向量数量积的几何意义应用

向量数量积的几何意义应用
向量数量积的几何意义应用

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2.平面向量的数量积;3.平面向量数量积的运算律 平面向量数量积的运算 1.利用坐标计算数量积的步骤 第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.52 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且 BE =23 BC , DF =16 DC ,则 AE · AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得 3(-1+2m )-4(-2-m )=0,则m =-12,所以b =????-12,1,所以a ·b =-1×????-12+2×1=52. (2)取 BA , BC 为一组基底,则 AE = BE - BA =23 BC - BA , AF = AB + BC + CF =- BA + BC +512 BA =-712 BA + BC ,∴ AE · AF =????23 BC - BA ·????-712 BA + BC =712| BA |2-2518 BA · BC +23| BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足 AB =2a , AC =2a +b ,则下列结 论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥ BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 [解析] (1)在△ABC 中,由 BC = AC - AB =2a +b -2a =b ,得|b |=2,A 错误.又 AB =2a 且| AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )· BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥ BC , D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6). ∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C [易错提醒] x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是

向量在几何中的应用

唐山师范学院本科毕业论文 题目向量在解析几何中的应用 学生张红阳 指导教师孟令江副教授 年级10数本2班 专业数学与应用数学 系别数学与信息科学系 唐山师范学院数学与信息科学系 2014年5月

郑重声明 本人的毕业论文(设计)是在指导教师孟令江的指导下独立撰写完成的。如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督。特此郑重声明。 毕业论文(设计)作者(签名):张红阳 2014 年 4 月 31 日

目录 标题 (1) 中文摘要 (1) 1引言 (1) 2 预备知识 (1) 2.1 向量的概念 (1) 2.2 向量的运算 (1) 2.2.1向量的加法 (1) 2.2.2向量的减法 (1) 2.2.3数量乘向量 (1) 2.2.4两向量的数量积 (1) 2.2.5两向量的向量积 (1) 2.2.6三向量的混合积 (2) 2.2.7法向量的有关概念 (2) 2.2.8线性相关定义 (2) 3 向量在立体几何中的应用 (2) 3.1向量在立体几何中的证明 (2) 3.1.1向量在立体几何中的简单证明 (2) 3.1.2证明两直线平行 (3) 3.1.3证明线面平行 (4) 3.1.4证明面面平行 (6) 3.1.5证明两直线垂直 (7) 3.1.6证明线面垂直 (8) 3.1.7证明面面垂直 (9) 3.2向量在几何中的计算 (10) 3.2.1距离 (10) 3.2.1.1两点间的距离 (10) 3.2.1.2点到直线的距离 (11) 3.2.1.3点面距离 (11) 3.2.1.4异面直线的距离 (12) 3.2.2夹角 (12) 3.2.2.1两异面直线的夹角 (12) 3.2.2.2线面角 (13) 3.2.2.3二面角 (14) 3.2.3求面积 (16) 3.2.4求体积 (17) 参考文献: (18) 致谢 (19) 外文页 (20)

平面向量数量积教学反思

平面向量数量积教学反思 平面向量数量积教学反思 一、本节课的设想与基本流程:本节课主要是研究向量与向量的内积的问题,也就是向量的数量积。因为之前刚学习了向量的线性运算,所以我就直接从向量的线性运算引入了数量积这一概念,请同学来回答数量积的概念,在此过程中特别强调了夹角的概念,强调要共起点。这是学生容易出问题的地方,因此后面安排的例题就特意考察了这一问题;另外还强调了两个向量的数量积不是一个向量,而是一个数量,这也是它与之前的线性运算的区别;接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识。 二、我的体会:通过本节课的教学,我有以下几点体会: (1)让学生经历数学知识的形成与应用过程高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。 (2)鼓励学生自主探索、自主学习教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径。 (3)注重学生数学思维的培养本节通过特殊到一般进行观察归纳、合情推理,探求定义、性质和几何意义。在整个探求过程中,充分利用“旧知识”及“旧知识形成过程”,并利用它探求新知识。这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程。我感觉不足的有:(1)教师应该如何准确的提出问题在教学中,教师提出的问题要具体、准确,而不应该模棱两可。(2)教师如何把握“收”与“放”的问题何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题。(3)教师要点拨到位在学生出现问题后,教师要及时点评加以总结,要重视思维的提升,提高学生的数学能力和素质。(4)课堂语言还需要进一步提炼。在教学中,提出的问题,分析引导的话应具体,明确,不能让学生不知道如何回答,当然有些问题我也考虑过该如何问,只是没有找到更合适的提问方法,这方面的能力有待加强。 以上就是本人的教学反思,只有不断地反思,不断地总结才能在今后的教学中取得更好的教学效果,尽快地提高自身的教学水平。 1 / 1

(重点)平面向量数量积公式的应用(可编辑修改word版)

F D C A a B 1 O - A 1 b B 平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1. 长度问题 例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ? AE + AD ? AF = AC 2 。 B E 2. 垂直问题 例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明: PA ⊥ EF 。 3. 夹角问题 例 3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1. 证明一些公式: 例 4: 对 于 任 意 实 数 , Y , 求 证 : cos(+ ) = cos cos - sin sin 。 X y A B P E D O F C x y A E O C D B x

2. 证明三角恒等式: 例 5:已知 、 为锐角, 且 3sin 2 + 2 s in 2 = 1 , A 5 3sin 2- 2 s in 2= 0 ,求证:+ 2= 。 2 A 6 A 4 A 7 e A 3 A 1 A 2 3. 求三角函数值: 2 例 6:求值: cos 7 + cos 4+ c os 6。 7 7 4. 解与三角形有关的问题: 例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) = 3 ,求角 C 的值。 2 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y a b

最新复数的几何意义及应用

复数的几何意义及应 用

复数的几何意义及应用 一、教学目标: (一)知识与技能: 通过学习复平面上点的轨迹,进一步使学生掌握复数及减法的代数、几何、向量表示法及彼此之间的关系。 (二)过程与方法:1、通过问题导引,探究学习,提高学生数学探究能力; 2、提高数形结合能力;培养对应与运动变化的观点; 3、提高知识之间的理解与综合运用能力。 (三)情感、态度、价值观:通过复数、平面上点及位置向量三者之间联系及转化的教学,对学生进行事物间普遍联系及转化等辩证观点的教育。 二、教学重点:复平面内两点间距离公式的应用 三、教学难点:复平面内两点间距离公式的应用 四、教学工具:计算机、投影仪 五、教学方法:探究式教学法、问题解决教学法 六、教学过程: (一)设置情境,问题引入 仅供学习与交流,如有侵权请联系网站删除谢谢5

仅供学习与交流,如有侵权请联系网站删除 谢谢5 问题1:复数z 的几何意义?设复平面内点Z 表示复数z= a+bi (a ,b ∈ R ),连结OZ ,则点Z ,?Skip Record If...? ,复数z= a+bi (a ,b ∈R )之间具有一一对应关系。 直角坐标系中的点Z(a,b) 一一对应 一一对应 复数z=a+bi 问题2:∣z ∣的几何意义?若复数z= a+bi (a ,b ∈R )对应的向量是?Skip Record If...?,则向量是?Skip Record If...?的模叫做复数z= a+bi (a ,b ∈R )的模,|z|=?Skip Record If...?=| a+bi |=?Skip Record If...?(a ,b ∈R )。 问题3:∣z 1-z 2∣的几何意义?两个复数的差?Skip Record If...?所对应的向量 就是连结?Skip Record If...?并且方向指向(被减数向量)的向量, ?Skip Record If...? (二)探索研究 根据复数的几何意义及向量表示,求复平面内下列曲线的方程: 1.圆的定义:平面内到定点的距离等于定长的点的集合(轨迹) 设?Skip Record If...?以?Skip Record If...?为圆心, ? Skip Record If...?为半径的圆上任意一点, 则?Skip Record If...? ?Skip Record If...? 一一对应 向量 O Z

空间向量在立体几何中的应用和习题(含答案)

空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量. 由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量. 由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ?a ∥b ?a =k b ,k ∈R ; ②l ⊥m ?a ⊥b ?a ·b =0; ③l ∥α ?a ⊥u ?a ·u =0; ④l ⊥α ?a ∥u ?a =k u ,k ∈R ; ⑤α ∥?u ∥v ?u =k v ,k ∈R ; ⑥α ⊥β ?u ⊥v ?u ·v =0. (3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角. 设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2 π,0(∈θ则 ?= >

向量数量积的概念

第八章 向量的数量积与三角恒等变换 8.1 向量的数量积 8.1.1 向量数量积的概念 【课程标准】 了解向量数量积的概念,了解与数量积有关的投影,夹角,模的几何意义并能进行简单运算。 【核心素养】 逻辑推理,数学运算。 【导学流程】 一、基础感知 1.两个向量的夹角 给定两个非零向量,a b r r ,在平面内任选一点O ,作,OA a OB b ==u u u r r u u u r r ,则称[0,] π内的AOB ∠为向量a r 与向量b r 的 ,记作 。如图8-1-2,向量a r 与b r 的夹角为4 π ,即,a b <>=r r ;向量a r 与c r 的夹角为2 π ,则,a c <>=r r ;向量a r 与d u r 的夹角为 ,即,a d <>=r u r ;向量a r 与e r 的 夹角为 ,即,a e <>=r r . 练一练:已知等边三角形ABC ,D 为BC 的中点,求: ,,,,,,,AB AC BC AC BC CA DA BC <><><><>u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 根据向量夹角的定义可知: ,a b ≤<>≤r r . ,a b <>=r r . 当,2 a b π <>=r r 时,称向量a r 与向量b r ,记作 . 规定:零向量与任意向量垂直.

2.向量数量积的定义 一般地,当a r 与b r 都是非零向量时,称||||cos ,a b a b <>r r r r 为向量a r 与b r 的 .(也称为 ),记作 ,即 .由定义可 知,两个非零向量a r 与b r 的数量积是一个 . 两个非零向量的数量积即可以是 ,也可以是 ,还可以是 . 向量的数量积有如下性质: (1) (2) 当a r 与b r 至少有一个是零向量时,称它们的数量积为 ,即 . a r 与 b r 垂直的充要条件是 ,即 . 练一练:(1)已知5,4,,120a b a b ===?r r r r ,求a b ?r r ; (2)已知3,2,3a b a b ==?=r r r r ,求,a b <>r r . 由(2)可看出,如果,a b r r 都是非零向量,则cos ,a b <>=r r . 3.向量的投影与向量数量积的几何意义. 如图8-1-4所示,设非零向量AB a =u u u r r ,过,A B 分别作直线l 的垂线,垂 足分别为,A B '',则称向量A B ''u u u u r 为向量a r 在直线l 上的 或 .给 定平面上的一个非零向量b r ,设b r 所在的直线为l ,则a r 在直线l 上的投影称为a r 在向量b r 上的 .如图8-1-5中,向量a r 在b r 上的投影为 .

向量的减法及其几何意义

2.2.2 向量的减法运算及其几何意义 一、学习目标: 1. 通过实例,掌握向量减法的运算,并理解其几何意义; 2. 能运用向量减法的几何意义解决一些问题. 二、重难点 : 1. 重点:向量减法的三角形法则及其应用; 2. 难点:对向量的减法定义的理解. 三、知识回顾: 1、向量加法的法则: 。 2、向量加法的运算定律: 。 四、探究新知: 1.用“相反向量”定义向量的减法 (1)“相反向量”的定义: 。 (2) 规定:零向量的相反向量仍是 . --=a a ( ). 任一向量与它的相反向量的和是 +- =0a a () 如果a 、b 互为相反向量,则=-,=-,+0a b b a a b = (3)向量减法的定义: . 即: 求两个向量差的运算叫做向量的减法. (4).用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b x a +=,则x 叫做a 与b 的差,记作 。 2.向量的减法的三角形法则: 特点:共起点,连终点,方向指向被减向量. 五、典例分析:

例1、已知向量a 、b 、c 、d ,求作向量a b -、c d -. 练习:已知向量,求作向量。 例2.化简:(AB →-CD →)-(AC →-BD → ). ,a b a b -

练习:化简:(1)AB →-CB →-DC →+DE →+F A → ; 例3、平行四边形ABCD 中,=a ,=b ,用a 、b 表示向量、. 变式一:当a ,b 满足什么条件时,+a b 与a b -垂直? 变式二:当a ,b 满足什么条件时,|+a b | = |a b -|? 变式三:+a b 与a b -可能是相等向量吗?

向量在平面几何中的应用

向量在平面几何中的应用 向量是形与数的高度统一,它集几何图形的直观与代数运算的简洁与一身,向量的双重身份(既是几何对象又是代数运算对象)决定了向量在解决平面几何问题的重要作用.但是初步接触向量,好多学生还不习惯用向量解决几何中常见的判断几何图形形状,证明全等,直线平行、垂直,求线段的长度,夹角等问题.向量是连接代数与几何间的又一座桥梁,它几乎与中学阶段几何内容与部分代数内容都有联系. 利用向量解答平面几何问题的一般步骤是:1.将题设和结论中的有关元素转化为向量形式; 2.确定必要的基底向量,并用基地表示其他向量; 3.借助于向量的运算解决问题. 共线定理的作用:用向量共线定理可以证明几何中的直线平行、三点共线、三线共点问题.但是向量平行与直线平行是有区别的,直线平行不包括重合的情况.要证明三点共线或直线平行都是先探索有关的向量满足向量等式b a λr r =,再结合条件或图形有无公共点证明几何位置. 相关结论: 1.平面上三点A B C 、、共线?AB BC λu u u r u u u r =.(向量共线且有公共点才能得出三点共线.) 2.点P 为线段AB 的中点,O 为平面内的任意一点?1OP OA OB 2u u u r u u u r u u u r =+. 3.平面上三点A B C 、、共线?O 为不同于A B C 、、的任意一点,OC OA OB λμu u u r u u u r u u u r =+且1.λμ+=. 应用一:应用向量知识证明三点共线 例1:如图已知△ABC 两边AB AC 、的中点分别为M N 、,在BN 延长线上取点P ,使NP BN =,在CM 延长线上取点Q ,使MQ CM =. 求证:P A Q 、、三点共线11,22AN b AM a ==u u u r r u u u u r r 解:设,AB a AC b ==u u u r r u u u r r ,则, 由此可得12BN NP b a ==-u u u r u u u r r r ,12CM MQ a b ==-u u u u r u u u u r r r , ,()PA AN NP PA b a a b ∴-=+=--=-u u u r u u u r u u u r u u u r r r r r , ,()AQ AM MQ AQ b a a b -=+=--=-u u u r u u u u r u u u u r u u u r r r r r , 即PA PQ =u u u r u u u r ,故有//PA AQ u u u r u u u r ,且它们有公共点A , 所以P A Q 、、三点共线. 应用二:应用向量知识解决有关平行的问题 例2、证明顺次连结四边形各中点所得四边形为平行四边形. 已知:如图,四边形ABCD E F G H AB BC CD DA ,、、、分别是、、、的中点. 求证:四边形EFGH 是平行四边形. 分析:要证平行四边形,只需证一组对边平行且相等,即它们所 对应的向量相等. 证明:连接AC,Q E F AB BC 、分别是、的中点, ∴11++22EF EB BF AB BC ==u u u r u u u r u u u r u u u r u u u r 11+22AB BC AC =u u u r u u u r u u u r ()=, 同理12 HG AC =u u u r u u u r ∴EF HG =u u u r u u u r //.EF HG EF HG =则且 ∴四边形EFGH 是平形四边形.

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

向量的加法及其几何意义

向量的加法及其几何意义 一、教材分析 高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学生学习情况分析 学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。 三、设计理念

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 四、教学目标 根据新课标的要求: 培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识。及本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目的确定为: 1、理解向量加法的意义,掌握向量加法的几何表示法,理解向量加法的运算律。 2、理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识。 3、培养类比、迁移、分类、归纳等能力。 4、进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

复数的几何意义及应用

复数的几何意义及应用 一、教学目标: (一)知识与技能: 通过学习复平面上点的轨迹,进一步使学生掌握复数及减法的代数、几何、向量表示法及彼此之间的关系。 (二)过程与方法:1、通过问题导引,探究学习,提高学生数学探究能力; 2、提高数形结合能力;培养对应与运动变化的观点; 3、提高知识之间的理解与综合运用能力。 (三)情感、态度、价值观:通过复数、平面上点及位置向量三者之间联系及转化的教学,对学生进行事物间普遍联系及转化等辩证观点的教育。 二、教学重点:复平面内两点间距离公式的应用 三、教学难点:复平面内两点间距离公式的应用 四、教学工具:计算机、投影仪 五、教学方法:探究式教学法、问题解决教学法 六、教学过程: (一)设置情境,问题引入 问题1:复数z 的几何意义?设复平面内点Z 表示复数z= a+bi (a ,b ∈R ),连结OZ ,则点Z ,OZ ,复数z= a+bi (a ,b ∈R )之间具有一一对应关系。 直角坐标系中的点Z(a,b) 一一对应 一一对应 复数z=a+bi 问题2:∣z ∣的几何意义?若复数z= a+bi (a ,b ∈R )对应的向量是OZ ,则向量是OZ 的模叫做复数z= a+bi (a ,b ∈R )的模,=| a+bi |=22b a +(a ,b ∈R )。 问题3:∣z 1-z 2∣的几何意义?两个复数的差z z z =-21所对应的向量就是连结21Z Z 并且方向指向(被减数向量)的向量, 2 2122121)()(y y x x z z d -+-==-=一一对应 向量 O Z

(二)探索研究 根据复数的几何意义及向量表示,求复平面内下列曲线的方程: 1.圆的定义:平面内到定点的距离等于定长的点的集合(轨迹) 设),(y x Z 以),(000y x Z 为圆心, )0(>r r 为半径的圆上任意一点, 则r ZZ =0 )0(>r (1)该圆向量形式的方程是什么)0(>=r r (2)该圆复数形式的方程是什么? r z z =-0 )0(>r (3)该圆代数形式的方程是什么? )0()()(22020>=-+-r r y y x x 2.椭圆的定义:平面内与两定点Z 1,Z 2的距离的和等于常数(大于21Z Z )的点的集合(轨迹) 设),(y x Z 是以),(211y x Z ),(222y x Z 为焦点,2a 为长轴长的椭圆的上任意一点, 则a ZZ ZZ 221=+ )2(21Z Z a > (1)该椭圆向量形式的方程是什么a 2=+ )2(21Z Z a > (2)该椭圆复数形式的方程是什么? a z z z z 221=-+- )2(21Z Z a > 变式:以),(211y x Z ),(222y x Z 为端点的线段 (1)向量形式的方程是什么a 2=+ )2(21Z Z a = (2)复数形式的方程是什么? a z z z z 221=-+- )2(21Z Z a = 3.双曲线的定义:平面内与两定点Z 1,Z 2的距离的差的绝对值等于 常数(小于21Z Z ) 的点的集合(轨迹) 设),(y x Z 是以),(211y x Z ),(222y x Z 为焦点,2a 为实轴长的双曲线的上 任意一点,

向量的加减法运算及其几何意义

课题 向量的加减法运算及其几何意义 知识点一:向量的基本概念: (一)向量的概念:我们把既有大小又有方向的量叫向量 (二)探究学习 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)............ 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行, 要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

知识梳理_平面向量的数量积及应用_提高

平面向量的数量积及应用 编稿:李霞 审稿:孙永钊 【考纲要求】 1.理解平面向量数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 2.会用向量方法解决某些简单的平面几何问题,会用向量方法解决简单的力学问题与其他一些实际问题. 【知识网络】 【考点梳理】 考点一、向量的数量积 1. 定义: 已知两个非零向量a 和b ,它们的夹角为θ,我们把数量||||cos θa b 叫做a 和b 的数量积(或内积),记作?a b ,即||||cos ?=θa b a b . 规定:零向量与任一向量的数量积为0. 要点诠释: (1)两向量的数量积,其结果是个数量,而不是向量,它的值为两向量的模与余弦值决定 . (2)在运用数量积公式解题时,一定注意两向量夹角范围0?≤θ≤180?.此外,由于向量具有方向性,一定要找准 θ是哪个角. 2. 平面向量的数量积的几何意义 我们规定||cos θb 叫做向量b 在a 方向上的投影,当θ为锐角时,||cos θb 为正值;当θ为钝角时, 平面向量数量积及应用 平面向量的数量积 平面向量的应用 平面向量的坐标运算

||cos θb 为负值;当θ=0?时,||cos ||θ=b b ;当θ=90?时,||cos 0θ=b ;当θ=180?时,||cos ||θ=-b b . ?a b 的几何意义:数量积?a b 等于a 的长度||a 与 b 在a 方向上的投影||cos θb 的乘积. 要点诠释: b 在a 方向上的投影是一个数量,它可正、可负,也可以等于0. 3. 性质: (1) 0⊥??=a b a b (2) 当a 与b 同向时,||||?=a b a b ;当a 与b 反向时,||||?=-a b a b . 特别地2 2 ||||?==,即a a a a a (3) cos |||| ?θ= a b a b (4) ||||?≤a b a b 4. 运算律 设已知向量a 、b 、c 和实数λ,则向量的数量积满足下列运算律: (1) ?=?a b b a (交换律) (2) ()()()λ?=λ?=?λa b a b a b (3) ()+?=?+?a b c a c b c 要点诠释: ①当0≠a 时,由0?=a b 不一定能推出0=b ,这是因为对任何一个与a 垂直的向量b ,都有 0?=a b ;当0≠a 时,?=?a b a c 也不一定能推出=b c ,因为由?=?a b a c ,得()0?-=a b c ,即a 与()-b c 垂直.也就是向量的数量积运算不满足消去律. ②对于实数,,a b c ,有()()a b c a b c ?=?,但对于向量来说,()()??=??a b c a b c 不一定相等,这是因为()??a b c 表示一个与c 共线的向量,而()??a b c 表示一个与a 共线的向量,而a 与c 不一定共线,所以 ()??a b c 与()??a b c 不一定相等. 5. 向量的数量积的坐标运算 ①已知两个非零向量11(x ,y )=a ,22(x ,y )=b ,那么1212x x y y ?=+a b ;

2018年一轮复习《平面向量的数量积及应用》教学教案

平面向量的数量积及应用 知识梳理: 平面向量的夹角及表示: (1).平面向量的夹角的定义 (2).范围: 表示方法: 当夹角为0或错误!未找到引用源。时,则称a与b ,记作: ; 当夹角为9错误!未找到引用源。时,则称a与b ,记作: ; 2.向量的数量积定义: 3.数量积几何意义与投影的概念: 4.数量积的性质:设a与b是非零向量,e是单位向量,错误!未找到引用源。是a与e的夹角, 则 ①错误!未找到引用源。= ;②a错误!未找到引用源。b时,a错误!未找到引用源。b错误!未找到引用源。③错误!未找到引用源。同向量,错误!未找到引用源。 ④错误!未找到引用源。反向量,错误!未找到引用源。⑤错误!未找到引用源。|错误!未找到引用源。=错误!未找到引用源。 特别地:错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。+2a错误!未找到引用源。b 错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。-2a 错误!未找到引用源。b (a+b)错误!未找到引用源。(a-b)=错误!未找到引用源。-错误!未找到引用源。 ⑥数量积的运算律: 交换律:;结合律:;分配律: ⑦数量积的坐标运算:; ⑧两向量垂直叛定:;

⑨两向量夹角公式: ; ⑩向量的模及两点间的距离: ; 二、题型探究 探究一:平面向量的数量积运算 例1:已知|a |=5,|b |=4,a 与b 的夹角为12错误!未找到引用源。,求: ○1错误!未找到引用源。 ○2错误!未找到引用源。 ○3错误!未找到引用源。-错误!未找到引用源。 ; ○4(2a-b )错误!未找到引用源。(a+3b ) (答案:-10;21;9;-48) 探究二、数量积的综合应用 例2:已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a ?-)2(= 例3:已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°, (1)求证:)(b a -⊥c ; (2)若1||>++c b a k )(R k ∈,求k 的取值范围. 解:(1)∵ 1||||||===c b a ,且a 、b 、c 之间的夹角均为120°,

平面向量的数量积及其应用定稿1

平面向量的数量积及其应用 【考试要点】 1.考查平面向量数量积的运算. 2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】 本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系. 【教学过程】 活动一心动入境

(5)(a+b)2=a2+2a·b+b2. (6)(a-b)2=a2-2a·b+b2. 课前活动二[归纳反思] (1)若a·b>0,能否说明a和b的夹角为锐角? (2)若a·b<0,能否说明a和b的夹角为钝角? (3) 若向量a,b,c满足a·b=a·c(a≠0),是否能有b=c? (4)若向量a,b,c满足(a·b)c≠a(b·c),是否有(a·b)c=a(b·c)? (5) 正三角形ABC中,与的夹角应为多少度? 热身训练1.平面向量a与b的夹角为45°,a=(1,1),|b|=2,则|3a+b|等于() A.13+6 2 B.25 C.30 D.34 2.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________. 3.已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________. 4.已知e1,e2是互相垂直的单位向量,若3e1-e2与e1+λe2的夹角为60°,则实数λ的值是________. 考点一平面向量的数量积及在平面几何中的应用 探究实践1 【例1】如图,在△ABC中,AB=3,AC=5,∠BAC =60°,D,E分别是AB,AC的中点,连接CD,BE 交于点F,连接AF,取CF的中点G,连接BG,则AF → ·BG → =________. (2)在直角梯形ABCD中,∠A=90°,AD∥BC,BC

向量的加法及其几何意义.doc

向量的加法及其几何意义 高一数学备课组 —、教材分析 《普高中课程标准数学教科书数学(必修(4))》(人教(版))。第二章 2. 2 平面向量的线性运算的第一节“向量的加法及其儿何意义” (89-94页)。《向量》这一章是前一轮教材中新增的内容。高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具。教材的第2. 1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、负向量、零向量以及平行向量等基本概念。而本节课是继向量基本概念的第一节课。向量的加法是向量的第一运算, 是最基本、最重要的运算,是学习向量其他运算的基础。它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用。正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限。 二、学生学习情况分析 学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景。 三、设计理念 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展。 教学目标 根据新课标的要求:培养数学的应用意识是半今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识。及本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目的确定为: 1、理解向量加法的意义,掌握向量加法的儿何表示法,理解向量加法的运算律。 2、理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识。 3、培养类比、迁移、分类、归纳等能力。

相关文档
最新文档