一种医学图像的轮廓提取方法

一种医学图像的轮廓提取方法
一种医学图像的轮廓提取方法

—218

— ·图形图

36卷 第5期

ol.36 No.5 2010年3月

March 2010

像处理· 文章编号:1000—3428(2010)05—0218—03

文献标识码:A

中图分类号:TP391

一种医学图像的轮廓提取方法

罗三定,王建军

(中南大学信息科学与工程学院,长沙 410083)

摘 要:针对医学图像的模糊性和灰度不均导致目标轮廓难以准确提取的问题,提出使用改进的遗传算法控制主动轮廓模型完成边界提取的方法。采用保优算子保留遗传性状,选择适当的交叉算子,在进化后期可实现由整体寻优到局部寻优的转变。实验结果证明,该方法在提取目标轮廓时抗模糊能力强、鲁棒性好。

关键词:主动轮廓模型;轮廓提取;改进的遗传算法

Contour Extraction Method for Medical Images

LUO San-ding, WANG Jian-jun

(School of Information Science and Engineering, Central South University, Changsha 410083)

【Abstract 】Medical images with fuzzy and non-uniform characteristics make it difficult to accurately extract target contour, aiming at this problem, this paper adopts an improved genetic algorithm to make active contour model finish boundary extraction. It adopts prepotent operator to keep inheritance of quantitative characteristic and select proper crossover operator. In the anaphase stage of the improved genetic algorithm, it solves its changeover from global optimization to local optimization. Experimental results show that it is anti-fuzzy with good robustness in extracting contour of targets.

【Key words 】active contour model; contour extraction; improved genetic algorithm

计 算 机 工 程 Computer Engineering 第V 1 概述

医学图像由于其成像方式及特定环境的原因,具有模糊和不均匀的特点,主要体现为在同一组织中密度值和均匀度出现大幅度的变化。医学图像的几何性状较为模糊,在感兴趣区域的边界位置、拐角以及凸出点难以精确描述,边缘无法明确确定,这在很大程度上影响了图像的分割。在计算机视觉系统中,医学图像分割的方法主要分为阈值分割方法、区域生长法、结合特定理论工具的方法和基于主动轮廓模型的方法。

阈值分割法是处理分离目标与背景的最常见的图像处理方法,采用单一的全局阈值难以正确完成感兴趣区域的分割。基于直方图法的全局阈值分割是图像分割[1]的常用方法,直方图反映了图像全局的灰度分布,在目标和背景的灰度有明显差别时效果较好。局部阈值分割法是在局部范围内求取各子块的最佳阈值,经典OTSU 法的阈值求取计算量较大,不能很好地处理部分灰度均匀的区域,且区域划分大小难以 确定。

文献[2]的区域生长法根据预定义的标准,提取图像中相互连通的区域。该方法一般应用于序列图像处理过程,描绘面积小且拓扑结构简单的区域,但在提取每个区域的过程中,必须人工相应给出一个种子点。这种方法对噪声很敏感,可能会产生孔状或不连续的区域;局部影响较大的地方也可能会使原本应该连通的区域分离开来。

结合特定理论工具的分割方法有模式识别、模糊技术等。模式识别虽有较高的效率,但需要人工交互的方式获得训练数据,对大量的图像数据使用相同的训练样本而没有考虑不同的物理特性可能导致结果不准确。模糊技术的方法不考虑空间建模,对噪声和非同质的灰度很敏感[3]。

基于主动轮廓模型的方法[4]的特点是将图像数据、初始轮廓、收敛轮廓和基于先验知识的约束条件统一于特征提取的过程中。

本文对医学图像的特征进行研究分析后,采用改进的遗传算法作为外部约束力,控制曲线在能量最小化的作用下收敛,直至提取目标边缘。

2 Snake 模型

主动轮廓模型又称为Snake 模型,主要思想是定义一条初始能量函数曲线,将其初始化在待分割轮廓周围,在能量函数的极小值条件约束下,经过不断地演化曲线,最终收敛到图像轮廓[4-5]。

Snake 模型定义为

[][]()(),(); 0,1v s x s y s s =∈ (1)

它由一组控制点组成,这些点首尾相连构成轮廓线。其中()x s 和表示每个控制点在图像中的坐标位置,()y s s 是以傅里叶变换形式描述边界的自变量。

在控制点上定义的能量函数为

2221

image total

20()()()()(())d E s v s s v s E v s s s αβs ??????

=+

+∫???????? (2)

2

2

2()()s v s s

β??为弯曲能量,是的二阶导数的模;弹性能

量和弯曲能量合称内部能量(内部力),用于控制轮廓线的弹性形变,保证曲线的光滑与连续;()v s image (())E v s 是外部能量(外部力),使主动轮廓向目标边缘移动。

3 基于改进遗传算法的Snake 模型

传统的Snake 模型采用局部优化方法,在目标边缘有严重凹凸时,不能跳出局部搜索的缺陷。文献[6]将传统遗传算法应用于Snake 模型中,对收敛算法进行改进,应用具有全局寻优特点的遗传算法,使曲线更好地逼近目标边缘。但基于传统遗传算法的主动轮廓模型在收敛中存在着早熟收敛、后期收敛速度慢等问题。

为解决传统算法易陷入局部最小值和收敛不佳的问题并提高目标提取成功率,本文提出基于改进遗传算法的Snake 模型。该方法对外部约束条件的算法进行改进。算法采用保优算子、改进的轮盘赌选择方法以及施加罚函数的遗传策略,在全局范围内分别同时寻找各个局部极值,加快收敛速度和提高准确性。在设定的变异规则下,完成由全局搜索到局部搜索的转变。

3.1 新算法的改进

本文将改进的遗传算法应用于Snake 模型解的优化。该算法主要与控制点,即基因的数目、初始种群的选择、算子的选择和终止准则的选择有关。 3.1.1 初始种群的构造

初始种群的构造过程如下:

(1)获取Snake 模型已离散化的初始轮廓,在每个控制点的邻域内随机取点。

(0,1,,1)i v i N =L ?(2)在每个邻域内随机选择一个点,这个点构成一个染色体。

i v N (3)重复步骤(2)M 次,得到M 个染色体,在这样构成的种群中,每个染色体包含的节点个数都相同。 3.1.2 目标函数的选择

目标函数选用Snake 能量函数,使其最小化,即收敛轮廓线无限接近图像的真实边缘轮廓。目标函数E s 为

2

int 11int 101int 2101(,,)(,,)(,,)N s i i i N N N i E E v v v E v v v E v v v ??+???==++∑ (3)

适应度函数为s f M E =?,其中,M 是个足够大的数,使,轮廓收敛的过程就是求适应度函数最大值的过程。

0s M E ?>实验对选中的每个染色体进行实数编码,把曲线中对应的离散点按顺序对横、纵坐标进行实数编码。如第个染色体可以编码为。

i 0011(,,,,,,)i M N x y x y x y L M 3.1.3 遗传算子的构造

(1)选择算子

选择的本质就是染色体的复制,作用是从目前的种群中选择个体,并复制到下一代的种群中,它是生物能够保持性状而达到物种稳定的最主要原因。本文采用改进的轮盘赌选择法作为选择算子,某个体被选择的概率为

1

()()

()()

i i i i n

k k n X F X P Y X F X ===

∑ (4)

其中,为由被选中的个体组成的新种群;

12{,,,}n Y Y Y L (i i )P Y X =表示当前种群中个体i X 被选中的概率;为个

体X i 在当前种群中的数量;表示个体()i n X ()i F X i X 的适应值,

1

()n

k k F X =∑则表示所有个体适应值的总和。

算法先将当前群体中的个体按适应值由大到小进行等级排序。为防止出现种群退化的情况,采用保优算子保持其遗传性状,将适应值最高的个体保存起来,标记为当代最优个体。当下一代种群产生后,再找出下一代的最优个体,然后与父代最优个体进行比较,若子代的适应值较高,即子代最优个体比父代最优个体更为优秀,则将该子代最优个体取代父代最优个体,反之则不做任何替换。

除去当代最优个体,其余染色体采用小生境遗传算法的思想进行处理:比较2个染色体之间的适应度值的大小,对适应值小于均值一半的个体施加较强的罚函数,极大地降低其适应度。如此处理后,该个体适应度变得更差,在后面的进化过程中被淘汰的概率就变得极大,使得适应度较好的个体保留的机率增大。

F (2)交叉算子

多点交叉的方式为

1212'(1)'(1)i i i i i i x x x y y y αααα=+?=+? 1212

''(1)''(1)i i i i i i x x x y y αααα=?+=?+y

其中,α在0~1之间;'i x 表示子代个体x 坐标;1i x 父代的个体x 坐标,1代表第一条染色体,i 代表染色体中的第i 个点,其他以此类推。交叉概率一般取值在0.7~0.9之间。

(3)变异算子

变异的本质是修改变异的染色体上的某个点或多个点的坐标值。变异概率很小,根据式(5)在不同阶段自主设定。

mutation k

P f

=

Δ (5) 其中,f Δ表示适应值的差值;是常数。

k 在进化过程中,变异概率自行调整,刺激对真实轮廓的搜索,实现从整体搜索到局部搜索的转换。先把适应值最低的10%染色体记录下来,使其不能继续向现有的进化方向进化,促使向另外的方向发展,以消除早熟现象。同时保留每一代的最优适应值,与当代的每个染色体的适应值比较,根据差值确定交叉概率。

在进化前期,个体差异较大,变异概率较小。在进化后期,染色体基本集中在最优解空间的附近区域,轮廓线已经非常接近图像的真实轮廓。此时变异概率比较大,有利于跳出局部最优的约束。 3.1.4 终止准则

终止条件对遗传算法的最终结果有很大影响,本文从 3个方面加以表现,即平均适应值的变化落在一定的区域内,进化代数确定,或两者同时使用。在主动轮廓模型中,对算法结束时的适应值大小无法在算法开始前进行评估,在算法进行到一定程度时,每个个体的适应度函数值的变化率f Δ局限在5%以内,此时算法即可终止。当出现无边缘的情形时,无法达到上述终止条件,设定进化代数达到100次时,算法结束。

3.2 算法流程

基于改进遗传算法的主动轮廓模型搜索算法流程如 图1所示。

—219—

图1 基于改进遗传算法的主动轮廓模型搜索算法流程

4 实验结果与分析

本文主要以含有大量噪声且灰度分别不均、边缘模糊化

的医学图像作为实验对象,在Matlab7.1下进行,结果如

图2所示。

实验结果表明,改进算法提取的轮廓与真实边缘更吻合。

与图2(a)相比,图2(b)图模糊性较强、噪声多、边缘不明显,

改进算法仍然能够准确地提取轮廓。通过两者提取结果的比

较可以看出,本文算法抗噪能力较强,克服了医学图像处理

易受噪声影响的缺陷。原算法在模糊性强和凹陷处的处理效

果不佳,改进后的遗传算法的处理效果更贴近真实边缘,在

噪声较多的图像中具有很好的抗干扰能力,显示出较强的全

局化特性;进化后期变异概率的调整实现了局部细节轮廓的

完整提取。本文算法在322副序列医学图像中提取轮廓效果

较好,原算法的成功率为90%,而本文算法的成功率为

99.6%。

(a)初始轮廓1 (b)初始轮廓2

(c)原算法结果1 (d)原算法结果2

(e)改进算法结果1 (f)改进算法结果2

图2 医学图像提取结果

5 结束语

本文将改进的遗传算法应用于模型搜索,在种群中保存

最优个体,选择合适的交叉方式,进化后期实现了目标轮廓

提取从整体搜索到局部搜索的过渡转变,提取的轮廓效果较

好。该方法抗模糊能力强、鲁棒性好,但存在的问题是在无

边缘的医学图像中,进化后期收敛缓慢,可能产生震荡现象,

轮廓难以确定,解决这些问题是下一步的研究方向。

参考文献

[1] Dong Liju, Yu Ge, Ogunbona P. An Efficient Iterative Algorithm for

Image Thresholding[J]. Pattern Recognition Letters, 2008, 29(9):

1311-1316.

[2] 张发存, 赵晓红, 王忠, 等. 区域生长法图像分割的数据并行

方法研究[J]. 计算机工程, 2004, 30(17): 14-16.

[3] 王向阳, 王春花. 基于特征散度的自适应FCM图像分割算法[J].

中国图象图形学报, 2008, 13(5): 906-910.

[4] Kass M, Witkin A, Terzopoulos D. Snake: Active Contour Models[J].

International Journal of Computer Vision, 1987, 1(4): 321-331.

[5] Hou Yingbin, Xiao Yang. Active Snake Algorithm on the Edge

Detection for Gallstone Ultrasound Images[C]//Proc. of ICSP’08.

Beijing, China: [s. n.], 2008.

[6] 陈允杰, 张建伟. 遗传算法在Snake模型中的应用[J]. 计算机应

用, 2004, 24(5): 80-84.

编辑顾姣健—220—

医学图像分割综述

医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai- XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Withthede velopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fromtheper spectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssig nificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation,sig nificance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可

关于图像特征提取

关于图像特征提取 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。 边缘 边缘是组成两个图像区域之间边界(或边缘)的像素。一般一个边缘的形状可以是任意的,还可能包括交叉点。在实践中边缘一般被定义为图像中拥有大的梯度的点组成的子集。一些常用的算法还会把梯度高的点联系起来来构成一个更完善的边缘的描写。这些算法也可能对边缘提出一些限制。 局部地看边缘是一维结构。 角 角是图像中点似的特征,在局部它有两维结构。早期的算法首先进行边缘检测,然后分析边缘的走向来寻找边缘突然转向(角)。后来发展的算法不再需要边缘检测这个步骤,而是可以直接在图像梯度中寻找高度曲率。后来发现这样有时可以在图像中本来没有角的地方发现具有同角一样的特征的区域。 区域 与角不同的是区域描写一个图像中的一个区域性的结构,但是区域也可能仅由一个像素组成,因此许多区域检测也可以用来监测角。一个区域监测器检测图像中一个对于角监测器来说太平滑的区域。区域检测可以被想象为把一张图像缩小,然后在缩小的图像上进行角检测。 脊 长条形的物体被称为脊。在实践中脊可以被看作是代表对称轴的一维曲线,此外局部针对于每个脊像素有一个脊宽度。从灰梯度图像中提取脊要比提取边缘、角和区域困难。在空中摄影中往往使用脊检测来分辨道路,在医学图像中它被用来分辨血管。 特征抽取 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特

图像轮廓线提取

数学实验报告 实验二图像轮廓线提取技术 学院 专业 姓名 学号 成绩单序号 提交日期

一、实验目的 1.了解对matlab的图像处理功能,掌握基本的图像处理方式; 2.掌握imread,imshow,imwrite,subplot,title等的基本使用方法。 3.掌握图像轮廓线提取的简单方法并上机实现。 4.了解matlab自带的边界检测算子的使用,提高对复杂图像处理的能力。 二、实验要求 1.任意选取一幅灰度图像和一幅彩色图像,对算法中若干关键语句中进行调整,得出不同的实验结果,对这些结果进行分析,并与MATLAB自带的边缘检测做对比。 2.提出其它的轮廓线提取方法,与简单阈值法进行比较分析。 三、实验过程 1.任意选取一幅灰度图像和一幅彩色图像,对算法中若干关键语句中进行调整,得出不同的实验结果,对这些结果进行分析。 ⑴灰度图的轮廓线提取,M文件代码: function gray(pix,n) %灰度图的轮廓线提取 A=imread(pix); %读取指定的灰度图%生成与图像对应的矩阵 [a,b]=size(A); %a,b分别等于矩阵A的行数和列数 B=double(A); %将矩阵A变为双精度矩阵 D=40*sin(1/255*B); %将矩阵B进行非线性变换 T=A; %新建与A同等大小矩阵 for p=2:a-1 %处理图片边框内的像素点 for q=2:b-1 if (D(p,q)-D(p,q+1))>n|(D(p,q)-D(p,q-1))>n|(D(p,q)-D(p+1,q))>n|(D(p,q)-D(p-1,q))>n|( D(p,q)-D(p-1,q+1))>n|(D(p,q)-D(p+1,q-1))>n|(D(p,q)-D(p-1,q-1))>n|(D(p,q)-D(p+1,q +1))>n T(p,q)=0; %置边界点为黑色%新建轮廓线矩阵 else T(p,q)=255; %置非边界点为白色 end; end; end; subplot(2,1,1); %将窗口分割为两行一列,下图显示于第一行 image(A); %显示原图像 title('灰度图原图'); %图释 axis image; %保持图片显示比例 subplot(2,1,2); %下图显示于第二行 image(T); %显示提取轮廓线后的图片

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

CCD图像的轮廓特征点提取算法

第33卷第4期电子科技大学学报V ol.33 No.4 2004年8月Journal of UEST of China Aug. 2004 CCD图像的轮廓特征点提取算法 侯学智,杨平,赵云松 (电子科技大学机械电子工程学院成都 610054) 采用最大方差法将图像二值化,用图像形态学的梯度细化和修剪算法来提取边缘轮廓,利用十一【摘要】﹑ 点曲率法得到轮廓的角点和切点的大致位置。提出了一种基于最小二乘拟合的改进算法,来进一步确定角点和切点,并对轮廓分段识别。该算法应用在基于图像处理的刀具测量系统中,实际结果表明具有良好的抗噪声性能,能准确提取出图像的特征点。 关键词刀具测量; 细化; 曲率; 最小二乘拟合; 角点 中图分类号TP391 文献标识码 A Contour Feature Point Detection Algorithm of CCD Image Hou Xuezhi,Yang Ping,Zhao Yunsong (School of Mechatronic Engineering, UEST of China Chengdu 610054) Abstract The image is segmented to Bi-value image with max variance algorithm, and then the edge is detected by a series of image morphology algorithm including grads, thinning and cutting. The eleven point curvature-computing method is used to locate the area of corner and point of tangency. An improved algorithm based on least square fitting is given to search corner and point of tangency. This algorithm is applied to the cutting tools measurement system based on image processing and the actual result proves it has a good noise-resisted performance and can detect feature points accurately. Key words cutting tools measurement; thinning; curvature; least square fitting; corner 目前数控加工精度已达到微米级,对刀精度要求愈来愈高。传统的刀具测量方式采用人眼瞄准,容易带来主观误差,使对刀精度降低。在基于图像处理的刀具测量系统中,CCD数码相机将对刀状态的图像摄入,通过USB接口输入计算机。首先提取出刀具轮廓的特征点,再对轮廓曲线进行分段,从而测量刀具的长度﹑半径﹑角度等参数。通常利用曲率信息来提取轮廓特征点,三点曲率法对噪声较敏感,十一点曲率法能较好地估算出轮廓的曲率,并能简单提取出轮廓的角点与切点区域[1, 2]。本文提出利用最小二乘法拟合角点和切点区域的曲线,根据计算的斜率和曲率的特点能有效确定角点和切点。 1 图像预处理 被测刀具的图像如图1所示。CCD相机采集到刀具的彩色图像,将其转化为256色的灰度图像,如图1a 所示,采用最大方差阈值法将图像二值化。由于刀具表面存在油污,光线散射等原因,图像二值化后,在刀具部分有颗粒状噪声,而刀具以外有细小孔洞存在,所以在提取轮廓前,采用形态学算子滤波。在图像形态学中,最基本的运算是腐蚀和膨胀运算,通过腐蚀和膨胀可以构成开运算与闭运算。开闭运算都能够平滑边缘,其中开运算能够消除细小物体,闭运算能够填充物体孔洞。本文采用方形结构元素,对图像先闭运算后开运算,有效地滤除了图像的细小孔洞和噪声,而刀具的结构和面积基本保持不变。图1b所示为 收稿日期:2003 ? 07 ? 24 作者简介:侯学智(1980 ? ),男,硕士生,主要从事工业测控技术方面的研究.

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

医学图像分割方法汇总

医学图像分割方法汇总 本文主要介绍在医学图像分割方面的几种典型算法,详细介绍每种算法的工作原理,通过对具体的医学图像实验来对比每种方法在分割方面的优点和缺点,分析结果产生的原因,从而在后面的实际应用中选择最合适的算法。 1阈值法分割 1-1 简单阈值分割 简单的阈值处理是图像分割中最为简单基础的一种分割方法。对于一副灰度图像,使用给定的阈值。图像中的像素超过这个阈值的一律设置为最大值(对于八位灰度图像,最大值一般为255),像素小于这个阈值的设置为0.下图1.2是利用五个不同的阈值对脑部图像(图 1.1)的分割结果。(从上到下,从左到右一次使用的阈值分别为最大值的0.1,0.3,0.5,0.7,0.9倍)。 图1.1原始脑部图像

图1.2 使用不同阈值分割后的结果 从实验结果来看,使用简单的阈值分割,过程十分简便,原理简单易懂,但是要是得到比较好的分割结果需要进行多次试验。 1-2 otsu阈值分割法 Otsu阈值分割法又称大津阈值分割法。它的原理是对图像所有的像素围进行遍历(对8位灰度图像来说呢,就是从0遍历到255),找出合适的T(阈值),把原始图像分割成前景图像和背景图像并且两者之间的类方差最大。 原理: 对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均灰度记为μ,类间方差记为g。 假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:ω0=N0/ M×N (1)

静态图像人体轮廓提取方法的研究

静态图像人体轮廓提取方法的研究 静态图像人体轮廓提取是指从静态图像中将人体轮廓分割出来,它在计算机视觉中的人体行为识别、背景分割与替换等多个方面都有着广泛的应用。静态图像人体轮廓提取面临着巨大的挑战,包括人体姿态的多样性,衣着的各异性,光线的变化以及复杂的背景等多个方面。 近年来,随着深度学习的快速发展,图像处理领域中基于传统特征提取的方法逐渐被深度学习所取代,而卷积神经网络在图像特征提取方面体现出了很大的优势。因此,采用卷积神经网络进行人体轮廓提取具有重要意义。 本文的主要研究内容如下:1.针对传统特征提取无法精准分割人体轮廓的问题,采用一种基于深度学习的人体轮廓提取方法。该方法设计了特定的卷积神经网络结构,在模型中引入了全卷积神经网络,反卷积与网络中网络的相关技术,实现了对静态图像在像素级别的人体轮廓提取。 2.为了提高模型的性能,在本文所构建卷积神经网络的基础上提出了一种改进方法,将原始图像经过Gabor滤波器进行预处理后再传入卷积神经网络,利用Gabor特征与卷积神经网络相结合实现了更精确的人体轮廓提取。 3.分别借助VOC2012数据集和百度人体分割数据集来验证本文所提出方法的有效性。 并将改进后的模型应用于具有隐私保护功能的视频监控系统,选择CAVIAR 视频监控数据集中的视频进行测试,并对结果进行分析。实验结果表明:(1)基于卷积神经网络的人体轮廓提取方法实现了对人体轮廓的快速有效分割,体现了利用深度学习进行实验的可行性;(2)改进后的模型在VOC2012数据集上的吻合度测试结果比原始模型提高了 10.96%;(3)在百度数据集上的测试结果表明该改进方法相比于其他现有方法,在准确度和处理速度等方面都能体现出合理性和有效

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

图像轮廓提取

OpenCV笔记9:提取并显示图像轮廓 01#include 02#include 03#include 04#include 05void main() 06{ 07int i=0; 08int mode=CV_RETR_CCOMP; //提取轮廓的模式 09int contoursNum=0; //提取轮廓的数目 10CvScalar externalColor; 11CvScalar holeColor; 12CvMemStorage*storage=cvCreateMemStorage(0); //提取轮廓需要的储存容量0为默认64KB 13CvSeq*pcontour=0; //提取轮廓的序列指针 14IplImage*pImg=NULL; 15IplImage*pContourImg=NULL; 16IplImage*src=cvLoadImage("pic3.png",-1); 17pImg=cvCreateImage(cvGetSize(src),src->depth,1); 18pContourImg=cvCreateImage(cvGetSize(pImg),IPL_DEPTH_8U,3); 19cvCvtColor(src,pImg,CV_RGB2GRAY); //将图像转换为灰度 20cvNamedWindow("src",CV_WINDOW_AUTOSIZE); 21cvNamedWindow("pcontour",CV_WINDOW_AUTOSIZE); 22cvShowImage("src",src); 23cvThreshold(pImg,pImg,180,255,CV_THRESH_BINARY); //二值化 24//--------------查找轮廓---------------- 25mode=CV_RETR_LIST; 26 contoursNum=cvFindContours(pImg,storage,&pcontour,sizeof(CvContour),mode,CV_CHAIN_APPRO X_NONE); 27cout<h_next) 30{ 31holeColor=CV_RGB(rand()&255,rand()&255,rand()&255); 32externalColor=CV_RGB(rand()&255,rand()&255,rand()&255); 33cvDrawContours(pContourImg,pcontour,externalColor,holeColor,1,2,8); 34} 35cvShowImage("pcontour",pContourImg); 36cvWaitKey(0); 37cvReleaseImage(&src); 38cvReleaseImage(&pImg); 39cvReleaseImage(&pContourImg); 40}

医学图像的分割

第六章医学图像分割 医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。 第一节医学图像分割的意义、概念、分类和研究现状 医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。 所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。一般说来,有意义的图像分割结果中至少存在一个包含感兴趣目标的区域。

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

一种医学图像的轮廓提取方法

—218 — ·图形图 36卷 第5期 ol.36 No.5 2010年3月 March 2010 像处理· 文章编号:1000—3428(2010)05—0218—03 文献标识码:A 中图分类号:TP391 一种医学图像的轮廓提取方法 罗三定,王建军 (中南大学信息科学与工程学院,长沙 410083) 摘 要:针对医学图像的模糊性和灰度不均导致目标轮廓难以准确提取的问题,提出使用改进的遗传算法控制主动轮廓模型完成边界提取的方法。采用保优算子保留遗传性状,选择适当的交叉算子,在进化后期可实现由整体寻优到局部寻优的转变。实验结果证明,该方法在提取目标轮廓时抗模糊能力强、鲁棒性好。 关键词:主动轮廓模型;轮廓提取;改进的遗传算法 Contour Extraction Method for Medical Images LUO San-ding, WANG Jian-jun (School of Information Science and Engineering, Central South University, Changsha 410083) 【Abstract 】Medical images with fuzzy and non-uniform characteristics make it difficult to accurately extract target contour, aiming at this problem, this paper adopts an improved genetic algorithm to make active contour model finish boundary extraction. It adopts prepotent operator to keep inheritance of quantitative characteristic and select proper crossover operator. In the anaphase stage of the improved genetic algorithm, it solves its changeover from global optimization to local optimization. Experimental results show that it is anti-fuzzy with good robustness in extracting contour of targets. 【Key words 】active contour model; contour extraction; improved genetic algorithm 计 算 机 工 程 Computer Engineering 第V 1 概述 医学图像由于其成像方式及特定环境的原因,具有模糊和不均匀的特点,主要体现为在同一组织中密度值和均匀度出现大幅度的变化。医学图像的几何性状较为模糊,在感兴趣区域的边界位置、拐角以及凸出点难以精确描述,边缘无法明确确定,这在很大程度上影响了图像的分割。在计算机视觉系统中,医学图像分割的方法主要分为阈值分割方法、区域生长法、结合特定理论工具的方法和基于主动轮廓模型的方法。 阈值分割法是处理分离目标与背景的最常见的图像处理方法,采用单一的全局阈值难以正确完成感兴趣区域的分割。基于直方图法的全局阈值分割是图像分割[1]的常用方法,直方图反映了图像全局的灰度分布,在目标和背景的灰度有明显差别时效果较好。局部阈值分割法是在局部范围内求取各子块的最佳阈值,经典OTSU 法的阈值求取计算量较大,不能很好地处理部分灰度均匀的区域,且区域划分大小难以 确定。 文献[2]的区域生长法根据预定义的标准,提取图像中相互连通的区域。该方法一般应用于序列图像处理过程,描绘面积小且拓扑结构简单的区域,但在提取每个区域的过程中,必须人工相应给出一个种子点。这种方法对噪声很敏感,可能会产生孔状或不连续的区域;局部影响较大的地方也可能会使原本应该连通的区域分离开来。 结合特定理论工具的分割方法有模式识别、模糊技术等。模式识别虽有较高的效率,但需要人工交互的方式获得训练数据,对大量的图像数据使用相同的训练样本而没有考虑不同的物理特性可能导致结果不准确。模糊技术的方法不考虑空间建模,对噪声和非同质的灰度很敏感[3]。 基于主动轮廓模型的方法[4]的特点是将图像数据、初始轮廓、收敛轮廓和基于先验知识的约束条件统一于特征提取的过程中。 本文对医学图像的特征进行研究分析后,采用改进的遗传算法作为外部约束力,控制曲线在能量最小化的作用下收敛,直至提取目标边缘。 2 Snake 模型 主动轮廓模型又称为Snake 模型,主要思想是定义一条初始能量函数曲线,将其初始化在待分割轮廓周围,在能量函数的极小值条件约束下,经过不断地演化曲线,最终收敛到图像轮廓[4-5]。 Snake 模型定义为 [][]()(),(); 0,1v s x s y s s =∈ (1) 它由一组控制点组成,这些点首尾相连构成轮廓线。其中()x s 和表示每个控制点在图像中的坐标位置,()y s s 是以傅里叶变换形式描述边界的自变量。 在控制点上定义的能量函数为 2221 image total 20()()()()(())d E s v s s v s E v s s s αβs ?????? =+ +∫???????? (2)

图像特征提取总结

图像常见xx方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点: 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。 一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。 由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的xx与匹配方法 (1)颜色直方图 其优点在于: 它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于: 它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间: RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:

直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。 在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于: 图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是: 将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点: 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行

医学图像分割方法综述

医学图像分割方法综述 随着计算机技术的发展,图像分割在很多领域都得到发展并被广泛应用,在医学临床上的应用更是越来越明显和重要。找到合适的医学图像分割方法对临床诊断和治疗都具有重大意义。文章针对近年来提出的图像分割方法进行了总结。 标签:图像分割;区域生长;聚类;水平集;图割 1 概述 图像分割是图像处理和计算机视觉领域的基础。分割结果直接影响着后续任务的有效性和效率[1]。图像分割的目的就是把目标从背景中提取出来,分割过程主要基于图像的固有特征,如灰度、纹理、对比度、亮度、彩色特征等将图像分成具有各自特性的同质区域[2]。医学图像分割是医学图像进行后续操作的必要前提,学者通过大量的研究得到了很多自动快速的分割方法。 2 图像分割方法分类 医学图像有各种成像模态,比如CT、MRI、PET、超声等。由于医学图像本身的复杂性和多样性,如灰度不均匀、低分辨率、弱边界和严重的噪声,准确分割是个相当棘手的问题,分割过程中在目标区域里出现的一些问题都将导致图像分割结果不准确。近年来,众多图像分割方法中没有任何一种算法能适用于所有图像。图像分割方法一般是基于图像的,即利用图像梯度、亮度或者纹理等就能从图像中获得信息进而对图像进行分割,主要有聚类法、区域生长、水平集、图割等算法。 2.1 聚类法 聚类算法简单的包括K-Means算法和Fuzzy C-Means(FCM)。 K-Means算法是基于距离的硬聚类算法,通常采用误差平方和函数作为优化的目标函数,定义误差平方和函数如下: 其中,K代表聚类的个数,Cj(j=1,2,…,K)表示聚类的第j类簇,x 表示类簇Cj中的任意一个数据对象,mi表示簇Ci的均值。从公式中看出,J是数据样本与簇中心差异度平方的总和,K个类聚类中心点决定了J值的大小。显然,J越小表明聚类效果越好。 K-Means算法的核心思想为:给定一组含有n个数据对象的数据集,从其中隨机选取K个数据对象作为初始中心,然后计算剩余的所有数据对象到各个初始中心之间的距离,根据最近邻原则,把所有数据对象都划分到离它最近的那个初始中心的那一类簇,再分别计算这些新生成的各个类簇中数据对象的均值,以此作为新类簇的中心,比较新的中心和初始中心的误差平方和函数J的大小,上

图像特征提取及识别过程

摘要 纹理特征是一种重要的视觉线索,是图像中普遍存在而又难以描述的特征。纹理分类与分割是图像处理领域一个经久不衰的热点研究领域,纹理特征提取作为纹理分类与分割的首要问题,一直是人们关注的焦点,各种纹理特征提取方法层出不穷。 本文在广泛文献调研的基础上,回顾了纹理特征提取方法的发展历程,分析了其研究现状,对纹理特征提取方法进行了较为全面的综述和分类,最后重点研究了基于灰度共生矩阵的图像纹理提取方法,研究如何有效地提取图像纹理特征来对图像进行描述,通过特征值来对图像进行识别。 灰度共生矩阵是一种简单有效的图像纹理特征描述方法,该方法的优势在于:它能利用了图像中像素相对位置的空间信息更加准确地描述图像的纹理,本文就是利用图像灰度共生矩阵的这一特性,从该矩阵中提取相应的统计参量作为纹理特征来实现对图像的识别。 关键字:灰度共生矩阵,纹理特征提取,图像识别

ABSTRACT Texture is a kind of important visual clues in images , it is widespread but cannot easy to be described . Texture classification and segmentation is a enduring popular research field in image processing area. Texture feature extraction has been the focus of attention,due to its priority to texture classification and image segmentation. all sorts of texture feature extraction methods has been emerged in endlessly. On the basis of extensive literature investigation, we review the texture feature extraction methods, analyze the development of the research status of the texture feature extraction methods and make a comprehensive review of its classification . Finally ,based on gray symbiotic matrix image problem extraction methods,we research how to effectively extract image texture feature described by the image characteristic value to image recognition. Graylevel co-occurrence matrix is a simple and effective image texture description method.This method's advantage is: it can use the image pixels relative positions of the spatial information more to accurately describe the texture image.This paper use the graylevel co-occurrence matrix of the properties to extract statistics from the matrix corresponding as texture feature parameters to realize image recognition. KEY WORDS: graylevel co-occurrence matrix, texture feature extraction, image recognition

相关文档
最新文档