润滑油加氢脱蜡技术进展

润滑油加氢脱蜡技术进展
润滑油加氢脱蜡技术进展

润滑油生产工艺

润滑油生产工艺 第一步溶剂脱蜡 为使润滑油在低温条件下保持良好的流动性,必须将其中易于凝固的蜡除去,这一工艺叫脱蜡。脱蜡工艺不仅可以降低润滑油的凝点,同时也可以得到蜡。所谓蜡就是在常温下(15℃)成固体的那些烃类化合物,其中主体是正构烷烃和带有长侧链的环状烃,C16以上的正构烷烃在常温下都是固体。 脱蜡的方法很多,目前常用的办法是冷榨脱蜡、溶剂脱蜡和尿素脱蜡。 第二步丙烷脱沥青 这种方法就是用丙烷把渣油中的烃类提取出来,即利用液态丙烷在临界温度附近对沥青的溶解度很小,而对油(烷烃、环烷烃、少芳香烃)溶解度大的特性来使油和沥青分开。丙烷的临界温度为96.81℃,临界压力为4.2MPa。 所谓临界温度,即是把液体加热到这一温度以上时,外界压力无论增大到多大也不再能阻止液体沸腾转变成蒸汽,与临界温度相对应的外界压力就叫做临界压力。在丙烷的临界温度以下接近临界温度的区域内,液体丙烷对油和沥青的溶解能力均随温度的升高而降低。但是,对沥青的溶解能力降低得很快,而对油的溶解能力降低得很慢。因此,在这一温度范围内的某一温度下,油在丙烷中的溶解度远远大于沥青的溶解度。 经过丙烷处理得到的脱沥青油和其它馏分油一样,要进行精制和脱蜡。 第三步白土精制 经过溶剂精制和脱蜡后的油品,其质量已基本上达到要求,但一般总会含少量未分离掉的溶剂、水分以及回收溶剂时加热产生的某些大分子缩合物、胶质和不稳定化合物,还可能从加工设备中带出一些铁屑之类的机械杂质。为了将这些杂质去掉,进一步改善润滑油的颜色,提高安定性,降低残炭,还需要一次补充精制。常用的补充精制方法是白土处理。 白土精制是利用活性白土的吸附能力,使各类杂质吸附在活性白土上,然后滤去白土除去所有杂质。方法是在油品中加入少量(一般为百分之几)预先烘干的活性白土,边搅拌边加热,使油品与白土充分混合,杂质即完全吸附在白土上,然后用细滤纸(布)过滤,除去白土和机械杂质,即可得到精制后的基础油。 第四步加氢精制 (1)加氢补充精制:

润滑油基础油加氢异构脱蜡研究进展_凌昊

综述专论 化工科技,2007,15(1):59~63 SCIEN CE &T ECHN O LO GY IN CHEM ICA L I ND US T RY 收稿日期:2006-10-20作者简介:凌 昊(1972-),男,安徽蚌埠人,华东理工大学副教授,博士,从事化学工艺和油气储运工程专业的教学和科研工作。 润滑油基础油加氢异构脱蜡研究进展 凌 昊1,沈本贤1,周敏建2 (1.华东理工大学石油加工研究所,上海200237;2.江西省景德镇市焦化煤气总厂,江西景德镇333000) 摘 要:分析和对比了国内外润滑油基础油加氢异构脱蜡催化剂的特点和主要组成,概述了加氢异构脱蜡的反应机理,并指出了今后催化剂和工艺的发展方向。 关键词:润滑油基础油;加氢异构;脱蜡 中图分类号:T E 626.3 文献标识码:A 文章编号:1008-0511(2007)01-0059-05 加氢异构脱蜡法生产的润滑油基础油有较高的链烷烃含量和较低的S 、N 含量而具有较高的抗氧化安定性、较低的挥发性、较高的粘度指数(VI )和优异的低温流动性质,从而表现出良好的使用性能和环保优势[1~6]。润滑油基础油加氢异构脱蜡技术的关键是需要有一种高选择性的异构脱蜡催化剂,通常在双功能催化剂上进行着异构化及加氢裂化反应 [7] 。目前用加氢法生产润滑油 的工艺有:Mo bil 公司的M WI 工艺、Chevron 公司的IDW 工艺、Shell 公司的XHVI 工艺、Exx on 公司的两段加氢异构化工艺、Ly ondell 公司的WAX ISOM 工艺以及国内石油化工科学研究院的RIW 工艺和抚顺石油化工研究院的FIDW 工艺[8,9]。这些工艺中以Chevron 公司技术进行生产的工业装置最多,最具有代表性。中国润滑油加氢异构工艺技术研究和应用起步较晚,中国石油大庆炼化公司引进Chev ron 公司的IDW 工艺,建设了一套200kt /a 的加氢异构脱蜡装置于1999年10月投产成功。高桥分公司目前建成的300kt /a 润滑油加氢装置引进Chev ron 公司的润滑油异构脱蜡专利技术,也采用加氢裂化配异构脱蜡/加氢后精制的工艺流程于2004年11月投产成功。笔者将对润滑油加氢异构催化剂和加氢异构脱蜡反应机理的研究进展情况做一概述。 1 催化剂 目前,国外润滑油加氢异构脱蜡催化剂开发 最成功的有Chev ro n 公司和M obil 公司;国内有北京石油化工科学研究院(RIPP )开发成功RIDW 异构脱蜡催化剂和抚顺石油化工研究院(FRIPP )开发成功FIDW 异构脱蜡催化剂[10] 。1.1 Chevron 的ICR 系列催化剂 Chevro n 公司自1985年首先发明润滑油异构脱蜡催化剂,其后公布了大量的异构脱蜡催化剂的专利。第一代异构脱蜡催化剂ICR -404首先 在该公司的Richmo nd 润滑油厂工业应用。第二代催化剂IC R -408也已工业应用。第三代催化剂 IC R -410已于2006年工业应用。其催化剂主要成分是SA PO -11,SM -3,SSZ -32,ZSM -23,ZSM -22,ZSM -35和ZSM -48中的一种或者几种混合 物[11~15]。其活性金属采用Pt 和Pd 以及含有Mo ,Ni ,V ,Co ,Zn 等金属助剂。金属负载量约占分子筛质量分数的0.2%~1%。负载金属的目的是为了降低催化剂的酸性中心数以降低催化剂的裂化/异构比。异构脱蜡的反应条件据反应的原料和期望得到的倾点、VI 和收率而定。通常来说,反应温度控制在200~475℃。反应压力控制在690kPa ~10.3M Pa 。空速控制在(0.1~1.0)h -1。低温和低空速条件下产物的异构程度提高、裂化程度降低,产物收率增加。氢气用量控制在(1000~10000)SCF /bbl ,尾氢净化后循环使用。加氢异构产物通过蒸馏的方法切割成轻质润滑油和重质润滑油组分,部分重质产物的最高VI 可达150。

国内外渣油加氢工艺区别(DOC)

文/李立权中石化洛阳工程有限公司 渣油加氢技术包含固定床渣油加氢处理、切换床渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。随着原油的重质化及劣质化、分子炼油技术的发展、环境保护要求的日益严格、市场对轻质油品需求、石油产品清洁化和石化企业面临的激烈竞争,各种渣油加氢技术将快速发展。 1国内外渣油加氢工程化技术应用现状 我国渣油加氢工程化技术起步较晚,1999年12月我国开发的首套2.0Mt/a固定床渣油加氢技术实现了工程化;2000年1月世界首套上流式渣油加氢反应器在我国某企业1.5Mt/a渣油加氢装置改造工程中实现工程化;2004年8月我国开发的50kt/a悬浮床渣油加氢技术进行了工业示范;2014年2月我国开发的50kt/a沸腾床渣油加氢工业示范装置建成中交;2014年45kt/a油煤共炼的重油加氢装置建成;目前引进的一套2.5Mt/a沸腾床渣油加氢装置正在建设中。截止到2011年底我国投产的渣油加氢装置处理能力仅13.35Mt/a,而2012—2014年10月投产的渣油加氢装置处理能力就达到了19.3Mt/a;正在规划、设计和建设的渣油加氢装置处理能力超过30Mt/a。 中国石油化工股份有限公司石油化工科学研究院(RIPP)开发的固定床渣油加氢处理重油催化裂化双向组合RICP技术2006年工程化应用,将RFCC装置自身回炼的重循环油(HCO)改为输送到渣油加氢装置作为渣油加氢进料稀释油,和渣油一起加氢处理后再一同回到RFCC装置进行转化,同时有利于渣油加氢和催化裂化装置,工艺流程示意见图1。

废润滑油加氢精制原理

废润滑油加氢精制原理 在高温高压及催化剂的作用下,废润滑油中的各类化合物与氢反应,不同的化合物有不同的反应机理。 1.存在于废润滑油中的含氧化合物 废油中可能存在各种各样的氧化产物,主要是羧酸类、羧酸酯类、醛类、酮类、醇类、酚类、过氧化物类等,废油中也还能有残存的酚型添加剂。 含氧化合物是最容易加氢的,一般很快反应生成相应的烃及水,同时还伴随着脱烷基、异构化、缩合、开环等反应。举例: (1)环烷羧类 R COOH +nH2 R CH 3 +2H20 R +2H2O+CH4 缩合反应不知结构的化合物 (2)酚类 OH R +nH2 OH R R OH R R R R R R R R R OH R R R 异构 化及 开环 反应 2.存在于废润滑油中的含硫化合物 废润滑油中的含硫化合物有的是新润滑油基础油中原来有的,有的是作为添加剂加进来的,有的则是被污染带来的。 含硫化合物存在较多的可能是噻吩类及氢化噻吩类,以及少量的硫化物、二硫化

物,还有来自添加剂的硫代磷酸盐、硫化烯烃、硫磷化烯烃等。 含硫化合物的加氢一般比含氧化合物难一些,但不同结构的含硫化合物,反应难也不同。硫化物、二硫化物在缓和加氢的含硫化合物,反应难也不同。硫化物、二硫化物在缓和加氢的条件下就迅速反应,生成相应的烃及硫化氢;环状硫化物如氢化噻吩加氢就要难一些,因为它先要开环,再生成烃及硫化氢。噻吩类则更困难一些,首先是环的饱和,然后再开环,然后才是生产烃及硫化氢。 (1)硫化物 R R' S+2H2R.H+R'.H+H2S (2)二硫化物类 R R' S+3H2R.H+R'.H+2H2S S (3)氢化噻吩类 s R H2 C4H9R +H2S (4)噻吩类 S R S R H2H 2C 4 H9R +H2S R H2H2 R C2H5 + H2S R S H2 S R + H2S S S 含硫化合物也能与加氢催化剂中的金属或金属氧化物反应,生成金属的硫化物,其效应有时是使催化剂的活性下降或中毒。 3.废润滑油中的卤素化合物 废油中的卤素化合物主要是氯烃,它来自作为绝缘油的氯烃以及作为润滑油添加剂的氯烃,也可能来自污染物。氯烃加氢时生成氯化氢及相应的烃,加氢的难易程度与含硫化合物差不多,但由于要求彻底脱除卤烃,所以选用的条件还是比较苛刻的。

润滑油生产装置简介

润滑油生产装置简介和重点部位及设备 (一)装置发展 我国润滑油生产在20世纪50年代中期即开始采用溶剂脱蜡工艺。60年代溶剂脱蜡单装置规模达到300—400kt/a。70年代由单一脱蜡工艺发展为脱蜡脱油联合工艺,在一套装置上,同时生产脱油蜡和石蜡。在脱蜡溶剂上,由丙酮—苯—甲苯混合溶剂逐渐全部改为甲乙酮—甲苯混合溶剂。并陆续采用了结晶过程多点稀释、滤液循环以及溶剂多效蒸发回收等工艺技术。 进入20世纪90年代,全球润滑油生产能力不断扩大,而需求量趋于稳定,其消耗量一直维持在3600~3900X104t之间,这就促使润滑油产品不断更新换代和基础油质量的不断提高。在润滑油脱蜡生产工艺上,随着加氢异构化技术的发展与运用,异构化脱蜡生产工艺在大庆炼化公司、兰州炼油厂等石化厂逐步得到运用,用以生产Ⅱ、Ⅲ类润滑油基础油。目前我国主要的润滑油生产工艺还是“老三套”。 (二)单元组成与工艺流程 1.组成单元 溶剂脱蜡由四个系统组成;结晶系统、制冷系统、过滤系统(包括真空密闭系统)、溶剂回收(包括溶剂干燥)系统。其相互关系如图2—22所示。

2.工艺流程 典型原则工艺流程见图2—23、图2—24。 工艺流程说明如下: (1)结晶系统 结晶系统的流程为:原料油与预稀释溶剂(重质原料时用,轻质原料时不用)混合后,经水冷却后进人换冷套管与冷滤液换冷,使混合溶液冷却到冷点,在此点加入经预冷过的一次稀释溶剂,进入氨冷套管进行氨冷。在一次氨冷套管出口处加人过滤机高部真空滤液或二段过滤的滤液做二次稀释,再经过二次氨冷套管进行氨冷,使温度达到工艺指标。在二次氨冷套管出口处再加人经过氨冷却的三次稀释溶剂,进人过滤机进料罐。

渣油加氢工艺标准说明

第一节工艺技术路线及特点 一、工艺技术路线 300×104t/a渣油加氢脱硫装置采用CLG公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h、柴油产品硫含量不大于500ppm、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V 不大于15ppm的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。

润滑油技术现状及发展趋势

润滑油技术现状及发展趋势.txt当你以为自己一无所有时,你至少还有时间,时间能抚平一 切创伤,所以请不要流泪。能满足的期待,才值得期待;能实现的期望,才有价值。保持青春的秘诀,是有一颗不安分的心。不是生活决定何种品位,而是品位决定何种生活。润滑油技术现状及发展趋势 一、润滑油技术现状 1我国润滑油现状 润滑油加氢技术经过几十年的发展,一方面如加氢处理、加氢补充精制、临氢降凝等技术已成熟并有新的进步,另一方面异构降凝等新技术日益得到应用。采用加氢新技术生产的基础油质量已接近或达到PAO合成润滑油的性能而占有明显的价格优势,为适应汽车工业与其他工业技术高速发展与更新换代打下牢固的基础。因此加氢工艺在润滑油生产中将起到巨大的作用。 石油化工科学研究院RIPP根据原油组成的不同,开发出一系列润滑油加氢新工艺,为我国炼油企业生产优质的润滑油基础油提供了强有力的技术支持。 对于润滑油高压加氢工艺,环烷基原油是世界各类原油中最高贵的资源之一,其储量仅占原油总储量的2.2%。目前世界上只有美国、委内瑞拉和中国拥有环烷基原油资源。因此如何更加合理利用有限的环烷基原油资源,是炼油界关心的重要课题之一。从环烷基原油的特点看, 其润滑油馏分的化学组成以环烷烃、芳烃为主,直链石蜡烃少,凝点较低,是生产电气用油、 冷冻机油的良好原料,同时也适宜于生产白油、化妆品用油以及特殊工艺用油。针对石蜡烃含量少的环烷基原料的特点,采用催化脱蜡技术生产高质量的环烷基润滑油有利于资源的合理配制,具有很好的经济效益与社会效益。 克拉玛依石化厂采用RIPP开发的全氢型高压加氢组合工艺,建成了30万吨/年润滑油高压加氢装置,2000年10月高压加氢装置投入运转。表1、2是工厂加工的原料油与所得基础 油的性质,从性质可以看出,在生产期间,各线主产品颜色水白,低温流动性好,各项指标都达到要求。 表1原料油性质原料油运动粘度mm2/s粘度指数凝点C氮含量卩g/g 100 C 40 C 减二线油一64.49 —-21 516 减三线油12.6 264.3 -43 -20 1065 轻脱沥青油57.8 2295 50 -8 1862 表2加氢后各线润滑油基础油的性质原料油运动粘度mm2/s粘度指数倾点°C硫含量卩g/g氮含量卩g/g色度号紫外吸收度260nm 100 C 40 C 减二线油48.28 5.725 —-36 18减三线油177.4 10.99 —-21 9轻脱沥青油475.4 29.71 90 -21 17 〈5 〈0.5 —〈5 〈 0.5 0.12 〈5 〈 0.5 —

国内外废润滑油的再生工艺技术

龙源期刊网 https://www.360docs.net/doc/ce10148054.html, 国内外废润滑油的再生工艺技术 作者:蔡茂 来源:《中国化工贸易·中旬刊》2018年第08期 摘要:润滑油在机械行业制造领域中的应用十分广泛,然而润滑油在使用一段时间后, 由于性能指标降低,所以会形成废油,如果直接将其进行处理,不仅会造成大量的资源浪费,同时也会对生态环境造成严重影响。因此,废润滑油再生工艺的研究成为了机械制造领域的重点,需要相关业内人士提供高度重视。文章重点就国内外废润滑油的再生工艺技术进行研究分析,以供参考和借鉴。 关键词:国内外;废润滑油;再生工艺;技术 对于机械制造而言,其发动机传动系统的正常有序运行离不开润滑油,而润滑油在工作一段时间后会发生质变,特别是在冷却、传动和热处理装置中使用的润滑油,其质变的速度更快,如此会导致润滑油的性能有所降低,最终形成废润滑油。而废润滑油的再生工艺技术主要是将其进行回收处理,最终进行二次利用,一方面缓解当下世界的能源危机,另一方面也对环境保护起到一定的积极性效果。 1 国内废润滑油再生工艺技术研究 1.1 蒸馏-酸洗-白土精制工艺 现阶段,我国大部分企业都是采用蒸馏-酸洗-白土精制工艺进行废润滑油的再生处理。相对比其它工艺技术,该技术主要原料是酸和白土,所以成本投入较低,加之处理工艺相对简便、对设备依赖性较低、适用于多种废润滑油的处理,所以其成为主流的工艺再生技术。蒸馏-酸洗-白土精制工艺进行废润滑油处理主要应用的是硫酸,而硫酸加入量的多少主要取决于废润滑油的废弃程度,同时对于白土的添加量也需要根据废潤滑油的要求而定。尽管蒸馏-酸洗-白土精制工艺具有多种优势,但是也不可避免的存在一些不足,例如该工艺进行废润滑油处理的再生利用率较低,同时再生的润滑油在质量和性能方面指标较差。另外,由于蒸馏-酸洗-白土精制工艺涉及到硫酸和白土的大量使用,所以为后续的处理提出了更高的要求,一旦处理不到位,就会造成严重的生态环境污染。 1.2 沉降-蒸馏-酸洗-钙土精制工艺 相对比蒸馏-酸洗-白土精制工艺,沉降-蒸馏-酸洗-钙土精制工艺更加适用于当下的工业生产。该工艺的主要原理如下,即废润滑油经过硫酸酸化处理后,向体系中加入一定量的石灰粉进行中和反应,去除体系中的硫酸和石油磺酸等物质,不仅极大地提高了废润滑油的再生质量和性能,同时也更加的环保。另外,沉降-蒸馏-酸洗-钙土精制工艺中对于硫酸和白土的使用量较低,成本投入较少,所以应用前景十分广阔。

加氢 制造工艺过程

加氢反应器制造工艺设计 一:加氢反应器的设计背景 工程科学是关于工程实践的科学基础,现代过程装备与控制工程是工程科学的一个分支,因此,生产实习是工科学习的重要环节。在兰州兰石集团实习期间,对化工设备的发展前景和各种化工容器如反应釜、换热器、储罐、分液器和塔器等的有所了解和学习。生产实习的主要任务是学习化工设备的制造工艺和生产流程,将理论知识与生产实践相结合,理论应用于实际。因此,过程装备与检测的课程设计的设置是十分必要的。由于我们实习的加工车间正在进行加氢反应器的生产,而加氢反应器是石油化工行业的关键设备,其生产工艺和设计制造在化工设备中具有显著的代表性,为此,选择加氢反应器这一典型的化工设备作为课程设计的设计题目。 二:加氢反应器的主要设计参数 1:引用的主要标准及规范 国家质量技术监督局颁发的《压力容器安全技术监察规程》(99)版 GB150-1998 《钢制压力容器》 GB6654-1996 压力容器用钢板(含1、2号修改单) JB4708-2000 钢制压力容器焊接工艺评定 JB/T4709-2000 钢制压力容器焊接规程 JB4744-2000 钢制压力容器产品焊接试板的力学性能检验 JB/T4730-2005 承压设备无损检测 JB4726-2000 压力容器用碳素钢和低合金钢锻件 JB4728-2000 压力容器用不锈钢锻件 GB/4237-2007 不锈钢热轧钢板和钢带 GB/T3280-2007 不锈钢冷轧钢板和钢带 GB/T3077-1999 合金结构钢 GB/T14976-2002 流体输送用不锈钢无缝钢管 JB/T4711-2003 压力容器涂敷与运输包装 2 主要技术参数 表一 设计压力 5.75/0.1MPa 设计温度375/177℃ 最高工作压力 4.88MPa 最高工作温度343℃ 容器类别三类容器 容积78.2立方米 腐蚀裕量0 水压试验立式7.47/卧式7.55MPa 盛装介质石脑油、油气、氢气、硫化氢 主体材质15CrMoR 3 结构特点 该加氢精制反应器为板焊结构,其内径φ4000㎜,壁厚98㎜,由2节组成;封头内半径2022

加氢+润滑油

46、加氢催化剂的组成有哪些?各有什么作用? 答:(1)由活性组分、助剂和载体组成。 (2)加氢精制 活性组分:催化剂加氢活性的主要来源 助剂:改善催化剂活性、选择性、稳定性、机械强度等性能 担体:本身没有活性,但可提供适宜反应与扩散所需的孔结构,担载分散金属均匀的有效表面积和一定酸性,同时应提高催化剂的稳定性和机械强度,并保证 催化剂具有一定的形状和大小,使之符合工业反应器中流体力学条件的需 要,减少流体流动阻力。 加氢裂化 活性组分:催化剂加氢活性的主要来源 助剂:调变单体的性质,减弱主金属与单体之间,主金属与助金属之间的相互作用改善负载型催化剂的表面结构,提高金属的还原能力,促使还原为低价态, 以提高金属的加氢性能;另一目的是将助剂引入沸石,影响酸强度变化,改 善沸石裂化性能和耐氮性能。 担体:除具有赋予催化剂机械强度,帮助消散热量防止熔结,增加活性组分的表面,保持活性组分微小晶粒的隔离,以减少熔结和降低对毒物的敏感性的共性外, 还具有特殊作用。即还担负催化剂的裂解活性中心作用。 47、加氢精制催化剂和加氢裂化催化剂各有哪些类型? 答:加氢裂化催化剂:由金属加氢组分和酸性载体组成的双功能催化剂。催化剂加氢组要成分也是VIB族和VIII族元素的氧化物、硫化物或金属(Pt、Pd),载体具有酸 性和弱酸性两种,酸性为硅酸铝、硅酸镁、分子筛等,弱酸性为氧化铝及活性炭等。 加氢裂化催化剂也是负载型催化剂。 48、加氢裂化催化剂在使用时对载体有何要求? 答:(1)提供酸性中心 (2)提供催化剂的热稳定性 (3)提供合适的孔结构和增加有效表面积 (4)与活性组分作用形成新的化合物 49、加氢催化剂预硫化有何作用? 答:当催化剂加入反应器后,活性组分是以氧化物形态存在的。根据生产经验和理论研究,加氢催化剂的活性组分只有呈硫化物的形态,才有较高的活性。因此,加氢催 化剂使用之前必须进行预硫化。 58、为什么加氢裂化采用较大的氢油比? 答:在加氢系统中需要维持较高的氢分压,因为高氢分压对加氢反应在热力学上有利,同时也能抑制生成积炭的缩合反应;在加氢裂化过程中,热效应较大,氢耗量较大, 气体生成量也较大,所以为了保证足够的氢分压,需要采用较高的氢油比。 60、什么是两段加氢裂化?有何特点? 答:(1)两段加氢裂化的工艺流程中设置两个(组)反应器,在单个或一组反应器之间,反应产物要经过气-液分离或分馏装置将气体及轻质产品进行分离,重质的反应产物 和未能转化反应产物再进入第二个或第二组反应器 (2)特点:1)气体产率低,干气少,目的产品收率高,液体总收率高 2)产品质量好,特别是产品中芳烃含量非常低 3)氢耗较低 4)产品方案灵活性大

国外加氢裂化技术研究进展

(1)CLG公司加氢裂化技术。CLG公司是由Chevrn公司和ABB Lummus Golal公司合并资源共同组建的一家技术公司。在工艺技术方面,CLG公司在其原有的单段一次通过(SSOT)、单段循环(SSREC)和两段(TSR)加氢裂化工艺技术的基础上,近年来又推出了优化部分转化、分步进料、反序串联两段、ISOFLEX等加氢裂化新工艺。新开发的反序串联两段(SSRS)加氢裂化工艺技术将首次在我国大连西太平洋石化公司工业应用。在催化剂开发方面,CLG公司推出的新一代催化剂提高了活性、选择性和运行周期。CLG公司开发的异构脱蜡催化剂已发展到第3代,催化剂性能得到持续改进。其包括异构脱蜡在内的全氢法生产润滑油技术已在中国石油大庆炼化公司和中国石化上海高桥分公司成功工业应用。 (2)UOP公司加氢裂化技术。UOP公司是世界上加氢裂化技术的主要提供商。在加氢裂化工艺方面,UOP公司在其原有一段串联、单段、一次通过、平行进料、两段、HyCycle(反序串联两段)、APCU(先进部分转化)、LCO Unicracking(催化柴油加氢改质联产清洁汽油)等工艺技术的基础上,去年又开发出一种分步进料加工DAO、VGO和AGO、生产清洁油品的加氢裂化-加氢处理组合工艺技术和一种催化柴油加氢改质联产轻芳烃LCO-X组合工艺技术。加氢裂化-加氢处理组合工艺技术是UOP公司针对加拿大陆地Northe Lights公司特定需要而提出的。采用该组合工艺技术,可以在一套加氢装置上同时加工DAO、VGO和AGO进料。由于设备台数减少、氢气和反应热等得到充分合理利用,因此装置建设投资和操作费用可明显降低。LCO-X组合工艺是针对LCO改质和BTX生产需要而开发的。它由LCO Unicracking和芳烃分离两部分集合而成。对于联产芳烃的炼化企业,采用该工艺从低价值的LCO来增产BTX 轻芳烃,具有明显的竞争优势。 (3)Criterion催化剂公司加氢裂化技术。在工艺方面,Criterion催化剂公司主要开发一段串联加氢裂化工艺技术和SYN系列柴油加氢改质工艺技术。Criterion催化剂公司生产DN系列加氢裂化预处理催化剂,其主要牌号为DN310、DN3120和DN3300。Criterion催化剂公司生产的Z系列加氢裂化催化剂分为用于精制段反应器底部的脱氮-缓和裂化型、最大量生产馏分油型、灵活生产石脑油-馏分油型和选择性生产石脑油型等4大类。其中,用于精制段反应器底部的脱氮-缓和裂化型催化剂有Z-503和Z-513,最大量生产馏分油型催化剂有Z-603、Z-623和Z-673,灵活生产石脑油-馏分油型催化剂有Z-723、Z-3723、Z-5723、Z-733和Z-803,选择性生产石脑油型催化剂有Z-753、Z-853和Z-863。Criterion催化剂公司生产的加氢裂化催化剂已先后在中国石油锦西石化公司和独山子石化公司等企业工业应用。 (4)Haldor Topsoe公司加氢裂化技术。在工艺方面,Haldor Topsoe公司最近开发了SPC分段部分转化加氢裂化工艺技术,原料油全部进行加氢预处理,根据实际需求,部分加氢处理后的原料进行加氢裂化,产品分布和产品质量容易操控,氢耗能够得到有效控制,具有较高的生产灵活性。在催化剂方面,Haldor Topsoe公司近年开发了BRIMTM技术平台,并利用该技术平台,开发生产了新一代高活性加氢裂化预处理催化剂TK-605BBIMTM和缓和加氢裂化/蜡油加氢处理催化剂TK-558BRIMTM 和TK-559BRIMTM。除此之外,Haldor Topsoe公司还开发生产能够提高转化率并改善产品质量的TK-961、KT-962和TK-965缓和加氢裂化催化剂,以及可以用于单段、一段串联和两段加氢裂化装置、最大量生产中间馏分油的TK-925、TK-926和无定型加氢裂化催化剂和TK-931、TK-941、TK-951含微量分子筛型加氢裂化催化剂。(5)Albemarle公司加氢裂化技术。在催化剂方面,Albemarle公司生产的KF-848加氢裂化预处理催化剂享有较高声誉,至今仍在世界上广泛使用。该公司开发生产的NEBULA-20气相法加氢裂化预处理催化剂的加氢脱氮和加氢脱芳性能更是居于国

渣油加氢技术应用现状与发展

渣油加氢技术应用现状与发展 摘要:综述了国内外首套不同类型渣油加氢技术的特点及应用现状,介绍了待工程化的渣油加氢技术研发现状及工业示范试验进展。指出我国渣油加氢技术开发要从反应器类型、大型 化、一体化组合技术研究方向发展。 关键词:渣油加氢转化率现状分析 1 前言 渣油加氢技术包含固定床渣油加氢处理、切换床(活动床)渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。随着原油的重质化及劣质化、分子炼油技术的发展、环境保护要求的日益严格、市场对轻质油品需求、石油产品清洁化和石化企业面临的激烈竞争,各种渣油加氢技术将快速发展。 2 国内外已工程化渣油加氢技术应用现状 我国渣油加氢工程化技术起步较晚。1999年12月我国开发的首套2.0 Mt/a固定床渣油加氢技术实现工程化;2000年1月世界首套上流式渣油加氢反应器在我国某企业1.5 Mt/a 渣油加氢装置改造中实现工程化;2004年8月我国开发的50 kt/a悬浮床渣油加氢技术进行了工业示范;2014年2月我国开发的50 kt/a沸腾床渣油加氢工业示范装置建成中交;2014年45 kt/a油煤共炼的重油加氢装置建成;目前引进的一套2.5 Mt/a沸腾床渣油加氢装置正在建设中。2012~2014年10月投产的渣油加氢装置处理能力达到19.3 Mt/a,正在规划、设计和建设的渣油加氢处理能力超过30 Mt/a。 RIPP开发的固定床渣油加氢处理-重油催化裂化双向组合RICP技术于2006年工程化应用,将RFCC装置自身回炼的重循环油(HCO)改为输送到渣油加氢装置作为渣油加氢进料稀释油,和渣油一起加氢处理后再一同回到RFCC装置进行转化,同时有利于渣油加氢和催化裂化装置。 国外渣油加氢工程化技术起步较早。1963年首套沸腾床渣油加氢技术实现工程化;1967年着套固定床渣油加氢技术实现工程化;1977年首套可自动切换积垢催化剂床层的固定床渣油加氢技术实现工程化;1989年可更换催化剂的料斗式移动床+固定床渣油加氢技术实现工程化;1992年催化剂在线加入和排出的移动床+固定床渣油加氢技术实现工程化;1993年切换反应器的移动床+固定床渣油加氢技术实现工程化;2000年上流式反应器+固定床渣油加氢技术实现工程化。各种技术工业应用后都经过了不断的技术改进及完善,见下表1。 表1 首套渣油加氢技术应用特点及改进

年产10万吨苯加氢工艺设计

第一章工艺设计说明书 1.1概述 苯加氢项目包括生产设施和生产辅助设施,主要为:制氢、加氢、预蒸馏、萃取、油库、装卸台等。生产高纯苯、硝化级甲苯、二甲苯、非芳烃、溶剂油等。苯、甲苯、二甲苯(简称BTX)等同属于芳香烃,是重要的基本有机化工原料,由芳烃衍生的下游产品,广泛用于三大合成材料(合成塑料、合成纤维和合成橡胶)和有机原料及各种中间体的制造。纯苯是重要的化工原料,大量用于生产精细化工中间体和有机原料,如合成树脂、合成纤维、合成橡胶、染料、医药、农药。它还是重要的有机溶剂。我国纯苯的消费领域主要在化学工业,以苯为原料的化工产品主要有苯乙烯、苯酚、己内酰胺、尼龙66盐、氯化苯、硝基苯、烷基苯和顺酐等。在炼油行业中也会用作提高汽油辛烷值的掺和剂。甲苯是一种无色有芳香味的液体,除用于歧化生产苯和二甲苯外,其化工利用主要是生产甲苯二异氰酸脂、有机原料和少量中间体,此外作为溶剂还用于涂料、粘合剂、油墨和农药与大众息息相关的行业等方面。国际上其主要用途是提高汽油辛烷值或用于生产苯以及二甲苯,而在我国其主要用途是化工合成和溶剂,其下游主要产品是硝基甲苯、苯甲酸、间甲酚、甲苯二异氰酸酯等,还可生产很多农药和医药中间体。另外,甲苯具有优异的有机物溶解性能,是一种有广泛用途的有机溶剂。二甲苯在化工方面的应用主要是生产对苯二甲酸和苯酐,作为溶剂的消费量也很大。间二甲苯主要用于生产对苯二甲酸和间苯二腈。焦化粗苯主要含苯、甲苯、二甲苯等芳香烃,另外还有一些不饱和化合物、含硫化合物、含氧化合物及氮化合物等杂质。粗苯精制就是以粗苯为原料,经化学和物理等方法将上述杂质去除,以便得到可作原料使用的高纯度苯。近年来,国内许多钢铁企业的焦化项目纷纷上马,焦化粗苯的产量迅速增加,为粗苯加氢精制提供了丰富的原料。 1.1.1项目的来源 随着我国化工行业的快速发展,近年来苯下游产品产能增长较快,尤其是苯乙烯、苯酚、苯胺、环己酮等生产装置的大量建设,对苯、甲苯、二甲苯等重要的有机化工原料需求大增,而国内苯系列产品生产能力增长缓慢,不能满足市

润滑油加氢工艺研究

润滑油加氢工艺研究 摘要社会和经济的不断进步为市场润滑油的生产技术和工艺发展创造了一个良好的环境,传统的润滑油加氢工艺已经无法满足市场需求,高规格加氢工艺的市场逐渐拓展。本文陈述了润滑油的发展现状,阐述了润滑油加氢工艺流程,同时也对国内高压润滑油最新工艺做了一定的介绍,最后还提出了润滑油加氢工艺的发展策略。 关键词润滑油;加氢工艺;现状;流程;发展策略 在润滑油工艺方面,目前对社会经济发展造成严重阻碍的是高质量润滑油短缺问题。随着社会的发展进步,高质量润滑油的市场需求越来越大,许多大型油田的开采已经无法满足社会需求。通过加氢工艺提炼润滑油已经成为了解决这一难题的有效手段。加氢工艺的不断发展及其生产技术的不断进步有力地推动了市场的发展,并为社会环保事业添砖加瓦。 1 润滑油发展现状 社会经济的不断发展使得润滑油的市场需求不断增长,很多大型油田的开采已经无法满足社会需求。为了推动社会经济的发展,必须采取措施解决高质量润滑油短缺的问题,利用加氢工艺提炼润滑油就是解决这一问题的一个有效措施,这一措施已经开始全面实施。老三套润滑油企业为了生存和发展必须顺应大环境的变化改造润滑油高压加氢工艺,而国内一些新的润滑油基础油生产企业为了占领和开拓市场也选择采用高压加氢技术进行高品质润滑油基础油的生产。社会经济发展和社会环保事业的推进加速了润滑油加氢技术在环保高效方向的发展,促使国家润滑油加氢事业迅猛发展。“十二五”期间,国家确立发展现代工业为主要目标。这使得近几年润滑油取得了很多突破性的发展,如汽车工业的进步促进了润滑油的质量提升和发展,汽车行业的制造推动了润滑油的技术升级。从汽车发动机油的状况可以推断,高黏度指数、高氧化安定的发动机油将是未来汽车发动机质量发展的重要方向,调整添加剂成分及添加量大小已经无法再满足其发展趋势了。传统溶剂脱蜡技术工艺是一种传统的润滑油加氢工艺,其在制造和选材方面都存在局限性,不能有效改善发动机的长时间利用率,润滑油加氢工艺的进步和发展使得这种传统工艺逐渐被市场淘汰。石油作为一种人类社会目前必需的不可再生能源,在社会发展中占据了至关重要的地位,石油问题也是世界瞩目的一个问题,因为地球上的石油资源在很大程度上无法满足社会需求[1]。 2 润滑油加氢工艺流程 2.1 加氢处理 与传统的溶剂脱蜡技术工艺相比,加氢处理工艺具有的一个显著的优点就是其对原料的广泛适应性。加氢处理工艺能很大程度的实现对原油中的硫、氮、氧杂质化合物的分解和脱除,为此,其能适应更广泛的原料。目前,很多大型的炼

加氢裂化技术的新进展

加氢裂化技术的新进展 本文主要简单介绍了加氢裂化技术的各种工艺技术及其优缺点,针对目前加工的原油变重的情况以及煤焦油加氢裂化装置的不断上马,重点介绍渣油加氢处理技术,最后简单介绍神华煤直接液化装置工艺情况。认为固定床催化剂分级装填技术及沸腾床加氢技术取得了比较好的效果,值得推广。 标签:加氢裂化渣油加氢 引言 2014年国内石油消费量为5.08亿吨左右,国内石油产量为2.1亿吨左右,石油进口量约为2.98亿吨,对外依存度为58.66%,逼近59%。如今新环保法对油品质量要求越来越严格,而炼油原料油品越来越重(今年来很多炼厂为了提高效益多加工国外高含硫稠油,原油硫氮含量、金属含量高),来源越来越广泛(煤焦油、燃料油、页岩油、沥青砂甚至是褐煤等也用来作为炼油原料),炼油厂对加氢技术有着越来越广泛苛刻的要求。炼油企业为了应市场对油品质量的需求,增加企业利润,加工的原料油来源可能更加广泛,更加劣质,企业在改建、扩建或新建加工装置时,针对拟加工的原料,选取合理有效的工艺技术是很有必要的,既要考虑建设成本又要考虑生产维护成本及可能遇到的产品升级、原料变化、扩能环保等情况。 一、加氢裂化技术的发展 加氢裂化工艺的特点是产品灵活性大,产品质量好,在炼厂装置组成中占有重要地位,可以起到根据市场变化调节产品种类的作用。其生产的石脑油可作为汽油组份或作为催化重整原料生产BTX芳烃,可以生产喷气燃料和低硫柴油,也可以生产BMCI值低的尾油作乙烯裂解原料或润滑油原料。 加氢裂化技术渊源于上世纪30年代在德国应用的煤焦油加氢裂化,由于其操作条件苛刻(压力22.0MPa,温度400~420℃,室速0.64h-1)在二战后没有继续应用。 直到上世纪60年代,对汽油的需求增长很快,而当时催化裂化的转化率低,不能满足市场要求,加氢裂化技术才又受到重视,许多公司开发了有自己专利的加氢裂化技术,当时主要用于把CGO、LCO和VGO转化为汽油:如UOP公司的Lomax技术、Chevron公司的Isocracking技术、Union公司的Unicracking 技术、巴斯夫公司的DHC技术等。 随着FCC提升管技术和沸石催化剂的应用,FCC能大量生产高辛烷值汽油,同时市场上喷气燃料和柴油需求增长,所以自上世纪70年代以后,新建的加氢裂化装置都转向以VGO生产喷气燃料和柴油。上世纪80年代以来,加氢裂化除了多产中间馏分以外,又生产乙烯裂解原料或高粘度指数润滑油原料。

加氢裂化工艺技术特点和开发现状

加氢裂化工艺技术特点和开发现状 作者:段冲 来源:《科学导报·学术》2020年第43期 摘; 要:随着中国经济的发展,民航和陆地等交通也发展十分的迅速,中国对于石油的需求越来越大。加氢裂化工艺是提炼石油的重要步骤。加氢裂化工艺是一种以原料油为原材料,在高温,高压以及催化剂的条件下进行一系列的化学反应,进行加氢脱硫和裂解的一种转化过程。加氢裂化工艺是重质原料油进行轻质化以及清洁化的主要技术。本文主要对加氢裂化工艺的技术特点和开发现状做简要阐述。 关键词:加氢裂化工艺;技术特点;开发现状 加氢裂化是对重质馏分油深度加工的主要工艺,他不仅是生产轻质油的重要手段,同时也是化工企业的关键技术,其他工艺是不可替代的。加氢裂化这项技术可以解决我国大多数原油馏分少,质量差以及生产效率低的问题。加氢裂化技术已成为现代生产油品的主要手段。 一、加氢裂化工艺技术特点 1.1重质原油加工成轻质原油 加氢裂化工艺技术是在高温高压的作用下将重质原油加工成轻质原油。加氢裂化工艺技术在提炼过程中有很高的转化率,产品的回收率极高。由于加氢裂化工艺技术在制作工艺的要求上极其严格,而且成本很高,需要有极其先进的加工器械和技术,因此加氢裂化工艺技术并没有得到很大范围的推广应用。加氢裂化工艺技术也有很好的发展前景,在国际上都是一个需要重大攻破的工艺技术问题。 1.2加氢裂化工艺技术的环保性 加氢裂化工艺可以生产出许多清洁燃料和优质化工原料。加氢裂化工艺技术可以加工劣质原料油,可以提高产轻质油品的转化率。可以极大的满足清洁汽油,柴油,润滑油等基础油料的环保要求。将氢裂化工艺技术在满足提供能量的同时也具有很高的环保功能。这正是现代工业体系对加工技术的要求和标准。加氢裂化工艺技术可以对原料中的硫氮化合物进行转化,以达到回收的目的,极大的解决了环境污染问题。 1.3效率与灵活性 加氢裂化原料是种化学有机混合物,而加工反应的实质就是进行一系列化学变化。加氢裂化工艺技术轻产品中异构烷烃的含量高于热力学平衡含量。通过加氢裂化工艺技术和催化剂的

国外渣油加氢技术研究进展_张庆军 (1)

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2015年第34卷第8期 ·2988· 化 工 进 展 国外渣油加氢技术研究进展 张庆军,刘文洁,王鑫,蒋立敬,耿新国 (中国石油化工股份有限公司抚顺石油化工研究院,辽宁 抚顺 113001) 摘要:随着原油劣质化趋势的加剧及环保法规的日益严格,渣油加氢技术已成为炼厂提高轻油收率的关键技术。本文针对目前主要的渣油加氢技术,比较了固定床、沸腾床、悬浮床、移动床四大类型渣油加氢技术的优势和不足,重点分析了国外主要的渣油加氢技术的研究进展,探讨了未来的发展趋势。固定床加氢技术最成熟,在可预见的未来仍将占据渣油加氢的主导地位;沸腾床加氢技术日趋成熟,代表未来渣油加氢的发展方向;移动床加氢技术暂不作为渣油加氢的有效手段;悬浮床加氢技术尚未实现工业化应用,正在建设多套工业装置,具有良好的发展前景。渣油加氢技术与其他重油加工工艺进行优化集成,将会显著提高炼厂的经济效益。 关键词:加氢;固定床;沸腾床;移动床;悬浮床 中图分类号:TE 624.4+3 文献标志码:A 文章编号:1000–6613(2015)08–2988–15 DOI :10.16085/j.issn.1000-6613.2015.08.014 Research progress in hydroprocessing technology for imported residuum ZHANG Qingjun ,LIU Wenjie ,WANG Xin ,JIANG Lijing ,GENG Xinguo (Fushun Research Insitute of Petroleum and Petrochemicals ,SINOPEC ,Fushun 113001,Liaoning ,China ) Abstract :With the use of increasingly heavy crude oil and stricter environmental requirements ,residuum hydroprocessing technologies have become a key upgrading process to improve the yield of light oil in refineries. This paper focuses on the main residuum hydroprocessing technologies at present ,compares four types of processes ,including fixed bed ,ebullated bed ,slurry bed and moving bed ,and analyzes the present status and developing trend of main residuum hydroprocessing technologies abroad in detail. Fixed bed hydrotreating technology is the most mature one ,and it will continue to dominate in the foreseeable future. Ebullated bed hydrocracking technology is becoming mature ,which represents the future of hydrocracking technology. Moving bed hydrogenation technology isn’t an effective means temporarily. Slurry bed hydrocracking technology hasn’t realized its industrial application yet ,but several sets of it are under construction and have a good potential. Optimized and integrated with other heavy oil processing technology will improve economic benefits significantly. Key words :hydrogenation; fixedbed; ebullated bed; moving bed; slurry bed 全球常规石油资源储量为3×1012~4×1012bbl ,而非常规石油资源,包括重油、超重油和油砂沥青的储量接近 8×1012bbl [1]。随着原油重质化、劣质化趋势的加剧,市场对轻质油品需求的不断增加以及环保法规的日益严格,重油尤其是渣油的高效 转化和清洁利用成为世界炼油工业关注的焦点。 渣油加氢是解决重油深加工最合理也最有效的 方法[2-3]。 目前,世界上渣油加氢工艺类型有四大类,即固定床、沸腾床(又称膨胀床)、移动床和悬浮床(又称浆态床)渣油加氢,已工业化的有固定床、沸腾收稿日期:2014-11-02;修改稿日期:2015-01-07。 第一作者及联系人:张庆军(1983—),男,工程师,硕士,研究方向为渣油加氢工艺开发。E-mail zhangqingjun.fshy@https://www.360docs.net/doc/ce10148054.html, 。

相关文档
最新文档