板上活性物质局部明显低于极板表面 3.3.5极板四框歪 极板对角线不相等. 3.3.6极板活性物质酥松 活性物质之间或与板栅之间结合力变差 管式极板外观术语和定义 3.4.1丝管破裂 丝管表面一处或多处相互脱离 3.4.2丝管散头 丝管顶端发散. 3.4.3铅膏粘附。 丝管外表面粘附活性物质。

液氨应急处理指南

液氨应急处理指南 液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。氨在20℃水中的溶解度为34%。 液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。为了促进对液氨危害和处置措施的了解,本文特介绍液氨的理化特性、中毒处置、泄漏处置和燃烧爆炸处置4个方面的基础知识。 一、氨的理化性质 分子式:NH3 气氨相对密度(空气=1):0.59 分子量:17.04 液氨相对密度(水=1):0.7067(25℃) CAS编号:7664-41-7 自燃点:651.11℃ 熔点(℃):-77.7 爆炸极限:16%~25% 沸点(℃):-33.4 1%水溶液PH值:11.7 蒸气压:882kPa(20℃) 二、中毒处置 (一)毒性及中毒机理 液氨人类经口TDLo:0.15 ml/kg 液氨人类吸入LCLo:5000 ppm/5m 氨进入人体后会阻碍三羧酸循环,降低细胞色素氧化酶的作用。致使脑氨增加,可产生神经毒作用。高浓度氨可引起组织溶解坏死作用。 (二)接触途径及中毒症状 1.吸入 吸入是接触的主要途径。氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。 (1)轻度吸入氨中毒表现有鼻炎、咽炎、气管炎、支气管炎。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。

(2)急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。 (3)严重吸入中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度可直接影响肺毛细血管通透性而引起肺水肿。 2.皮肤和眼睛接触 低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。 皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。 高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。 (三)急救措施 1.清除污染 如果患者只是单纯接触氨气,并且没有皮肤和眼的刺激症状,则不需要清除污染。假如接触的是液氨,并且衣服已被污染,应将衣服脱下并放入双层塑料袋内。 如果眼睛接触或眼睛有刺激感,应用大量清水或生理盐水冲洗20分钟以上。如在冲洗时发生眼睑痉挛,应慢慢滴入1~2滴0.4%奥布卡因,继续充分冲洗。如患者戴有隐形眼镜,又容易取下并且不会损伤眼睛的话,应取下隐形眼镜。 应对接触的皮肤和头发用大量清水冲洗15分钟以上。冲洗皮肤和头发时要注意保护眼睛。 2.病人复苏 应立即将患者转移出污染区,对病人进行复苏三步法(气道、呼吸、循环):气道:保证气道不被舌头或异物阻塞。 呼吸:检查病人是否呼吸,如无呼吸可用袖珍面罩等提供通气。 循环:检查脉搏,如没有脉搏应施行心肺复苏。

液氨危险点及控制措施

液氨危险点及控制措施一、主要危险、有害因素分析 ???????氨气理化性质 ???????引燃温度:651℃ ???????最大爆炸压力(MPa):0.580

???????毒性及健康危害???????侵入途径:吸入 ???????二、可能发生的事故及防范措施???????(一)液氨泄漏:

???????液氨由槽车运至厂内,在厂内采用储槽储存,储槽和输送管道可能发生漏气。 ???????氨气泄漏后产生后果:可能发生中毒事故,遇明火 灾工作。 ???????1、关阀断料,切断事故源

???????生产装置发生氨气泄漏时,主要由事故单位负责处置,消防队员负责协助和掩护。当事故单位不能有效采取处置时,消防队员要在单位技术人员的配合指导下实施断电、 ???????3、储运排险 ???????转运氨气时,装液氨槽车必须符合国家标准,要按安全操作程序进行,运输过程避免容器受热,严禁烟火。入

库时要检查容器是否漏气,储存场所应阴凉、通风干燥。发现泄漏时首先尽量堵漏,操作人员需穿防护服,戴防毒面罩,向泄漏设备冲水,大量泄漏可将氨气导入水中吸收。防止氨水进入附近的河流湖泊。 ???????????(2)储罐等压力容器和设备应设置安全阀、压力表、液位计、温度计,并应装有带压力、液位、温度远传记录和报警功能的安全装置,设置整流装置与压力机、动力

电源、管线压力、通风设施或相应的吸收装置的联锁装置。重点储罐需设置紧急切断装置。避免与氧化剂、酸类、卤素接触。 敲击管道与阀体,以免引起火花。 ???????(2)在含氨气环境中作业应采用以下防护措施:根据不同作业环境配备相应的氨气检测仪及防护装置,并落实

铅酸蓄电池生产质检标准

以下是国家质检总局关于铅酸蓄电池生产许可证中相关产品的质检标准: 表7 铅酸蓄电池产品生产许可证检验项目及判定标准 表7.1 起动用铅酸蓄电池(汽车起动用) 序号检验项目名称检验依据标准及条款检验方法依据标准或条款 不合格 分类 备 注 1 容量GB/T 5008.1-2005:4.1 GB/T 5008.1-2005:5.4 A 2 低温起动能力GB/T 5008.1-2005:4.2 GB/T 5008.1-2005:5.5 B 3 充电接受能力GB 5008.1-2005:4.3 GB/T 5008.1-2005:5.6 B 4 荷电保持能力GB/T 5008.1-2005:4.4 GB/T 5008.1-2005:5.7 B 5 电解液保持能力GB/T 5008.1-2005:4.5 GB/T 5008.1-2005:5.8 B 6 耐振动性GB/T 5008.1-2005:4. 7 GB/T 5008.1-2005:5.10 A 7 耐温变性GB/T 5008.1-2005:4.12 GB/T 5008.1-2005:5.15 B 8 封口剂GB/T 5008.1-2005:4.13 GB/T 5008.1-2005:5.16 B 9 水损耗GB/T 5008.1-2005:4.8 GB/T 5008.1-2005:5.11 A 10 气密性GB/T 5008.1-2005:4.11 GB/T 5008.1-2005:5.14 B 11 最大外形尺寸GB/T 5008.2-2005 GB/T 5008.2-2005 A 12 干式荷电蓄电池 起动能力 GB/T 5008.1-2005:4.9 GB/T 5008.1-2005:5.12 B 13 标志GB/T 5008.1-2005:7 GB/T 5008.1-2005:7 B 表7.2 起动用铅酸蓄电池(船舶起动用) 序号检验项目名称 检验依据标准及条 款 检验方法依据标准或条 款 不合格 分类 备注 1 气密性CB/T 728-2000:4.6 CB/T 728-2000:5.5 B 2 绝缘电阻CB/T 728-2000:4.8 CB/T 728-2000:5.6 B 3 干式荷电或湿荷电 蓄电池起动能力 CB/T 728-2000:4.11 CB/T 728-2000:5.9 B 4 容量CB/T 728-2000:4.9 CB/T 728-2000:5.7 A 5 低温起动能力CB/T 728-2000:4.10 CB/T 728-2000:5.8 B 6 充电接受能力CB/T 728-2000:4.12 CB/T 728-2000:5.10 B 7 荷电保持能力CB/T 728-2000:4.13 CB/T 728-2000:5.11 B

液氨的特性及危害分析

液氨的品质参数、主要特性、危害及泄漏处理措施 一、液氨的品质参数 、氨的主要特性 氨属可燃、易爆、有毒物质,危险类别为 2.3类,其主要性质见 F表: 三、液氨泄漏的危害 1、易气化扩散 发生泄漏时,由液态变为气态,液氨会迅速气化,体积迅速扩大,没有及时气化的液氨以液滴的形式雾化在蒸汽中;在泄漏初期,由于液氨的部分蒸发,使得氨蒸汽的云团密度高于空气密度,氨气随风飘移,易形成大面积染毒区和燃烧爆炸区,需及时对危害范围内的人员进行疏散,并采取禁绝火源措施。

2、易中毒伤亡 氨有毒,有刺激性和恶臭味的气体,容易挥发,氨泄漏至大气中,扩散到 一定的范围,易造成急性中毒和灼伤,每立方米空气中最高允许浓度为 30mg/m 3,当空气中氨的含量达到0.5-0.6% ,30 分钟内即可造成人员中毒;氨气侵入人体的主要途径是皮肤,感觉器官,呼吸道和消化道等部位.轻度中毒症状为:眼口有干辣感,流泪,流鼻涕,咳嗽,声音嘶哑,吞咽食物困难,头昏疼痛,检查时可见眼膜充血水肿,肺部可听到少数干罗音;重度中毒症状为:在高浓度氨气作用下,头,面部等外露部位皮肤或造成重二度化学灼伤,还可出现昏迷,精神错乱,痉挛,也可造成心肌炎或心力衰竭,少数因反射性声门痉挛或呼吸停止呈触电式死亡。 3、易燃烧爆炸 氨既是有毒气体,又是一种可燃气体,氨的自燃点为651 C,燃 烧值为2.37-2.51J/m 3,临界温度为132.5 C,临界压力为11.4Mpa , 氨在空气中的含量达11-14%时,遇明火即可燃烧,其火焰呈黄绿色,有油类存在时,更增加燃烧危险;当空气中氨的含量达15.7%-27.4% 时,遇火源就会引起爆炸,最易引燃浓度17%,产生最大爆炸压力0.58Mpa ;液氨容器受热会膨胀,压力会升高,能使钢瓶或储罐爆炸. 4 、易污染环境氨可以污染空气,在风力的作用下,这种有毒气体随风飘移,造成大范围的空气污染,对人畜产生危害;如果液氨大量泄漏流到河流,湖泊,水库等 水域,则造成水污染,严重时该水域的水未经处理不能 使用. 5、易发生次生事故 氨不稳定,遇热分解,与氟,氯等接触会发生剧烈的化学反应,若遇高

液氨简介(完整版).doc

关于液氨产品简介 液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。 理化特性: 液氨,又称为无水氨,是一种无色液体。氨气是一种无色透明而具有刺激性气味的气体。极易溶于水,氨在20℃水中的溶解度为34%。水溶液呈碱性,1%水溶液PH值:11.7,相对密度0.60(空气=1)。气氨加压到0.7—0.8MPa时就变成液氨,同时放出大量的热,相反液态氨蒸发时要吸收大量的热,所以氨可作致冷剂,接触液氨可引起严重冻伤,因其价廉的特点在制冰和冷藏行业得到广泛使用。液氨在工业上应用广泛,具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。 危险特性: 危险性类别:第2、3类有毒气体,8类腐蚀品。火灾爆炸危险性类别为乙类。与氟、氯等能发生剧烈反应。氨与空气混合到一定比例时,遇明火能引起爆炸,其爆炸极限为15.5~25%。氨具有较高的体积膨胀系数。如:满量充装液氨的钢瓶,在0—60℃范围内,液氨温度每升高1℃,其压力升高约1.32—1.80MPa,因而液氨气瓶超装极易发生爆炸。为此氨罐周围设置了降温喷淋装置。 产品用途: .精品.

液氨主要用于生产硝酸、尿素和其他化学肥料,还可用作医药和农药的原料。液氨在国防工业中,用于制造火箭、导弹的推进剂。可用作有机化工产品的氨化原料,还可用作冷冻剂。液氨还可用用于纺织品的丝光整理。NH3分子中的孤电子对倾向于和别的分子或离子形成配位键,生成各种形式的氨合物。如[Ag(NH3)2]+、[Cu(NH3)4]2+、BF3·NH3等都是以NH3为配位的配合物。液氨是一个很好的溶剂,由于分子的极性和存在氢键,液氨在许多物理性质方面同水非常相似。一些活泼的金属可以从水中置换氢和生成氢氧化物,在液氨中就不那么容易置换氢。但液氨能够溶解金属生成一种蓝色溶液。这种金属液氨溶液能够导电,并缓慢分解放出氢气,有强还原性。例如钠的液氨溶液:金属液氨溶液显蓝色,能导电并有强还原性的原因是因为在溶液中生成“氨合电子”的缘故。例如金属钠溶解在液氨中时失去它的价电子生成正电子:液氨加热至800~850℃,在镍基催化剂作用下,将氨进行分解,可以得到含75%H2、25%N2的氢氮混合气体。用此法制得的气体是一种良好的保护气体,可以广泛地应用于半导体工业、冶金工业,以及需要保护气氛的其他工业和科学研究中。

相关文档
最新文档