浅谈隔振与消能减震设计

浅谈隔振与消能减震设计
浅谈隔振与消能减震设计

浅谈隔震与消能减震设计

1 引言

地震是威胁人类安全的主要自然灾害之一,地震具有突发性强、破坏性大和比较难预测的特点。目前地震的监测预报还是世界性难题,很难做出准确的临震预报,而且即使做到了震前预报,如果工程设施的抗震性能薄弱,也难以避免经济损失。因此,实施有效的抗震设防是当前防震减灾的关键性工作。

抗震减灾事业的发展,离不开科技进步,提高建筑工程抗震设防水平是一项技术含量高,难度大的工作。从目前的抗震措施来看,主要是保证建筑物结构的抗震性能,达到“大震不倒,中震可修,小震不坏”这一防御目标。为此必须加强科技创新,用新技术来提高和改善建筑物的抗震性能才能达到这一目标。在建筑物中设置隔震层和消能装置来减轻地震破坏这种新型结构体系就是其中之一。本文就这一新结构体系作一简要阐述。

2 “隔震设计”与“消能减震设计”的基本设计原理

2.1 隔震设计

“隔震”即隔离地震。在建筑物基础与上部结构之间设置由隔震器、阻尼器等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,降低上部结构的地震反应,达到预期的防震要求。

2.2 消能减震设计

在建筑物的抗侧力构件中(由阻尼器、连接支撑等组成),通过阻尼器局部变形提供

附加阻尼,吸收与消耗地震能量,来控制预期的结构位移 (中震下或大震下的控制位

移要求),从而使主体结构构件在罕遇

地震下不发生严重破坏,达到减震的目的,这样的房屋建筑设计称“消能减震设计”。

采用消能减震设计时,输入到建筑物的地震能量一部分被阻尼器所消耗,其余部分则转

换为结构的动能和变形能,这样也可达到降低结构地震反应的目的。

3 “隔震设计”与传统抗震设计的区别

3.1 “隔震设计”与传统抗震设计理念的区别,见表

抗震房屋与隔振房屋设计理念对比表

抗震房屋隔振房屋结构体系上部结构与基础牢固连接削弱上部结构与基础的有关连接

科学思想提高结构的自身抗震能力隔离地震能量向建筑物输入

方法措施强化结构的刚度与延性滤波

通常的建筑物应和基础牢牢地连接在一起,地震波携带的能量通过基础传递到上

部结构,进入到上部结构的能量被转化为结构的动能和变形能,在此过程中,当结

构的总变形超越了结构自身的某种极限时,建筑物便发生损坏甚至倒塌。而隔震建筑

物在地震时,隔震结构的震动和变形均可只控制在较

轻微的水平,上部结构基本处于平动状态,因此,上部结构水平地震作用可采用矩形分布,从而使建筑物的安全得到更可靠的保证。

3.2 对隔震房屋,同样层数且无地下室的多层砖房将增加房屋造价 10 ,考虑隔震后可增加层数,减去土地分摊费用后,单位造价增加约为 5 ,对于框架结构,则因柱截面尺寸和配筋明显减少,房屋造价可减少 3 ~5 。

4 “隔震设计”与“消能减震设计”的主要优点

4.1 隔震体系通过延长结构的自振周期,增大阻尼,减少结构的水平地震作用,按 GB50011—2001 《建筑结构抗震规范》中对隔震设计的要求,隔震一般可使隔震层以上结构的水平地震作用和抗震验算降低 60 左右,隔震结构具有比抗震结构至少高 0.5个设防烈度的抗震安全储备,从而消除或有效地减轻结构和非结构的地震破坏,提高建筑物及其内部设施人员在地震时的安全性,增加震后建筑物继续使用的能力。

4.2 消能减震通过消能装置增加结构阻尼可同时减少结构的水平和竖向的地震作用,适用范围广,

结构类型和高度均不受限制。由于消能装置不改变结构的基本形式,除消能部件和相关部件外的抗

震设计仍可按相应结构类型的要求进行。这样,消能减震房屋的抗震构造与普通房屋相比不降低,其抗震安全性可有明显提高。

5 适用范围

5.1 隔震设计的适用范围

5.1.1 现阶段隔震结构主要用于外型基本规则的低层和多层建筑结构。

对于不隔震时基本周期小于 1.0S的建筑结构减震效果与经济性均最好,对于高层建筑结构效果最差。对于外型复杂的建筑物采用隔震设计时,宜通过模型试验后确定。

5.1.2 建筑场地宜为 I、Ⅱ、Ⅲ类,并应选用稳定性较好的基础类型。

硬土场地较适合于隔震建筑,软弱场地滤掉了地震波的中高频分量,延长结构的周期有可能增

大而不是减小其地震反应。

5.1.3 根据橡胶隔震支座抗拉性能差的特点,需限制非地震作用的水平荷载 (包括风荷载 ),

其标准值产生的总水平力不宜超过结构总重力的 10 ,以保证隔震结构具有可靠的抗倾覆力

5.2 消能减震设计的适用范围

消能部件的置人,不改变主体结构的体系,又可减少结构的水平和竖向地震作

用,不受结构类型和高度的限制,在新建筑物和建筑物抗震加固中均采用。

6 隔震和消能减震设计要求

6.1 设计方案

建筑结构的隔震和消能减震设计,应根据建筑抗震设防类别、抗震设防烈度、

场地条件、建筑结构的方案和建筑使用要求与建筑抗震设计的设计方案进行技术和经

济可行性的综合分析对比,确定其设计方案。

6.2 设防目标

采用隔震和消能减震设计的建筑物,当遇到本地区的多遇地震影响、抗震设防地

震影响和罕遇地震影响时,其抗震设防目标应高于抗震建筑。即:当遭受低于本地区

抗震设防烈度的多遇地震时,一般不受损坏或不需修理可继续使用;当遭受相当于

本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不修理仍可使用;当

遭受高于本地区抗震设防烈度预估的罕遇地震影响时,不致倒塌或发生危及生命的

严重破坏。

6.3 隔震结构的验算

隔震结构应进行大震下的弹塑性变形验算。隔震层以上结构的动力特性应根据

隔震垫的动态刚度和阻尼计算,水平地震作用可根据隔震前后结构周期的比值,比非

隔震结构有所降低,但竖向地震作用力不减少;对丙类建筑,构造措施也可适当降低要

求;隔震层以下的基础应保证大震下不致破坏。

7 结束语

隔震和消能减震设计虽有很多优点,但由于现阶段运用不很普遍,并且它是今年

第一次纳入我国GB50011—2001<建筑抗震设计规范》,为积极稳妥起见,应认真做好方

案比较、论证工作 (包括经济和技术方面 )。

浅述建筑结构减震与消能减震设计

浅述建筑结构隔震与消能减震设计 崔XX XX理工大学XX学院XX学员大队江苏XX 02XXXX 内容摘要 摘要:本文对建筑结构“隔震”与“消能减震”设计的基本原理及其特点进行简要的介绍和说明,并对结构抗震设计、隔震设计和消能减震设计进行分析和对比,供初学者参考。 主题词:抗震设计隔震设计消能减震设计 1 引言 地震是一种突发性的破坏性极强的自然灾害,罕遇的大地震会给建筑物及构筑物造成极大的破坏,造成极大的人员伤亡和经济财产损失。回顾21世纪发生的几次大地震如尼泊尔大地震,汶川大地震,智利地震等无一不对人们和社会造成不可估量的破坏和损失。当前的科技水平尚无法预测地震的到来,未来相当长的一段时间内,地震也是无法预测的。而且即使做到了震前预报,如果工程设施的抗震性能薄弱,也难以避免经济损失。地震时不可控的,但工程结构是可控的,因此,实施有效的抗震设防是当前防震抗灾的关键性工作,而隔震和消能减震技术在建筑结构中应得到广泛应用。 传统的建筑结构抗震设计是依靠增加结构的强度、刚度和延性来增加结构各构件的承载力和变形能力来抵御地震作用,,来实现“大震不倒,中震可修,小震不坏”的防御目标,立足于“抗”,是一种消极的设计方法。随着科技水平的发展和传统抗震结构在地震中的表现,传统建筑结构抗震设计暴露出很多问题,不能满足现代建筑在抗震设防方面的需求。所以抗震减灾事业的发展,不能局限于传统的建筑结构抗震设计,更应该搭上科技创新的这辆快车,用新技术来提高和改善建筑物的抗震性能。在建筑物中设置隔震层和消能减震装置来减轻地震的破坏这种新型结构体系就是其中之一。本文就这一新结构体系做一简要阐述。 2 “隔震设计”与“消能减震设计”的基本设计原理 2.1 隔震设计 “隔震”即隔离地震,分为基础隔震和层间隔震。在建筑物适当部位设置隔离装置,切断或削弱地面运动向上部结构的传递,并提供适当的阻尼,从而使上部结构的地震作用大大降低,耗能能力加强,达到预期的防震要求。如叠层橡胶垫支座、高阻尼橡胶垫支座、滑移隔震支座和混合隔震装置等。 2.2 消能减震设计 消能减震技术是把结构物某些部位(如支撑、剪力墙、连接缝或连接件)设置耗能 阻尼器,通过该装置产生摩擦,弯曲(或剪切、扭转)弹塑性(或粘弹性)直回变形来耗散或吸收地震输入结构的能量,以减小主体结构的地震反应,从而避免结构产生破坏或倒塌,达到减震控制的目的。 在消能减震结构体系中,消能(阻尼)装置在主体结构进入非弹性状态前率先进入耗能工作状态,充分发挥耗能作用,消耗掉输入机构体系的大量地震能量,式结构本身需消耗的

隔震和消能减震与常规抗震的对比分析

隔震和消能减震与常规抗震的对比分析 在实际的建筑行业发展中,為了有效避免地震对建筑以及人民生命财产安全带来的影响,要对相应的隔震、消能减震等情况进行分析,同时与常规的抗震进行有效对比,做好最佳的抗震预防。基于此,文章分别对三种防震方法进行分析,最后结合题目就隔震和消能减震与常规抗震之间进行对比分析,以期人们更好的开展防震工作。 标签:常规抗震;隔震;消能减震 随着经济的快速发展,建筑行业蒸蒸日上,且在国民经济的发展中也越来越重要。以此同时,随着建筑行业的发展,相关的安全预防措施也要予以充分的重视。在实际的生活当中,为了避免地震给人们以及建筑行业带来巨大的经济损失,要对相关的防震举措予以充分重视,如此才能将其更好的应用在实际的工程建筑当中,为人们提供更多的安全保障。 1、常规抗震分析 1.1原理 延性抗震设计主要是利用一些结构部件的塑性变形来对地震能量进行消耗,从而实现一定的抗震作用,该种抗震的能量表达为Ein =ER +ED +ES ,其中ES 是主体结构和承载构件的不变弹性所消耗的能量;Ein 是发生地震时输入的结构能量;ED 是阻尼消耗的能量;ER 地震反应能量。 1.2特点 (1)砌体结构。该种结构相对较脆,实际的抗拉、康佳能力相对较弱,实际地震中的抗震于延性能也不理想。砌体结构在地震中受到破坏的几率相对较大,具体因素主要与窗间承载力不足、施工不当、设计问题以及整体抗剪强度弱等有关。在5.12地震中,由于建筑物的抗震设防性能较差,致使其中的很多砌体结构出现了一定的倒塌。在海地的某些地区,由于实际砌体结构建筑并不具有一定的抗震措施,致使相关建筑出现了不同程度的坍塌。(2)钢结构。钢结构具有延性好、轻质高强以及环境污染小的特点,其缺点主要是很难确保实际施工质量,且有很多的节点。在5.12地震中由于钢结构而造成的危害相对较轻,很多的轻屋房建设由于实际的屋架与屋面之间没有明确的固定,进而使得屋面板出现脱落。 2、隔震与消能减震 2.1隔震 (1)隔震的基本原理。隔震是指隔离地震对实际建筑结构的影响,主要原

建筑隔震与消能减震知识分享

第十五讲建筑隔震与消能减震设计规定 一、隔震与消能减震是减轻建 筑结构地震灾害的新技术 地震释放的能量以震动波为载体向地球表面传播。 通常的建筑物因和基础牢牢地连接在一起,地震波携带的能量通过基础传递到上部结构,进入到上部结构的能量被转化为结构的动能和变形能。在此过程中,当结构的总变形能超越了结构自身的某种承受极限时,建筑物便发生损坏甚至倒塌。 1、什么是房屋结构的“隔震设计” 《隔震》,即隔离地震。在建筑物基础与上部结构之间设置由隔震器、阻尼器等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,降低上部结构的地震反应,达到预期的防震要求。地震时,隔震结构的震动和变形均可只控制在较轻微的水平,从而使建筑物的安全得到更可靠的保证。表15.1列出了隔震设计和传统设计在设计理念上的区别。 表 15.1 隔震房屋和抗震房屋设计理念对比 隔震器的作用是支承建筑物重量、调频滤波,阻尼器的作用是消耗地震能量、控制隔震层变形。隔震器的类型很多。目前,在我国比较成熟的是“橡胶隔震支座”。因此,本《规范》所指隔震器系指橡胶隔震支座(规范12.1.1条注1)。在隔震设计中采用其他类型隔震器时,应作专门研究。 2、什么是房屋建筑的“消能减震设计” 在建筑物的抗侧力结构中设置消能部件(由阻尼器、连接支撑等组成),通过阻尼器局部变形提供附加阻尼,吸收与消耗地震能量。这样的房屋建筑设计称“消能减震设计”。 采用消能减震设计时,输入到建筑物的地震能量一部分被阻尼器所消耗,其余部分则转换为结构的动能和变形能。这样,也可以达到降低结构地震反应的目的。阻尼器有粘弹性阻尼器、粘滞阻尼器、金属阻尼器、电流变、磁流变阻尼器等。 3、隔震和消能减震设计的主要优点

消能减震装置及其在工程中的应用

消能减震装置及其在工程中的应用 【摘要】针对传统结构抗震思路,详细介绍了结构的消能减震是结构抗震的新思路,以及目前常用的消能减震装置及其适用对象,阐述了工程结构中的应用并列举大量实例。分析表明,消能减震结构具有优良的抗震性能,具有广阔的应用前景。 【关键词】结构抗震;消能减震;耗能装置 1 引言 我国是一个多地震国家,地震灾害给我们带来巨大的伤害和损失,如唐山大地震、汶川大地震等。传统的抗震设计是利用结构本身的抗震性能抵御地震作用,以达到抗震的目的,是一种消极被动的抗震方法,不具备自我调节与自我控制的能力,因此在地震作用下,结构很可能不满足安全性的要求,而产生严重破坏。国内外开展了消能减震技术的研究,即在结构上安装消能装置,以减小结构的动力反应。本文就消能减震结构的思想及其在工程中的应用进行了研究。 2 消能减震结构的概念 消能减震结构的基本思想就是在结构中设置一些一般情况下不承担垂直接荷载作用的耗能部件,当结构受到水平荷载作用时,这些部件分担部分荷载,并通过部件内部的零部件之间的相互运动耗散外荷载作用的动能,减小结构对其作用的效应。 消能减震的力学原理就是在结构会产生相对运动的部位增设一些阻尼器之类的消能装置,当结构受到地震作用时,这些阻尼器在结构相对运动的强迫作用下,产生抵抗结构相对运动的阻力运动,这些阻尼力在运动过程中做功,通常以导致阻尼器发热而耗散掉部分结构相对运动的能量,从而减小结构的地震响应,即减小结构的损坏或保证结构的正常使用功能。 3 消能减震产品的种类 3.1金属屈服阻尼器 金属屈服阻尼器是用软钢或其它软金属材料做成的各种形式的阻尼器,机理是将结构振动的部分能量通过金属的屈服滞回耗能耗散掉,从而达到减小结构反应的目的,具有滞回特性稳定、耗能能力大、低周疲劳性能好、长期性能可靠、对环境和温度的适应性强等优点。 3.2摩擦阻尼器 摩擦阻尼器是由受有预紧力的金属或其它固体元件构成,这些元件之间能够相互滑动并且产生摩擦力。减震机理是通过摩擦耗能耗散结构的振动能量,耗能明显,可提供较大的阻尼,且造价低廉、取材容易、构造简单。 3.3铅挤压阻尼器 铅挤压阻尼器由外筒、可动轴和铅组成,当发生塑性变形时,铅的晶格被拉长并错动,一部分能量被转化为热能,而另一部分能量为促进再结晶而耗散使金属返回非变状态。当结构变位使外壁筒与可动轴产生相对位移时,铅发生塑性流动,起到耗能阻尼的作用。结晶易在常温下进行,所耗时间很短且无疲劳现象,具有稳定的耗能能力。 3.4黏弹性阻尼器 黏弹性阻尼器由黏弹性材料和约束钢板组成。它由2个T形约束钢板夹1块矩形钢板组成,T形约束钢板与中间钢板之间有一层黏弹性阻尼材料(常用有机硅或

结构消能减震技术

结构消能减震技术 1、结构消能减震的基本概念 地震发生时地面震动引起结构物的震动反应,地面地震能量向结构物输入。结构物接收了大量的地震能量,必然要进行能量转换或消耗才能最后终止震动反应。 消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。在风或小震作用时,这些消能构件或消能装置具有足够的初始刚度,处于弹性状态,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反

应(位移、速度、加速 度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。消能部件中的消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,和其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。采用消能减震技术的结构体系与传统抗震结构体系相比,具有大震安全性、经济性和技术合理性。 技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防

烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术、经济 可行性的对比分析后确定。采用消能减震技术结构体系的计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 的规定。 适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善等。 传统抗震结构体系,容许结构及承重构件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中的损坏过程,就是

12 隔震和消能减震设计

12 隔震和消能减震设计 12.1 一般规定 12.1.1本章适用于设置隔震层以隔离水平地震动的房屋隔震设计,以及设置消能部件吸收与消耗地震能量的房屋消能减震设计。 采用隔震和消能减震设计的建筑结构,应符合本规范第3.8.1条的规定,其抗震设防目标应符合本规范第3.8.2条的规定。 注:1,本章隔震设计指在房屋基础、底部或下部结构与上部结构之间设置由橡胶隔震支座和阻尼装置等部件组成具有整体复位功能的隔震层,以延长整个结构体系的自振周 期,减少输入上部结构的水平地震作用,达到预期防震要求。 2,消能减震设计指在房屋结构中设置消能器,通过消能器的相对变形和相对速度提供附加阻尼,以消耗输入结构的地震能量,达到预期防震减震要求。 12.1.2建筑结构隔震设计和消能减震设计确定设计方案时,除应符合本规范第3.5.1条的规定外,尚应与采用抗震设计的方案进行对比分析。 12.1.3建筑结构采用隔震设计时应符合下列各项要求: 1,结构高宽比宜小于4,且不应大于相关规范规程对非隔震结构的具体规定,其变形特征接近剪切变形,最大高度应满足本规范非隔震结构的要求;高宽比大于4或非隔震结构相关规定的结构采用隔震设计时,应进行专门研究。 2,建筑场地宜为I、Ⅱ、Ⅲ类,并应选用稳定性较好的基础类型。 3,风荷载和其他非地震作用的水平荷载标准值产生的总水平力不宜超过结构总重力的10%。 4,隔震层应提供必要的竖向承载力、侧向刚度和阻尼;穿过隔震层的设备配管、配线,应采用柔性连接或其他有效措施以适应隔震层的罕遇地震水平位移。 12.1.4消能减震设计可用于钢、钢筋混凝土、钢-混凝土混合等结构类型的房屋。 消能部件应对结构提供足够的附加阻尼,尚应根据其结构类型分别符合本规范相应章节的设计要求。 12.1.5隔震和消能减震设计时,隔震装置和消能部件应符合下列要求: 1,隔震装置和消能部件的性能参数应经试验确定。 2,隔震装置和消能部件的设置部位,应采取便于检查和替换的措施。 3,设计文件上应注明对隔震装置和消能部件的性能要求,安装前应按规定进行检测,确保性能符合要求。 12.1.6建筑结构的隔震设计和消能减震设计,尚应符合相关专门标准的规定;也可按抗震性能目标的要求进行性能化设计。 12.2 房屋隔震设计要点 12.2.1隔震设计应根据预期的竖向承载力、水平向减震系数和位移控制要求,选择适当的隔震装置及抗风装置组成结构的隔震层。 隔震支座应进行竖向承载力的验算和罕遇地震下水平位移的验算。 隔震层以上结构的水平地震作用应根据水平向减震系数确定;其竖向地震作用标准值,8度(0.20g)、8度(0.30g)和9庋时分别不应小于隔震层以上结构总重力荷载代表值的20%、30%和40%。 12.2.2建筑结构隔震设计的计算分析,应符合下列规定: 1,隔震体系的计算简图,应增加由隔震支座及其顶部梁板组成的质点;对变形特征为剪切型的结构可采用剪切模型(图12.2.2);当隔震层以上结构的质心与隔震层刚度中心不重合时,应计入扭转效应的影响。隔震层顶部的梁板结构,应作为其上

弹簧减震器结构图解

弹簧减震器结构图解 独立悬架与非独立悬架示意图 a. 独立悬架 b. 非独立悬架 独立悬架如图所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧 1-卷耳2-弹簧夹3-钢板弹簧4-中心螺栓 钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车

架的振动衰减,起到减振器的作用。 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种,工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的。 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸 筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防 尘罩11-油封 横向稳定器的安装

简要分析建筑结构设计与减震设计

简要分析建筑结构设计与减震设计 随着建筑行业的快速发展,对建筑工程的质量和安全性有了更高的要求,所以建筑结构设计非常关键,直接关系到建筑整体结构的稳定性和安全性。在建筑结构设计中,减震设计是重要内容,地震会对建筑物造成严重的破坏,所以为了提高建筑的抗震性能,要加强减震设计水平,提高建筑的稳定性和安全性。文章对于建筑结构设计以及减震设计进行了简要的分析,对于提高建筑结构设计水平具有重要的意义。 标签:建筑;结构设计;减震设计 建筑结构设计是针对建筑各个受力部位的结构方式进行的设计,要最大限度的保证建筑结构的稳定性和安全性。建筑在建设过程中以及投入运营后,会受到各种应力的作用,从而对建筑结构的稳定性产生影响。如果建筑结构设计水平不达标,就会因为承受的荷载太大而发生变形、倾斜等现象,直接影响到建筑的安全。减震设计是建筑结构设计中的重要内容,所以在结构设计时,应该对当地的地质状况进行详细的勘察,然后在结构设计中采用适宜的减震技术措施,最大限度的提高建筑的抗震性能,确保建筑的安全使用,为维护社会稳定创造有利的基础。 1 结构设计概述 结构设计就是对建筑物中各受力部件进行合理的分析,计算各部件所承受的荷载极限,从而本着稳定性和安全性的原则,对各个结构进行合理的设计。结构设计的核心就是确保建筑整体结构的稳定性,在遇到各种应力干扰的情况下,能够承受应力的变化,保持建筑结构的原有状态。建筑结构设计中的主要元素包括:基础、墙、柱、梁、板、楼梯、大样细部等等,也就是构成建筑物的框架,是支撑整体建筑的重要受力构件。在建筑物内部构成体系中,这些构件之间的受力会相互传递,需要承受竖向或者水平方向的各种应力,所以对构件的抗力性有较高的要求。只有确保这些构件的稳定性,才能够最大限度的保证建筑物的安全。 2 建筑结构设计的过程 建筑结构设计主要可分三个步骤,首先是结构方案设计,根据建筑物的使用性质、地质结构、施工方式、层高、抗震设防烈度等,在对不同结构形式的受力特点分析后,确定结构设计中的受力构件和承重体系。其次是对结构进行计算,包括荷载计算、内力计算和构件的设计,以确保结构设计中各部件符合受力标准。最后是施工图设计,将建筑结构设计师的意图通过图纸表达出来,对于施工过程中每个环节的操作都有详细的说明,从而确保建筑结构设计的完整性。 3 建筑结构设计的要点 3.1 重视概念设计

悬架用减振器设计指南

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

结构消能减震技术

结构消能减震技术 1、结构消能减震得基本概念 地震发生时地面震动引起结构物得震动反应,地面地震能量向结构物输入。结构物接收了大量得地震能量,必然要进行能量转换或消耗才能最后终止震动反应。 消能减震技术就是将结构得某些构件设计成消能构件,或在结构得某些部位装设消能装置。在风或小震作用时,这些消能构件或消能装置具有足够得初始刚度,处于弹性状态,结构具有足够得侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形得增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构得地震或风振能量,使主体结构避免出现明显得非弹性状态,且迅速衰减结构得地震或风振反应(位移、速度、加

速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震得目得。消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。消能部件中得消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,与其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。采用消能减震技术得结构体系与传统抗震结构体系相比,具有大震安全性、经济性与技术合理性。 技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案与建筑使用要求,

与采用抗震设计得设计方案进行技术、经济可行性得对比分析后确定。采用消能减震技术结构体系得计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 得规定。 适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑得抗震(或抗风)性能得改善等。 传统抗震结构体系,容许结构及承重构件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中得损坏过程,就就是地震能量得“消能”过程。结构及构件得严重破坏或倒塌,就就是地震能量转换或消耗得最终完成。

消能减震技术

消能减震技术 9.1.1 技术内容 消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。在风或小震作用时,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反应(位移、速度、加速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。 消能部件一般由消能器、连接支撑和其他连接构件等组成。 消能部件中的消能器(又称阻尼器)分为速度相关型如粘滞流体阻尼器、粘弹性阻尼器、粘滞阻尼墙、粘弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等和其它类型,如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。 采用消能减震技术的结构体系与传统抗震结构体系相比,具有更高安全性、经济性和技术合理性。 9.1.2 技术指标 建筑结构消能减震设计方案,应根据建筑抗震设防类

别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术和经济可行性的对比分析后确定。采用消能减震技术结构体系的设计、施工、验收和维护应按现行国家标准《建筑抗震设计规范》GB 50011和《建筑消能建筑技术规程》JGJ 297进行,设计安装做法可参考国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合现行行业标准《建筑消能阻尼器》JG/T 209的规定。 9.1.3 适用范围 消能减震技术主要应用于多高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善,文物建筑及有纪念意义的建(构)筑物的保护等。 9.1.4 工程案例 江苏省宿迁市建设大厦、北京威盛大厦等新建工程,以及北京火车站、北京展览馆、西安长乐苑招商局广场4号楼等加固改造工程。

建筑结构设计与减震设计分析

建筑结构设计与减震设计分析 发表时间:2017-12-29T13:44:27.007Z 来源:《防护工程》2017年第22期作者:黄浩伟 [导读] 建筑设计之中重要环节是对建筑的结构进行设计,设计人员不仅需要保证建筑结构的整体合理性。 浙江省水利水电勘测设计院 摘要:建筑设计之中重要环节是对建筑的结构进行设计,设计人员不仅需要保证建筑结构的整体合理性,同时还需要提升建筑结构的减震能力,使建筑结构可以突显出一定的安全性,在对建筑的结构进行设计的时候,设计人员需要参考建筑的整体设计情况,并通过被优化的设计手段将建筑的更多使用功能通过建筑结果而展现出来,无论是减震设计还是结构设计都是一项难度比较高的设计工作,设计人员需要对能够影响到建筑的多种元素进行考虑,本文对建筑的减震设计与结构设计的基本情况进行分析。 关键词:建筑结构设计;减震设计;分析 建筑的结构设计是建筑设计方案之中的重点内容,为了能够设计出更为稳定的建筑结构,设计人员需要综合考虑各种可能会对建筑结构产生的影响的因素,将其进行排除或者控制,从建筑结构的角度来提升建筑的整体性能,在建筑结构这一部分之中,设计人员不仅需要进行常规设计,同时还需要进行防震设计,将减震、防震的元素添加到建筑之中。减震设计并不是一项简单的设计任务,设计人员需要对建筑的结构之中的各个部分的情况都有所了解,才能使减震的效果更好,本文根据对建筑结构设计的相关经验,对减震以及结构设计进行研究。 1 建筑结构设计基本情况 地震情况是一种比较常见的自然灾害,这种自然灾害对于人类社会的影响极大,会危及到人的生命安全,因此在设计建筑的时候,无论建筑是否处于地震频发的地区,设计人员都需要将建筑结构的减震工作做好,以备地震灾难发生时,建筑可以最大限度地保护居住者。在开展设计活动时,设计人员需要首先需要提升建筑主体结构的轻度,使其能够对地震灾难生成的强大重力进行承受,另外施工人员还需要对建设建筑结构过程中应用的材料进行控制,确定材料的可用性,在进行结构减震设计工作时,设计人员需要将抗震设计工作进行划分,分阶段开展减震设计工作,将弹性变化阶段与弹缩性阶段的减震设计工作都进行完善。 1.1 控制建筑结构 设计人员首先需要对建筑的主要结构进行整体性的控制,同时还需要分析引起抗震结构之中的墙体倒塌的原因,进一步确定结构控制的重点工作,设计人员需要控制破坏机制,对框架结构进行改善,使其即使在不良的建设环境之中,仍旧能够保持极高的可靠度。施工人员需要对框架结构的延展性与强度有效保持,在固定的结构位置之中,设计人员还需要将人工塑性铰进行有效应用,严格控制结构的塑性强度,使框架结构的使用性能可以被展现出来。 1.2 设计梁的延性 当连梁的跨高比为5时,延性和耗能很好,连梁两端相对竖向位移的延性系数都在8以上,滞回曲线也相当饱满。当连梁的跨高比降至1时,延性系数则降至3左右,滞回曲线严重捏扰,耗能很小,最后弯剪破坏。抗震墙的刚性连梁,其跨高比往往仅为1左右,若要使其工作在弹塑性阶段作耗能构件,则需要对它的构造采取一定措施,以适应延性和耗能的要求。措施之一是在1/2梁高的中性面上留一水平通缝,在缝的上下两侧各埋置钢板,钢板上开有椭圆形螺栓孔,用高强螺栓把两钢板联结。在竖载、风载和小震下,高强螺栓把水平通缝分开的两部分连梁联结成整体工作,使刚性连梁整体刚度不变,以保证其工作在弹性阶段;在强烈地震作用下,两钢板发生相对滑动,原来跨高比为1的刚性连梁将被分成两根跨高比为2的小梁协同工作。这样,不仅延性系数由原来3提高为10左右,而且由于钢板间的滑动摩擦,使其耗能能力也得到了一定程度的改善。 1.3 设计柱的延性 完成了结构之中的梁这一部分的实际之后,设计人员还需要对竖向的柱进行设计,当地震等地质灾害发生时,塑性铰部件并不会破坏柱的原有结构,然而设计人员还需要进一步提升柱的延展性,使柱这一结构部件的质量可以满足梁设计标准规范之中提出的要求,一种能够有效提升柱部件的延展性的方法是将螺旋型的箍筋添加到柱的位置,这种提升延展性的方法还能将柱部件的强度进一步提升。设计人员可以借助提升柱的强度的方法来将柱的减震性能进行有效提升。 2 建筑减震结构设计基本情况 对建筑的框架结构、梁以及柱几部分的设计工作有所了解之后,就可以对减震设计内容进行了解,减震设计工作可以被分为以下几个部分: 2.1 吸震设计 这种安装方式在对主体结构进行安装时,采用的是特殊的方式,而且还安装了附加的结构,这种结构能够在地震发生时靠吸震设备吸收震动过程中产生的巨大能量,从而很好地减轻了地震对建筑的损害,主要的方法是按照设计图纸在相应的地方预留下分隔缝,通过在震动时内外筒相互之间的吸引作用进一步对地震时产生的能量进行控制,从而更好地保证建筑的安全性。 2.2 阻震设计 所谓阻震设计是通过在建筑结构中的连接处部位安装上适量的阻尼器,通过利用阻尼器的阻尼作用力,降低建筑结构的振动响应。并且,在保证阻尼器使用性能可靠的同时,也使得建筑结果的抗震能力得到了有效的保障,通常会采用的设计方案是在高层框架结构中的重要部位,采用砂质减震器,并在易出现裂缝的部位放置扭转梁阻尼器。 2.3 隔震设计 除了前两种减震设计之外,设计人员还可以借助隔震的方法完成减震工作,设计人员可以在防震结构之中,添加隔震层,将地震传递来的能量有效降低,设计人员需要借助特殊的隔震材料来强化隔震的效果。 2.4 动力优化设计 结构设计和减震设计当中要注意结构的优化,比如:吸震器的相关参考数据以及相关的位置等都会是优化当中应该注意的重点,这样

减震器结构分析讲解

减震器结构分析 一、设计背景 随着科技的进步,机器人逐渐的进入了我们的生活,机器人节省了很多人力,成为了非常方便的家庭助手。机器人是一种可以输入编程控制其运动和多功能的,机器人可以用来搬运材料、一些零件、使用工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门执行系统。它是人工智能控制技术的综合试验机器,可以全面地考察人工智能各个领域的技术,研究机器人它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。不过机器人毕竟是机器,运动过程中会出现一些颠簸的状态,长时间会影响其工作效率。所以在机器人运动会的对话要考虑到在其运动过程中在利用机器人的时候要考虑它的减震效果,在考虑减震效果的同时,还要保证不能影响机器人的正常运动,不能给机器人增加载荷,通过对现在科技的考虑,并且还有机器人运动过程中所会产生的一些不定性因素,系统错误,外观损坏等,考虑这些因素,本次设计了一种减震机构,可以减少机器运动时的损坏,很好的保护机器人的运动状态,降低维修成本。本文设计了一种避震机构,可以有效的减少机器人工作时的颠簸状况,节省下维修机器人的人力与物力。 二、设计思路 机器人是一个可以通过输入程序自主运动的机器,机器人的运动具有很大的灵活性,并且机器人的运动有时可以像人一样自由,对

于一些情况下非常方便使用,不过机器人结构比较复杂,如果损坏维修也比较困难,机器人的损坏包括内在因素和外部与因素,内在因素无非就是一些系统出错,外部因素是摔倒,颠簸等。对于外部因素,可以考虑让机器人运动更加稳定和减少颠簸,所以就想出了设计一种假期人减震器。在本次的避震器结构设计中,同时设计避震器时要考虑到不能干涉机器人的正常工作,所以对于机器人的驱动装置的选择尤为重要。现代机器人普遍使用和人类一样的过不来的方式,两手两脚。但是人类的灵活性是机器人模仿不来的,机器人的关节多,控制系统就越复杂,运动反应就会相对来说迟缓一点,并且损坏率也大一点。通过这些因素,可以想到轮子的来代替机器人的双脚,现在社会轮子产品很流行,因为轮子运动相对来说平稳,即使受到大的颠簸也可以保持正常的运动状态。通过搜索资料,可以发现全向轮适合机器人,所以本次的运动机构选择全向轮。接下来分析全向轮的一些特性及选择依据,全向轮不仅能够在愈多不同的地方移动和许多不同的方向移动,可以发现左右车轮的小光盘将全力推出,但也将极大的方便横向滑动。全方位轮移动距离和旋转方向,这种方法是很容易的方向控制和跟踪,并尽可能快地转动。全方位轮有种好处,它的优势就是无需润滑或现场维护和安装选项是非常简单和稳定,在避震机构中加入万向轮可以保证机器人运动的灵活性和平稳性。全向轮的材料为钢材,其减震效果需要进行改善,所以要在全向轮的机构处增加一个减震机构,减震机构的回弹效果不能太明显,要尽量在小范围的伸缩回弹范围内实现减震效果。减震少不了弹簧,同时也要考虑到弹簧的压

浅谈隔振与消能减震设计

浅谈隔震与消能减震设计 1 引言 地震是威胁人类安全的主要自然灾害之一,地震具有突发性强、破坏性大和比较难预测的特点。目前地震的监测预报还是世界性难题,很难做出准确的临震预报,而且即使做到了震前预报,如果工程设施的抗震性能薄弱,也难以避免经济损失。因此,实施有效的抗震设防是当前防震减灾的关键性工作。 抗震减灾事业的发展,离不开科技进步,提高建筑工程抗震设防水平是一项技术含量高,难度大的工作。从目前的抗震措施来看,主要是保证建筑物结构的抗震性能,达到“大震不倒,中震可修,小震不坏”这一防御目标。为此必须加强科技创新,用新技术来提高和改善建筑物的抗震性能才能达到这一目标。在建筑物中设置隔震层和消能装置来减轻地震破坏这种新型结构体系就是其中之一。本文就这一新结构体系作一简要阐述。 2 “隔震设计”与“消能减震设计”的基本设计原理 2.1 隔震设计 “隔震”即隔离地震。在建筑物基础与上部结构之间设置由隔震器、阻尼器等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,降低上部结构的地震反应,达到预期的防震要求。 2.2 消能减震设计 在建筑物的抗侧力构件中(由阻尼器、连接支撑等组成),通过阻尼器局部变形提供 附加阻尼,吸收与消耗地震能量,来控制预期的结构位移 (中震下或大震下的控制位 移要求),从而使主体结构构件在罕遇 地震下不发生严重破坏,达到减震的目的,这样的房屋建筑设计称“消能减震设计”。 采用消能减震设计时,输入到建筑物的地震能量一部分被阻尼器所消耗,其余部分则转 换为结构的动能和变形能,这样也可达到降低结构地震反应的目的。 3 “隔震设计”与传统抗震设计的区别 3.1 “隔震设计”与传统抗震设计理念的区别,见表 抗震房屋与隔振房屋设计理念对比表 抗震房屋隔振房屋结构体系上部结构与基础牢固连接削弱上部结构与基础的有关连接 科学思想提高结构的自身抗震能力隔离地震能量向建筑物输入 方法措施强化结构的刚度与延性滤波 通常的建筑物应和基础牢牢地连接在一起,地震波携带的能量通过基础传递到上 部结构,进入到上部结构的能量被转化为结构的动能和变形能,在此过程中,当结 构的总变形超越了结构自身的某种极限时,建筑物便发生损坏甚至倒塌。而隔震建筑 物在地震时,隔震结构的震动和变形均可只控制在较 轻微的水平,上部结构基本处于平动状态,因此,上部结构水平地震作用可采用矩形分布,从而使建筑物的安全得到更可靠的保证。 3.2 对隔震房屋,同样层数且无地下室的多层砖房将增加房屋造价 10 ,考虑隔震后可增加层数,减去土地分摊费用后,单位造价增加约为 5 ,对于框架结构,则因柱截面尺寸和配筋明显减少,房屋造价可减少 3 ~5 。

建筑消能减震-阻尼器

一、消能减震结构的发展与应用: 利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。 在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。 在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。 在日本,目前已有超过100多栋的建筑物采用消能减震技术。 现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。 (1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的 量化表征。 (2)《高层建筑混凝土结构技术规程》JGJ3-2010中: 2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅 建筑和房屋高度大于24米的其他高层民用建筑。

(3)《民用建筑设计通则》GB50352-2005中: 3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。 二、阻尼器耗能减震原理: 耗能减震的原理可以从能量的角度来描述。 传统结构:Ei =Er+Ed+Es 耗能结构:Ei =Er+Ed+Es+Ea Ei为地震时输入结构的总能量; Er为结构在地震过程中存储的动能和弹性应变能; Ed为结构本身阻尼消耗的能量; Es为结构产生弹塑性变形吸收的能量; Ea为耗能装置消耗的能量; (其中Er为能量转换,并不是能量的消耗。) (1)传统结构中: 构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。 (2)在消能减震结构中: 耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。 三、阻尼器的种类: 阻尼器种类繁多,我国将其分为位移相关型和速度相关型。

高层剪力墙结构消能减震设计

高层剪力墙结构消能减震设计 发表时间:2019-07-24T11:40:13.370Z 来源:《基层建设》2019年第10期作者:宋潇薇陈绍琼 [导读] 摘要:由于地震是自然灾害,具有不可避免和不可预测性的特点,所以在设计高层建筑结构的抗震性能时,会存在很多未知的影响因素,会增加抗震精准计算的难度,因此,若要增加高层建筑结构的抗震强度,不但要借助精确定位抗震技术的计算分析,同时,也要高度重视起高层建筑结构的设计方案。 中国有色金属工业昆明勘察设计研究院有限公司云南昆明 650000 摘要:由于地震是自然灾害,具有不可避免和不可预测性的特点,所以在设计高层建筑结构的抗震性能时,会存在很多未知的影响因素,会增加抗震精准计算的难度,因此,若要增加高层建筑结构的抗震强度,不但要借助精确定位抗震技术的计算分析,同时,也要高度重视起高层建筑结构的设计方案。因此,在进行具体设计时,要充分利用结构规则的有关体系,综合评价施工场地中的地质条件,这样,有利于做好地震设防工作,提高防震措施,从而最终保证高层建筑结构具有最理想的抗震能力。 关键词:高层剪力墙;结构;消能减震;设计 前言: 当前,由于高层建筑技术的逐渐成熟,加之抗震设计水平的持续提高,也使得高层建筑抗震设计方案更加的合理科学,并随着新材料和新技术的应用,使得高层建筑抗震性能得以显著提升,当地震发生时,建筑将增加一定的安全系数。 1高层住宅结构抗震设计目标、原则 1.1目标 在设计高层住宅抗震性能时,要确保小地震发生时住宅不会被损坏,有一定的安全性;中级地震发生时,住宅不会有太大的损坏,也不会威胁到居民的安全,并保证可以修复住宅结构的损坏,并可持续使用;发生大地震时,高层住宅不倒塌,为人们提供足够的时间和空间逃脱。从整体而言,高层住宅结构设计目标是:小震可靠、中震损坏可修、大震高楼不倒。 1.2原则 在设计及高层住宅结构时,为了保证结构抗震设计最优,有几个因素需要引起注意。一,保证设计的住宅结构有良好的弹塑性和刚性,当有地震力影响住宅时,不会由于过于刚性或弹塑性大,导致结构出现不能修复的形变。二,因强震同时还有余震相伴,此时,就不需要住宅结构对抗震能力太过注意,否则会使得住宅刚性太大,对余震带来的压力无法承受,所以,需要涉及高层住宅抗震性能时既要对强震的破坏力进行抵制,同时还要对多次余震侵扰加以承受。三,想要防止高层住宅有太小的刚性,避免住宅结构在余震下过大变形而不能修复,因此,需要高层住宅具有延性较好的分体系,避免在强震下住宅整体坍塌。 2高层建筑抗震设计中常出现的问题 2.1建筑平面、竖向不规则 这就使得建筑的抗震性能有很大的削弱。由于经济水平的提升和人们对流动艺术的追求,建筑师创作的平面和立面日趋复杂。导致了立面、平面的规律性超限状况日渐普遍。这将极大的削弱了建筑物的抗震性。 2.2地基的不科学选取 不同类型的地基在地震力传递中具特点有所不同,由于高层建筑的垂直高度高、重量大,故选择高层建筑的位置,对于土壤硬度、密实度、地形开阔度、平整度的要求很高,应远离河岸,躲避地震危险地段。只有这样,才能保证高层建筑的地基的抗震性能良好,并能在地震力作用下更加稳固。然而,由于城市发展的加快和城市人口的增加,大量的房地产开发商在选择高层建筑的位置时,会更多地考虑自己的商业利益和商业发展空间,这使得高层建筑地基选择更具适应性和不科学性,降低了其抗震性能,在地震发生会严重破坏高层建筑的基础。 2.3材料的不科学选取 最近几年,我国较频繁的发生地震,在地震多发地区高层建筑设计中,必须保证结构体系的合理性,对结构材料合理选择。然而,由于受经济、施工等因素限制,并未合理的应用轻质高强度材料,还通过增加钢筋、水泥、加大横截面积的感性上提升结构安全性,很少使用隔震、减震、新材料等。 2.4 抗震设防烈度不高 因我国经济发展水平较低,所以当前我国建筑抗震设防的烈度也不高,中等地震是指在规定的设计基准期内发生概率超过10%的地震的强度,抗震设防烈度低,导致高层建筑的抗震要求降低。 3高层建筑结构的抗震性能设计 3.1 地基的选择 建筑物会在地震力的作用下发生倒塌,而除了会受到地震这个直接影响因素外,还要对地质条件因素进行充分的考虑。在对场地进行选择时,需要综合评定地质条件。第一,需要优选对高层建筑结构抗震有利的坚硬的土质地区,不要选择土质软化的场地。但原因特殊真的无法规避,则需要采用一定抗震措施,特别是地震高发的地区,甲乙丙三种建筑是绝对不可以建设的,经过一些研究和调查,可知,地震会对那些覆盖层厚、土质软地区的建筑有较大的影响,其一旦发生地震后果将不堪设想。 3.2抗震体系的选择 建筑的抗震性会受诸多因素的影响,如,抗震体系选择、施工因素等,均会对抗震性能产生严重的影响。一,不要设计太过复杂的高层建筑结构体型,并且保证空间布置具有一定的规则性,只有这样在设计方案时,会因建筑的受力明确,如果发生地震,就能够很好的分析出高层建筑结构的实际内力和受力状况。这样也就更容易设计建筑结构细部。所以,在发生地震时,也不会对该种结构物造成太严重的损伤。二,建筑的空间规则性和地震作用的传递紧密相连,且抗震延性也会受到选择的建材影响。因此,如果高层建筑结构体型复杂且空间结构规则性不佳,必须要科学设置相应的防震缝从而降低地震的影响力。若高层建筑结构的平面设计也缺乏规则性,也需要将科学有效的方针措施设置在薄弱的位置。若高层建筑结构平面设计不规则,则必须在薄弱位置应用有效的防震措施。而那些体型复杂的高层建筑结构,若未对防震缝进行设置,想要提高抗震性,那么,想要使抗震性能切实提高,就要针对具体结构准确的设计一定的模型,以此为基础将抗震分析准确做好,并且要有针对性的重点分析容易出现损害的位置,若防震缝已经科学的进行了设置,则就说明建筑结构划分成立结

相关文档
最新文档