第二章 宏观电磁场的基本规律

第二章 宏观电磁场的基本规律
第二章 宏观电磁场的基本规律

第二章 宏观电磁场的基本规律

内容提要:

1. 真空中的静电场

库仑定律:实验得出,点电荷1q 对点电荷2q 施加的力是 123

12

021124R R q q F

πε=

式中12R 是两个点电荷之间的距离,12R

是从1q 指向2q 的矢量。

将1q 视为试探电荷,其上所受的力为12F

,则定义电场强度为 1

12

q F E =

根据叠加原理:点电荷系及连续分布电荷的电场分别为:

∑==N i i i

i R R q E 13

04πε

'41

30dq R R E ?=

πε 其中'dq 为连续分布电荷的电荷元。对体、面、线电荷分别为:

???

??='''

'dl ds dv dq l

s ρρρ

静电场的基本方程:

微分方程:0=??E

ερ

=??E

积分方程:0=??l

E

εq E s

=??

因此φ-?=E

其中?

?=

Q

P

P E 0

41πεφ

2. 真空中的恒定电流的磁场

安培定律:闭合电流回路1的磁场作用在闭合回路2上的磁力是

????=12312

121221012)

(4l l R R dl dl I I F

πμ 其中12R

是从线元1dl 指向2dl 的单位矢量。则电流1I 产生的磁感应强度是 ??=

30

4R R dl I B π

μ

上式是毕奥–萨伐尔定律。对于连续的电流分布

??=v R R

dv B 3

0'4 τπμ

洛仑兹力:

在磁场B 中,一个速度为V

的电荷q 受到的磁力是

B V q

?

如果还同时存在电场E

,则总的力是

)(B V E q

?+

恒定磁场的基本方程:

微分方程:0=??B

J B

0μ=??

积分方程:?=?s

B 0

??

?==?s

l

J I B 00μμ 因此 A B

??=

其中 ?=

l r dl I A π

μ40

是矢势。这个线积分是对通有电流I 的回路所作的

3. 电介质中的静电场

介质中的静电特性可用极化强度p 描述。极化产生了真实的电荷聚集。由p

可确定

体与面束缚电荷密度 p p

?-?=ρ

)(?12p p n

sp

-?-=ρ 其中单位矢量n ?与介质的表面垂直,指向外方。

介质中静电场的基本方程:

微分方程:p D

=?? 0=??E

)(0p E E D

+==εε电位移矢量

积分方程:??=?v

s

dv D ρ

任意闭合曲面电位移D 的通量等于该

曲面内自由电荷的代数和

?=?l

dl E 0

说明静电场是有源无旋场。

4. 磁介质中的恒定磁场

磁化强度M

是与电介质中的极化强度p

相对应的量。磁化产生一等效面电流密度和等效体电流密度。其中

M

J M M n

J M SM

??=-?=)(?12 等效电流与传导电流在产生磁场方面是等价的。

磁介质中恒定磁场的基本方程:

微分方程:J H

=??

0=??B

(磁感应强度))(0M H H B

+==μμ磁场强度

积分方程:ds J dl H l

s

??=?

?=?s

B 0

说明恒定磁场是有旋无源场。

5. 几个定律

法拉第感应定律:

微分形式:p t B E

??-=?? 积分形式:t

B

E l ???-=???

说明变化的磁场要产生电场,这个感应电场为有旋场。

欧姆定律:

在导电媒质中,传导电流密度与外加电场关系为:

E J

σ=

电荷守恒定律:

自由电荷是守恒的,t

J ??-=??ρ

束缚电荷也是守恒的,t

J t m ??-=??ρ

其中:M t

p J J m ??+??+=是物质电荷的流动引起的电流,J

是自由电流密度,t

p

?? 是极化电流密度,M ??是磁化物质中等效电流密度。m t ρρρ+=,ρ是自由电荷密度,m ρ是束缚电荷密度, p m

?-?=ρ。还有第四种电流,即使在真空中

亦存在,相应的电流密度为t E

?? 0ε。且

t

p

E t t E ??=????=??)()(00

εε 总的体电流密度 M 磁化强度

t p

t E M J J t ??+??+??+= )(0ε =)(0p E t M J

+??+??+ε

t

D

M J ??+??+=

其中为位移电流密度。

6. 麦克斯韦方程组

介质中的麦克斯韦方程组

微分形式:ρ=

??D

0=??B

t B

E ??-=??

t

D

J H ??+=??

积分形式:?

?=

?s

v

dv ds D ρ

?=?0B

???-=?s

L B dt d E

t

D

J H L s ???+

=???][

真空中的麦克斯韦方程组

在上述方程中,用E D 0ε=,H B

0μ=代入即可得真空中的麦克斯韦方程组。麦

克斯韦方程组都适用于非均匀、非线形和非各向同性介质。

7. 电磁场的边界条件

在两种介质交界面上,场矢量满足

s D D n

ρ=-?)(?12

界面上的自由电荷的面密度 0)(?12=-?B B n

磁感应强度的法相分量连续 0)(?12=-?E E n

电场强度的切向分量连续 s J H H n

=-?)(?12界面上传导电流的面密度 其中单位矢量由介质1指向介质2。若是两种理想介质,则分界面上0=s ρ,

0=s J

。若介质1为理想介质,则01111====B H E D 。

2-1. 这题的解放在第四章中

2-2. 据高斯定理

1r r < 01=??E

01=E

21r r r <<

)(343132

r r E f -=??περ )(34431322

r r E r f

-=πε

ρπ )(33132

2r r r

E f

-=

ερ 33132)(3r

r

r r E f -=ερ 2r r >

31323

1)(34επρr r E f -=?? 3313203)(3r

r

r r E f -=ερ

极化体密度:

据 D p p

)1(0ε

ερ-?-?=?-?=

D ??-=)1(0

ε

ε

可得: f p ρε

ερ)1(0

-= 21r r r <<

0=p ρ 1r r <, 2r r >

极化面电荷密度: 据

)(12p p n p -?-=

σ

1r r = 01=E

0=p σ

2r r =

f p r r r ρεεσ)1(302

2

3

132--=

2-3. 证:

''),'(dv r t r dt d dt p d v

?=ρ ']'),'([dv r t r dt

d v

?=ρ

''),'(dv r t t r v

???=ρ '''????-=dv r J

z v

y v

x v

e dv z J e dv y J e dv x J

'')'('')'('')'(?

?

?

??-??-??-=

x e

分量:

dv J x J x dv x J v

v

])''()'('['')'(

??-??=????

'''dv J

ds J x v

x

s

??-=

上式第一项为封闭曲面,即边界面。边界面上无电流流出,故?

=?s J x 0'

。则

''')'(dv J dv x J v

x v

??-=??

同理

''')'(dv J dv y J v

y v

??-=??

''')'(dv J dv z J v

z v

??-=??

因此

????=++=v z v z y v y x v

x dv J e dv J e dv J e dv J dt dp ''''

2-4. 解:由安培环路定理:

1r r <

01=??

B L

01=B

21r r r <<

)(2122r r J dl B f L

-=??

πμ

)(22

12

2r r J rB f -=πμπ

f J r

r r B 2)

(2122-=

μ

r J r

r r B f

?-=2

21222)(μ 2r r >

?

-=?L

f r r J B )(21223πμ

)(221223r r J rB f -=πμπ

r J r

r r B f

?-=2

212232)(μ 磁化电流:

由 M M

??=τ B B M

00

)11(μμμμμ

μ-=

-= H H M

-=0

21r r r << 20

200)(B B M J M ??-=-??=??=μμμμμμμμ

f J μμμμμ0

0-=

f J )1(

-=μμ

21,r r r r >< 0=M J

磁化面电流密度:

)(21M M n J SM

-= 1r r = 0=M J

2r r = 20

01)(B n M n J SM

μμμμ-?-=?-=

))(2)(1(2221220r r J r r r r r f

??---=μμ

f r r r τμμ

)2)(1(2

21220---=

2-5. f p D D p ρε

εεεεερ)1()1(])1[(000--=??--=-?-?=?-?=

2-7. 由 D

??=ρ t

D J H ??+=??

J J H t D

D t t

?-?=-????=????=????=??)()(ρ 0=??+??J t

ρ

2-9. 证: 证明的思路是从其中两个方程出发可导出另外两个方程。我们从两个旋度方出

发,导出两个散度方程

t B

E ??-=?? (1)

t

D

J H ??+=??

(2)

)1(??设:0)()(=????

-

=????B t

E

)..(z y x C B =??

C 相对时间t 而言是常数,由初始条件确定。 假设初始时刻0=B 或=B

常矢(稳恒场)

0=??B 0)..(=z y x C )2(??设:)(D t

J H

????+??=??

)(D t

J ????

-=??

由电荷守恒定律 t

J ??-=??ρ

得:ρ=

??D

波动方程的推导

对(1)式两边求旋 )()(H t

B t E

μ????

-=????-

=????

)()(2

t D J t E E ??+

??-=?-???

μ 222

)(t E t J E ??-??-=?-? μεμ

ερ t J t

E E ??+?=??-? μερμε2

22

以上推导中利用了矢量恒等式及其ρ=??D

, t

D J H ??+=??

同理可推出关于磁场满足的方程

)()()(E t

J D t J H ????

+??=????+??=????ε

)()(2

t

B t J H H ??-??+??=?-???

ε )222

t H J H ??-??=?- με J t H H ?-?=??-?2

22

με

2-11. 据边界条件:

n n D D 21= t t E E 21=

222111cos cos θεθεE E = 2211sin sin θθE E =

两式之比 2

1

21εεθθ=

tg tg

2-12. t D J H ??+=??

ρ=??D

t

B

J E m ??--=??

m B ρ=??

电磁学第二章例题

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

(3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比。 A 、场强方向(表面附近的点) 由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。而场强大小与面密度的关系,由高斯定理推出。 B 、场强大小 如图,在导体表面外紧靠导体表面取一点P ,过P 点作导体表面 的外法线方向单位矢n ?,则P 点场强可表示为n E E n P ?= (n E 为P E 在n ?方向的投影,n E 可正可负)。过P 点取一小圆形面元1S ?,以1S ?为底作一圆柱形高斯面,圆柱面的另一底2S ?在导体内部。由高斯定理有: 11/) 0(?1 1 2 1 εσφS S E s d E E s d n E s d E s d E s d E s d E s d E n S S n S S S S ?=?=⊥=?= ?= ?+?+?= ?=?????????? ?????? 导体表面附近导体内侧 (导体的电荷只能分布在导体表面,若面密度为σ,则面内电荷为 为均匀的很小,视,且因σσ11S S ??) ∴ ?? ?<>=?? ?<<>>= 反向,,同向,,即,,n E n E n E E E E n n n ?0?0?0 00 00 σσεσ σσεσ

可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立。 C 、0 εσ = E n ?中的E 是场中全部电荷贡献的合场强,并非只是高斯面内电荷S ?σ的贡献。这一点是由高斯定理得来的。P45-46 D 、一般不谈导体表面上的点的场强。 导体内部0=E ,表面外附近0 εσ=E n ?;没提表面上的。 在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失。但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上。 补充例:习题2.1.1(不讲) Rd θ 解:利用上面的结果,球面上某面元所受的力:n dS F d ?20 2 εσ= ,利用对称性知,带有同号电荷的球面所受的力是沿x 轴方向: 右半球所受的力:

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

第二章_电磁场基本规律

第二章电磁场基本规律 一选择题: 1.所谓点电荷是指可以忽略掉电荷本身的() A.质量B.重量 C.体积D.面积 2.电流密度的单位为() A.安/米3B.安/米2 C.安/米D.安 3.体电流密度等于体电荷密度乘以() A.面积B.体积 C.速度D.时间 4.单位时间内通过某面积S的电荷量,定义为穿过该面积的()。 A.通量B.电流 C.电阻D.环流 5.静电场中两点电荷之间的作用力与它们之间的距离() A.成正比B.平方成正比 C.平方成反比D.成反比 6.电场强度的方向与正试验电荷的受力方向() A.相同B.相反 C.不确定D.无关 7.两点电荷所带电量大小不等,放在同一电场中,则电量大者所受作用力()A.更大B.更小 C.与电量小者相等D.大小不定 8.静电场中试验电荷受到的作用力与试验电荷电量成( )关系。 A.正比 B.反比 C.平方 D.平方根 9.在静电场中,已知D矢量,求电荷密度的公式是()

A .ρ=?×D B .ρ=?·D C .ρ=? D D .ρ=?2D 10.相同场源条件下,均匀电介质中的电场强度值为真空中电场强度值的( ) A .ε倍 B .εr 倍 C .倍ε1 D .倍r 1 ε 11.导体在静电平衡下,其内部电场强度( ) A.为常数 B.为零 C.不为零 D.不确定 12.真空中介电常数的数值为( ) A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 13.极化强度与电场强度成正比的电介质称为( )介质。 A.均匀 B.各向同性 C.线性 D.可极化 14. 静电场中以D 表示的高斯通量定理,其积分式中的总电荷应该是包括( )。 A. 整个场域中的自由电荷 B. 整个场域中的自由电荷和极化电荷 C. 仅由闭合面所包的自由电荷 D. 仅由闭合面所包的自由电荷和极化电荷 15.电位移矢量D =0εE +P ,在真空中P 值为( ) A .正 B .负 C .不确定 D .零 16.真空中电极化强度矢量为( )。 A .= B .=ε0 C .P =χε0E D .P =0

电磁学试题库电磁学第二章试题(含答案)

一、填空题 1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d 的导体板,则其电容为 ;答案内容:;20d S ε 2、导体静电平衡必要条件是 ,此时电荷只分布在 。 答案内容:内部电场处处为零,外表面; 3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。在这个过程中,电场能量的增量是 ; 答案内容:2 02U L s r εε 4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r q E e ∧=204περ; 5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ; 答案内容:d q 04πε; 6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。 答案内容:??? ??++-πεb q Q a q r q 0 41 7、导体静电平衡的特征是 ,必要条件是 。 答案内容:电荷宏观运动停止,内部电场处处为零; 8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。 答案内容:并联,串联; 9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。 答案内容:201 4q r πε ;

10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。 答案内容:00W εε ; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。 答案内容:/r R ; 12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。A 、B 间为真空,B 外为真空,若用导线把A 、B 接通后,则A 球电位 (无限远处u=0)。 答案内容:()0/4c Q r πε ; 13、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现不断开电源而将两极板的距离拉大一倍,则其电容为______,板间电场强度为_____。 答案内容: 21C , 21E 。 14、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现断开电源后,将两极板的距离拉大一倍,则其电容为________,板间电场强度为_____。 答案内容: 21C , E 不变 二、单选择题 1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( ) (A )金属导体因静电感应带电,总电量为-Q ; (B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ; (C )金属导体两端带等量异号电荷,且电量q

工程电磁场第二章静电场(二)解读

第2章 静电场(二) 2.1 静电场的唯一性定理及其应用 静电场中的待求量:电场强度E ,静电力F 。 静电场求解方法: (1) 直接由电场强度公式计算; (2) 求解泊松方程(或拉普拉斯方程)→电位→电场强度E 。 E ?-?=?- =?? ?ερ ?E 2 唯一性定理的重要意义:确定静电场解的唯一性。 2.1.1 唯一性定理 静电场中,满足给定边界条件的电位微分方程(泊松方程或拉普拉斯方程)的解是唯一的。 2.1.2 导体边界时,边界条件的分类 (1) 自然边界条件: 有限值参考点=∞ →?r r lim (相当于指定电位参考点的值) (2) 边界衔接条件:σ? ε?ε??=??-??=n n 221121 (该条件主要用于求解区域内部) (3) 导体表面边界条件 (a) 给定各导体表面的电位值。(第一类边界条件) (b) 导体表面为等位面,给定各导体表面的电荷量。 该条件相当于给定了第二类边界条件。在求解过程中,可通过积分运算确定任意常数。 S n ??-=? εσ,(注:n 的正方向由介质导向导体内部) q dS r S =??-?)(1 1?ε (c) 给定某些导体表面的电位值及其它每一导体表面的电荷量。 相当于给定了第三类边界条件。 思考? 为什么条件(a),或(c)可唯一确定电位函数,而条件(b)确定的电位函数相关任一常数? 答:边值问题的求解所需的边界条件有:自然边界条件、衔接条件和区域边界条件。条件(a),(c)中,同时给定了边界条件和自然边界条件,与条件(2)结合,可唯一地确定场解;而条件(c)没有指定自然边界条件(电位参考点的值),因而,其解相差一个任意常数。

最新电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳 内表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

《电磁场与电磁波》(第四版)习题集:第2章 电磁场的基本规律

第2章 电磁场的基本规律 电磁学的三大实验定律(库仑定律、安培定律和法拉第电磁感应定律)的提出,标志着人类对宏观电磁现象的认识从定性阶段到定量阶段的飞跃。以三大定律为基础,麦克斯韦提出两个基本假设(关于有旋电场的假设和关于位移电流的假设),进而归纳总结出描述宏观电磁现象的总规律——麦克斯韦方程组。 本章先介绍电磁场的源量(电荷和电流),再从基本实验定律引入电磁场的场量,并讨论其散度和旋度,最后讨论媒质的电磁特性和麦克斯韦方程组。 2.1电荷守恒定律 电荷周围要产生电场,电流周围要产生磁场,电荷和电流是产生电磁场的源量。 2.1.1 电荷及电荷密度 自然界中存在两种电荷:正电荷和负电荷。带电体所带电量的多少称为电荷量。迄今为止能检测到的最小电荷量是质子和电子的电荷量,称为基本电荷的电量,其值为 191.60210e -=?C (库仑) 。质子带正电,其电荷量为e ;电子带负电,其电荷量为-e 。任何带电体的电荷量都只能是一个基本电荷量的整数倍。也就是说,带电体上的电荷是以离散的 方式分布的。 在研究宏观电磁现象时,人们所观察到的是带电体上大量微观带电粒子的总体效应,而带电粒子的尺寸远小于带电体的尺寸。因此,可以认为电荷是以一定形式连续分布在带电体上,并用电荷密度来描述这种分布。 1. 电荷体密度 电荷连续分布于体积V ’内,用电荷体密度()ρ'r 描述其分布。设体积元'V ?内的电荷量为q ?,则该体积内任一源点处的电荷体密度为 '0d ()lim 'd ' V q q V V ρ?→?'== ?r (2.1.1) 式中的r ’是源点的位置矢量,电荷体密度的电位为3C/m 。利用电荷体密度()'ρr 可求出体 积内V ’的总电荷量 ()d 'V q V ρ'=?r (2.1.2) 2.电荷面密度 电荷连续分布于厚度可以忽略的曲面'S 上,用电荷面密度(')S ρr 描述其分布。设面积元'S ?上的电荷量为q ?,则该曲面上任一源点处的电荷面密度为 '0d ()lim 'd ' S S q q S S ρ?→?'==?r (2.1.3) 电荷面密度的电位为2C/m 。面积'S 上总电荷量为 ()d 'S S q S ρ'=?r (2.1.4) 3.电荷线密度

电磁学第二章

第二章 静电场中导体与电介质 一、 选择题 1、 一带正电荷的物体M,靠近一不带电的金属导体N,N 的左端感应出负电荷,右端感应出正电荷。若将N 的左端接地,则: A 、 N 上的负电荷入地。 B 、N 上的正电荷入地。 C 、N 上的电荷不动。 D 、N 上所有电荷都入地 答案:B 2、 有一接地的金属球,用一弹簧吊起,金属球原来不带电。若在它的下方放置一电量为q 的点电荷,则: A 、只有当q>0时,金属球才能下移 B 、只有当q<0就是,金属球才下移 C 、无论q 就是正就是负金属球都下移 D 、无论q 就是正就是负金属球都不动 答案:C 3、 一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B,已知A 上的电荷密度为σ+,则 在导体板B 的两个表面1与2上的感应电荷面密度为: A 、σσσσ+=-=21, B 、σσσσ2 1 ,2121 +=-= C 、σσσσ2 1 ,2121 -=-= D 、0,21 =-=σσσ 答案:B 4、 半径分别为R 与r 的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线的影响下,两球表面 的电荷面密度之比r R σσ为: A 、r R B 、2 2 r R C 、2 2 R r D 、R r 答案:D 5、 一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板距离均为h 的两点a,b 之间的电势差为() A 、零 B 、 2εσ C 、 0εσh D 、0 2εσh 答案:A 6、 一电荷面密度为σ 的带电大导体平板,置于电场强度为0E (0E 指向右边)的均匀外电场中,并使板面垂直于0E 的方向,设外电 场不因带电平板的引入而受干扰,则板的附近左右两侧的全场强为() A 、0000 2,2εσ εσ+- E E B 、0000 2,2εσ εσ++ E E C 、0 000 2,2εσεσ-+ E E D 、0 000 2,2εσεσ-- E E 答案:A 7、 A,B 为两导体大平板,面积均为S,平行放置,A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大 小E 为() A 、 S Q 01 2ε B 、 S Q Q 0212ε- C 、 S Q 01ε D 、 S Q Q 0212ε+ 答案:C 8、带电时为q 1的导体A 移近中性导体B,在B 的近端出现感应电荷q 2,远端出现感应电荷q 3,这时B 表面附近P 点的场强为n E ?0 εσ= ,问E 就是谁的贡献?()

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答 1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z a C =5x a -2z a 求:错误!未找到引用源。矢量A 的单位矢量A a ; 错误!未找到引用源。矢量A 和B 的夹角AB θ; 错误!未找到引用源。A ·B 和A ?B 错误!未找到引用源。A ·(B ?C )和(A ?B )·C ; 错误!未找到引用源。A ?(B ?C )和(A ?B )?C 解:错误!未找到引用源。A a =A A = 149A ++ =(x a +2y a -3z a )/14 错误!未找到引用源。cos AB θ =A ·B /A B AB θ=135.5o 错误!未找到引用源。A ·B =-11, A ?B =-10x a -y a -4z a 错误!未找到引用源。A ·(B ?C )=-42 (A ?B )·C =-42 错误!未找到引用源。A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a 1.3有一个二维矢量场F(r) =x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图 形。 解:由dx/(-y)=dy/x,得2 x +2 y =c 1.6求数量场ψ=ln (2 x +2y +2 z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2 z )=c 则c=ln(1+4+9)=ln14 那么2 x +2y +2 z =14 1.9求标量场ψ(x,y,z )=62 x 3y +z e 在点P (2,-1,0)的梯度。 解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3 y x a +182x 2y y a +z e z a 得 ψ?=-24x a +72y a +z a 1.10 在圆柱体2 x +2 y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32x +y a (3y+z )+z a (3z -x) 错误!未找到引用源。验证散度定理。 解:错误!未找到引用源。??s d A = A d S ?? 曲 + A dS ?? xoz + A d S ?? yoz +A d S ?? 上 +A d S ?? 下 A d S ?? 曲 =232 (3cos 3sin sin )z d d ρθρθθρθ++?曲 =156.4 A dS ?? xoz = (3)y z dxdz +?xoz =-6 A d S ?? yoz =- 23x dydz ? yoz =0 A d S ?? 上+A d S ?? 下=(6cos )d d ρθρθρ-?上+cos d d ρθρθ?下=272π ??s d A =193 错误!未找到引用源。dV A V ???=(66)V x dV +?=6(cos 1)V d d dz ρθρθ+?=193 即:??s s d A =dV A V ??? 1.13 求矢量A =x a x+y a x 2 y 沿圆周2x +2 y =2a 的线积分,再求A ?? 对此圆周所包围的表 面积分,验证斯托克斯定理。 解:??l l d A =2 L xdx xy dy +? =44a π A ?? =z a 2 y

电磁学第二章习题答案

习题五(第二章 静电场中的导体与电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内 表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件就是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个就是空心,一个就是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 与r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a,外半径为b 的金属球壳,带有电量Q, 在球壳空腔内距离球心为r 处有一点电荷q,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

电磁场与电磁波第二章课后答案

第二章静电场 重点与难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式得静电场方程导出微分形式得静电场方程,即散度方程与旋度方程,并强调微分形式得场方程描述得就是静电场得微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间得关系。通过书中列举得4个例子,总结归纳出根据电荷分布计算电场强度得三种方法。 至于媒质得介电特性,应着重说明均匀与非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式得静电场方程,由于边界上场量不连续,因而微分形式得场方程不成立。 关于静电场得能量与力,应总结出计算能量得三种方法,指出电场能量不符合迭加原理。介绍利用虚位移得概念计算电场力,常电荷系统与常电位系统,以及广义力与广义坐标等概念。至于电容与部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: 微分形式: 已知电荷分布求解电场强度: 1,; 2, 3, 高斯定律 介质中静电场方程: 积分形式: 微分形式: 线性均匀各向同性介质中静电场方程: 积分形式: 微分形式: 静电场边界条件: 1,。对于两种各向同性得线性介质,则

2,。在两种介质形成得边界上,则 对于两种各向同性得线性介质,则 3,介质与导体得边界条件: ; 若导体周围就是各向同性得线性介质,则 ; 静电场得能量: 孤立带电体得能量: 离散带电体得能量: 分布电荷得能量: 静电场得能量密度: 对于各向同性得线性介质,则 电场力: 库仑定律: 常电荷系统: 常电位系统: 题解 2-1若真空中相距为d得两个电荷q1及q2得电量分别为q及4q,当点电荷位于q1及q2得连线上时,系统处于平衡状态,试求得大小及位置。解要使系统处于平衡状态,点电荷受到点电荷q1及q2得力应该大小相等,方向相反,即。那么,由,同时考虑到,求得 可见点电荷可以任意,但应位于点电荷q 1与q 2 得连线上,且与点电荷相 距。 2-2已知真空中有三个点电荷,其电量及位置分别为: 试求位于点得电场强度。

2017粤教版高中物理选修第二章第四节《麦克斯韦电磁场理论》练习题

【金版学案】2015-2016学年高中物理第二章第四节麦克斯韦电 磁场理论练习粤教版选修1-1 ?达标训练 1。根据麦克斯韦电磁场理论,以下说法正确的是( ) A.磁场周围一定产生电场,电场周围一定产生磁场 B.均匀变化的电场产生均匀变化的磁场,均匀变化的磁场产生均匀变化的电场 C.周期性变化的磁场产生同频率周期性变化的电场,周期性变化的电场产生同频率周期性变化的磁场 D。磁场和电场共同存在的空间一定是电磁场 答案:C 2.关于电磁场和电磁波的正确说法是( ) A。电场和磁场总是相互联系的,它们统称为电磁波 B。电磁场由发生的区域向远处传播形成电磁波 C。在电场周围一定产生磁场,磁场周围一定产生电场 D.电磁波是一种波,声波也是一种波,理论上它们是同种性质的波 解析:电磁场由发生的区域向远处的传播形成电磁波。 答案:B 3.电磁场理论预言了电磁波的存在。建立电磁场理论的科学家是( ) A。法拉第 B。麦克斯韦 C。奥斯特 D.安培 解析:最先建立完整的电磁场理论并预言电磁波存在的科学家是麦克斯韦. 答案:B 4。1888年,用实验证实电磁波的存在,使人们认识物质存在的另一种形式,这位物理学家是() A.赫兹 B.奥斯特 C.麦克斯韦 D.法拉第 答案:A 5.关于电磁场和电磁波,下列说法中正确的是( ) A.电磁场由发生区域向远处的传播就是电磁波 B。在电场的周围总能产生磁场,在磁场的周围总能产生电场 C.电磁波是一种物质,只能在真空中传播 D.电磁波传播的速度总是3、0×108 m/s 解析:根据麦克斯韦电磁场理论,变化的电场(或磁场)产生磁场(或电场),变化的电磁场由发生区域向远处传播就形成电磁波,电磁波在真空中传播速度最大,选A、答案:A 6。关于电磁波,下列说法正确的是() A.所有电磁波的频率相同 B.电磁波只能在真空中传播 C。电磁波在任何介质中的传播速度相同 D。电磁波在真空中的传播速度是3×108 m/s 解析:电磁波有各种各样的频率,可以在不同的介质中传播,但在真空中传播速度最大,c=3×108 m/s、

电磁场与电磁波第二章课后答案

第二章静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分 形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方 程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特 性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。 通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三 种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、 各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密 度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静 电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量 不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常 电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可 以从简。 重要公式 真空中静电场方程: q E d SE d l 0积分形式: Sl EE 0微分形式: 已知电荷分布求解电场强度: 1(r ) 1,E (r )(r );(r )d V 4|rr| V 0 2, E (r ) V 4 (r 0 )( | r r r r ) 3 | d V q E d S 3, 高斯定律 S

1

介质中静电场方程: E d l0 积分形式:D d S q S l 微分形式:DE0 线性均匀各向同性介质中静电场方程: q E d SE d l0积分形式: S l 微分形式:EE0 静电场边界条件: 1,E1t E2t。对于两种各向同性的线性介质,则 D 1tD t 2 12 2,D2n D1ns。在两种介质形成的边界上,则 D 1 2n nD 对于两种各向同性的线性介质,则 E 2n 1 12 nE 3,介质与导体的边界条件: e n E0;e n DS 若导体周围是各向同性的线性介质,则 S S E; n n 静电场的能量:

电磁学第二章

第二章 导体周围的静电场 重点 1、电场与物质相互作用: 2、本章: 金属导体, 静电场 3、根据: 高斯定理、环路定理 §1 静电场中的导体 1. 导体的电性质 (经典观点) 导体静电平衡:无宏观电流, 电荷分布不再改变——静电场 宏观电荷分布—带电 2. 导体静电平衡条件 E 内=E 外+E ’=0 3. 导体静电平衡时的性质 导体内部无电荷,电荷在表面层(面密度σ) 导体为等位体, 表面为等位面 导体表面外附近电场 ⊥ 表面 导体表面场强为: E 表=σε0 n 4. 静电场问题的唯一性定理 1 唯一性定理 唯一性问题: (1)电荷自动调整,电场唯一吗? (2)边界条件确定, 域内电荷分布不变, 域内电场唯一吗? 唯一性定理: 适当的物理条件确定之后,在给定区域V 内电场的稳定分布(静电平衡下的分布)是唯一的. 适当的物理条件: U ?S or E n ?S 确定; V 内除导体外电荷分布确定;导体总电荷or 电位确定 2 唯一性定理意义 (1)若有一个解就是 唯一的解. (2)指出决定解的因素. (3)V 外电荷分布改变(上述条件不变)则解不变 3 唯一性定理简略证明(介绍) U ?S 给定的边界条件

设在同一条件下有两解,证明两解相同 对导体第一种情况的证明 5. 例 "猜出"可能的解, 就是唯一的真的解 1. 已知孤立导体总电荷q ,求: 电荷分布σ (1)半径为R 的球体总电荷q “猜”:q 均匀分布在球的外表面上 σ=q/4πR 2 则:E 内=0 是解,且唯一 (2)无限大带电导体平板 “猜”:q E 总=σ/ε0=q/(2ε0S) E 总=0 所猜即为解 (3)一般形状 ——由实验测量 2. 外电场中的中性导体 匀强电场中的球形导体 当σ(θ)=σ0cos θ 时, 导体内电场匀强为 E ’内= -σ0 z /3ε0 若σ0=3ε0 E 0 E 内=E 0+E ’=0 此即唯一解 3. 外电场中的带电导体 导体大平板A 、B, 面积S, 带电为Q A 、Q B . 设: 电荷在表面均匀分布 (σ1-σ2-σ3-σ4)/2ε0=0 (σ1+σ2+σ3-σ4)/2ε0=0 S(σ1+σ2)=Q A S (σ3+σ4)=Q B σ1=σ4=(Q A +Q B ) /2 σ2= -σ3=(Q A -Q B )/2 6. 电象法简介 个别点电荷情况下,计算导体上感应电荷的一种简单方法——电象法 例1: 半径为R 的接地导体球,点电荷q 距导体球中心d. 保持导体表面为零等位面, 球面外部的场不变, q’代替感应电荷对外部场的作用 (1) 确定q’ U(r=R)=q/(4πε0b)+q’/(4πε0b ’)=0 R 1234

第二章 宏观电磁场的基本规律

第二章 宏观电磁场的基本规律 内容提要: 1. 真空中的静电场 库仑定律:实验得出,点电荷1q 对点电荷2q 施加的力是 123 12 021124R R q q F πε= 式中12R 是两个点电荷之间的距离,12R 是从1q 指向2q 的矢量。 将1q 视为试探电荷,其上所受的力为12F ,则定义电场强度为 1 12 q F E = 根据叠加原理:点电荷系及连续分布电荷的电场分别为: ∑==N i i i i R R q E 13 04πε '41 30dq R R E ?= πε 其中'dq 为连续分布电荷的电荷元。对体、面、线电荷分别为: ??? ??=''' 'dl ds dv dq l s ρρρ 静电场的基本方程: 微分方程:0=??E ερ =??E 积分方程:0=??l E εq E s =?? 因此φ-?=E

其中? ?= Q P P E 0 41πεφ 2. 真空中的恒定电流的磁场 安培定律:闭合电流回路1的磁场作用在闭合回路2上的磁力是 ????=12312 121221012) (4l l R R dl dl I I F πμ 其中12R 是从线元1dl 指向2dl 的单位矢量。则电流1I 产生的磁感应强度是 ??= 30 4R R dl I B π μ 上式是毕奥–萨伐尔定律。对于连续的电流分布 ??=v R R dv B 3 0'4 τπμ 洛仑兹力: 在磁场B 中,一个速度为V 的电荷q 受到的磁力是 B V q ? 如果还同时存在电场E ,则总的力是 )(B V E q ?+ 恒定磁场的基本方程: 微分方程:0=??B J B 0μ=?? 积分方程:?=?s B 0 ?? ?==?s l J I B 00μμ 因此 A B ??= 其中 ?= l r dl I A π μ40 是矢势。这个线积分是对通有电流I 的回路所作的

电磁场与电磁波理论(第二版)(徐立勤-曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=r r 。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?=r r 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E v 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 2 2 0000 1 114π4π4π1x y y x x y q q q E e e e e a a q e e εεε?=+++ ?=+r r r r r r r

第二章.电磁场的基本规律

第2章 电磁场的基本规律
第2章 电磁场的基本规律
2.1 2.2 2.3 2.4 2.5 2.6 2.7 习题 电场守恒与电荷密度 真空中静电场的基本规律 真空中恒定磁场的基本规律 媒质的电磁特性 电磁感应定律和位移电流 麦克斯韦方程组 电磁场的边界条件

第2章 电磁场的基本规律
2.1电荷守恒定律 
电磁场物理模型中的基本物理量可分为源量和场量两大类。 源量为电荷q ( r′,t )和电流 I ( r′,t ),分别用来描述产生电磁 效应的两类场源。 电荷是产生电场的源,电流是产生磁场的源。
电荷
(运动)
电流 磁场
电场

第2章 电磁场的基本规律
点电荷:总电量为q的电荷集中在很小区域V时,当分析和计 算电场的区域又距离电荷区很远,电荷可看作位于该区域中心、 电量为 q 的点电荷。
z
'
r'
q
ρ (r ) = qδ (r ? r )
'
x
o
y
2.1.2 电流及电流密度 电流:电荷的定向运动形成电流,用i 表示,其大小定义为: 单位时间内通过某一横截面S的电荷量,即
i = lim (Δq Δt ) = dq dt
Δt → 0
单位: A (安培) 电流方向: 正电荷的流动方向

第2章 电磁场的基本规律
电流连续性方程: 积分形式 微分形式
dq d ∫S J ? dS = ? dt = ? dt ∫V ρ dV
流出闭曲面S的电流 等于体积V内单位时 间所减少的电荷量
?ρ ?? J = ? ?t 恒定电流的连续性方程:
?ρ =0 ?t
?? J = 0

S
J ? dS = 0
恒定电流是无源场,电 流线是连续的闭合曲线, 既无起点也无终点

电磁场与电磁波(第三版)课后答案第2章

第二章习题解答 2.1 一个平行板真空二极管内的电荷体密度为432300 49 U d x ρε--=-,式中阴极板位 于0x =,阳极板位于x d =,极间电压为0U 。如果040V U =、1cm d =、横截面 210cm S =,求: (1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。 解 (1) 4323 000 4 d ()d 9d Q U d x S x τ ρτε--==-=?? 11004 4.7210C 3U S d ε--=-? ( 2 ) 4323 002 4d ()d 9d d Q U d x S x τρτε--' '== -=? ?11004(10.9710C 3U S d ε--=-? 2.2 一个体密度为732.3210C m ρ-=?的质子束,通过1000V 的电压加速后形成等 速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。 解 质子的质量271.710kg m -=?、电量191.610C q -=?。由 2 12 mv qU = 得 61.3710v ==? m s 故 0.318J v ρ== 2A m 26(2)10I J d π-== A 2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个 直径旋转,求球内的电流密度。 解 以球心为坐标原点,转轴(一直径)为z 轴。设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为 sin r φωθ=?=v r e ω 球内的电荷体密度为 3 43 Q a ρπ= 故 33 3sin sin 434Q Q r r a a φ φω ρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求 球表面的面电流密度。 解 以球心为坐标原点,转轴(一直径)为z 轴。设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为 sin a φωθ=?=v r e ω 球面的上电荷面密度为 2 4Q a σπ= 故 2 sin sin 44S Q Q a a a φ φω σωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求 (4,0,0) 处的电场强度。

电磁场与电磁波习题答案2

第二章 2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。 解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。那么,由 122 2 022 1 01244r r r q q r q q =?'= 'πεπε,同时考虑到d r r =+21,求得 d r d r 3 2 ,3121== 可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 3 1 。 2-2 已知真空中有三个点电荷,其电量及位置分别为: ) 0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。 解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。 利用点电荷的场强公式r e E 2 04r q πε= ,其中r e 为点电 荷q 指向场点P 的单位矢量。那么,

1q 在P 点的场强大小为0 2 1 011814πεπε= =r q E ,方向为 ()z y r e e e +- =2 11。 2q 在P 点的场强大小为0 2 2 022121 4πεπε= =r q E ,方向为()z y x r e e e e ++- =3 12。 3q 在P 点的场强大小为0 2 3 033414πεπε= =r q E ,方向为 y r e e -=3 则P 点的合成电场强度为 ?? ???????? ??++???? ??+++-=++=z e e e E E E E y x 312128141312128131211 03 21πε 2-3 直接利用式(2-2-14)计算电偶极子的电场强度。 解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。两个点电荷相距为l ,场点P 的坐标为(r,θ,φ)。 根据叠加原理,电偶极子在场点P 产生的电场为 ???? ??-= 311304r r q r r E πε 考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为 r r r r r r r r q r r r r q e e E ??? ? ??+-=???? ??-=2121102122210))((44πεπε

相关文档
最新文档