飞轮储能技术在电力系统中的应用

飞轮储能技术在电力系统中的应用
飞轮储能技术在电力系统中的应用

飞轮储能技术在电力系统中的应用

(四川大学四川成都610065)

摘要:本文分析了储能技术在电力系统发展和变革中的地位和作用,粗略介绍了四大类储能技术。详细介绍了飞轮储能技术的基本原理、技术特点、发展现状、存在的主要问题及需要突破的关键技术等进行了较全面的综述。对飞轮储能技术用于电力系统调峰的必要性和可行性进行了分析, 并和目前技术成熟的抽水蓄能电站进行了比较。对一个电力系统进行了静态稳定潮流计算, 结果表明, 飞轮储能机组可以提高电力系统的静态稳定性, 还可提高电力系统的暂态稳定性和供电可靠性。

关键词:电力系统;储能;飞轮储能;调峰;系统稳定

0 引言

储能技术已被视为电网运行过程中“采一发一输一配一用一储”六大环节中的重要组成部分。系统中引入储能环节后,可以有效地实现需求侧管理,消除昼夜间峰谷差,平滑负荷,不仅可以更有效地利用电力设备,降低供电成本,还可以促进可再生能源的应用,也可作为提高系统运行稳定性、调整频率、补偿负荷波动的一种手段。储能技术的应用必将在传统的电力系统设计、规划、调度、控制等方面带来重大变革。飞轮储能技术是将能量以飞轮的转动动能的形式来存储,当飞轮储存能量时, 飞轮储能系统作为电动机运行, 飞轮加速。当飞轮释放能量时, 飞轮储能系统作为发电机运行, 飞轮减速。其在电力系统中的应用越来越成熟,主要应用于对电力系统和提高系统的稳定性。

1 储能技术的定位和作用

传统能源的日益匮乏和环境的日趋恶化,极大地促进了新能源的发展,其发电规模也快速攀升。以传统化石能源为基础的火电等常规能源通常按照用电需求进行发电、输电、配电、用电的调度;而以风能、太阳能为基础的新能源发电取决于自然资源条件,具有波动性和间歇性,其调节控制困难,大规模并网运行会给电网的安全稳定运行带来显著影响。储能技术的应用可在很大程度上解决新能源发电的随机性和波动性问题,使间歇性的、低密度的可再生清洁能源得以广泛、有效地利用,并且逐步成为经济上有竞争力的能源。

传统电网的运行时刻处于发电与负荷之间的动态平衡状态,也就是通常所说的“即发即用”状态。因此,电网的规划、运行和控制等都基于“供需平衡”的原则进行,即所发出的电力必须即时传输,用电和发电也必须实时平衡。这种规划和建设思路随着经济和社会的发展越来越显现出缺陷和不足,电网的调度、控制、管理也因此变得日益困难和复杂[1]。

由于电网中的高峰负荷不断增加,电网公司必须不断投资输配电设备以满足尖峰负荷容量的需求,导致系统的整体负荷率偏低,结果使电力资产的综合利用率很低。为解决这些问题,传统电网急需进一步升级甚至变革。先进高效的大规模储能技术为传统电网的升级改造乃至变革提供了全新的思路和有效的技术手段。

在大容量、高性能、规模化储能技术应用之后,电力将成为可以储存的商品,这将给电

力系统运行所必须遵行的发电、输电、配电、用电同时完成的概念以及基于这一概念的运行管理模式带来根本性变化。储能技术把发电与用电从时间和空间上分隔开来,发出的电力不再需要即时传输,用电和发电也不再需要实时平衡,这将促进电网的结构形态、规划设计、调度管理、运行控制以及使用方式等发生根本性变革[2-4]。

储能技术的应用将贯穿于电力系统发电、输电、配电、用电的各个环节,可以缓解高峰负荷供电需求,提高现有电网设备的利用率和电网的运行效率;可以有效应对电网故障的发生,可以提高电能质量和用电效率,满足经济社会发展对优质、安全、可靠供电和高效用电的要求;储能系统的规模化应用还将有效延缓和减少电源和电网建设,提高电网的整体资产利用率,彻底改变现有电力系统的建设模式,促进其从外延扩张型向内涵增效型的转变[3]。

2 储能技术的分类

根据能量类型的不同,储能技术基本可分为四大类别,包括基础燃料的存储(如煤、石油、天然气等)、中级燃料的存储(如氢气、煤气、太阳能燃料等)、电能的存储和后消费能量的存储(相变储能等)。本文重点分析电能存储技术,按照所存储能量的形式,可大致分为物理储能和化学储能,物理储能又可以分为机械储能和电磁场储能。

由于储能技术具有极高的战略地位,世界各国一直都在不断支持储能技术的研究和应用。日本NEDO(New Energy and Industrial Technology Development Organization)于2009年针对各种电池储能技术进行了详细的发展路线规划,其中尤其关注锂离子电池、钠硫电池以及新型电池等技术的发展;美国能源部也于2010年底围绕各种新型与先进电池的发展与应用发布了相关技术报告,未来20年将重点关注超级铅酸与先进铅酸电池、锂离子电池、硫基电池、液流电池、功率型储能电池以及金属空气电池、先进压缩空气储能技术等研究方向。

3飞轮储能技术

3.1技术原理

飞轮储能是将能量以飞轮的转动动能的形式来存储。充电时,飞轮由电机带动飞速旋转;放电时,相同的电机作为发电机由旋转的飞轮产生电能。储存在飞轮中的能量与飞轮(以飞轮转轴作为其转动惯量的参考轴)的质量和旋转速度的平方成正比。可见,虽然可以通过提高飞轮总质量来达到更大的储能量,更为有效的方法是提高飞轮的转速。飞轮储能具有储能密度较高(30Wh/kg和1kW/kg)、充放电次数与充放电深度无关、能量转换效率高(可达90%)、可靠性高、易维护、使用环境条件要求低、无污染等优点。图1为一个典型的飞轮储存装置。该装置包括高速旋转的飞轮;封闭的壳体提供了一个高真空环境(~大气压力)以减少阻力损失,并保护转子系统;轴承系统为转子提供低损耗支撑;以及电源转换和控制系统。

3.2 飞轮储能技术的特点

飞轮储能技术运行于真空度较高的环境中,优势是技术成熟度高、没有摩擦损耗、风阻小、高功率密度、长寿命、瞬时功率大、效率高、响应速度快、安全性能好、不受地理环境限制、充放电次数无限以及无污染等特性,几乎不需要维护,适用于电网调频和电能质量保障,是目前最有发展前途的储能技术之一。缺点是飞轮储能的能量密度不够高、自放电率高,如停止充电,能量在几到几十个小时内就会自行耗尽。保证系统安全性方面的费用很高,噪音大。在小型场合还无法体现其优势,主要应用于为蓄电池系统做补充。

3.3 应用现状

进入20世纪90年代以后,飞轮储能受到了广泛的重视,并得到了快速发展,已经出现了很多高性能的产品。美国、日本、法国、英国、德国、荷兰、俄罗斯、西班牙、韩国、印度、瑞士、加拿大和意大利等国都在进行研究和开发工作。其中美国投资最多,规模最大,进展最快。美国Active Power公司的100~2000kW Clean Source系列UPS、Pentadyne公司的65~1000kVA VSS系列UPS、Beacon Power公司的25MW Smart Energy Matrix,波音公司Phantom工厂的采用高温超导磁浮轴承的100kW/5kWh飞轮储能装置,以及SatCon Technology公司的315~2200kVA系列Rotary UPS,已经开始应用于电力系统稳定控制、电力质量改善和电力调峰等领域。美国的Viata Tech Engineering公司也将飞轮引入到风力发电系统,实现全频调峰,飞轮机组的发电功率为300kW。

我国在飞轮的研究上起步较早,对轴承和转子等关键技术的研究做出了一些成果和贡献。自20 世纪80年代开始关注飞轮储能技术,自90年代开始了关键技术基础研究。从事飞轮储能技术研发的单位有:北京飞轮储能(柔性)研究所、核工业理化工程研究院、中科院电工研究所、清华大学、华北电力大学、北京航空航天大学、中科院长春光学精密机械与物理研究所等。中国科学院电工研究所较早开展飞轮储能技术研发,开展了电磁浮轴承和超导磁浮轴承的理论研究与样机试制。目前已经设计并实现了基于钢转子和机械轴承的飞轮储能装置并应用于微型电网稳定控制和电能质量改善,其功率为10kW,可利用储能量为100Wh,

转子运行于4000~8000r/min转速区间。清华

大学从1995年开始相关研究,1997年300Wh飞轮储能样机首次实现充放电,支承在永磁-微型螺旋槽轴承上的复合材料飞轮转速高达43800r/min。华北电力大学同期也建立了试验装置,研制的刚质飞轮极限转速10000r/min,也采用了低损耗的永磁-流体动压混合支承。北京航空航天大学、中国科学院长春光学精密机械与物理研究所近年来开展飞轮储能电源的航天应用研究。北航的飞轮实验装置可用电能为13Wh,转换效率达到83%,实验输出功率100W,最大输出功率可达200W左右。2001年,核工业理化工程研究院研究设计了一种汽车用飞轮储能装置,用于燃料电池电动汽车的辅助电源。北京飞轮储能(柔性)研究所设计了XD-001型飞轮储能装置模拟机,飞轮材料为玻璃纤维复合材料,实验转速为30000r/min,储能量为570Wh,发电电压达到140V。总体上我国在飞轮的研究与应用上与国际先进水平相比差距较大,尤其是电力储能用飞轮,目前大部分停留在小容量的原理验证,还没有成熟的装置和产品。

3.4 发展趋势

飞轮储能的主要发展趋势包括先进复合材料以提高能量密度、高速高效电机以提高功率密度和效率、磁悬浮等高承载力、微损耗轴

承技术,以及飞轮阵列技术。

4 飞轮储能技术在电力系统中的应用4.1 飞轮储能系统在电力系统调峰中的应用

我国电力系统已进入大机组大电网时代, 主力机组单机容量达20~60 万kW。大容量机组受热惯性的制约, 冷状态启动时间长, 在低负荷下运行不仅燃烧不稳, 热效率显著降低, 且容易产生振动, 这些是用火电机组调峰的困难。有调节水库的水电站调峰能力很强, 但不是每个系统的水电站都拥有调节水库。如让径流式水电站参加调峰就要引起弃水, 实不可取。为了满足调峰的要求, 除了对火电机组进行技术改造外, 还开发了多种以调峰为主要目标的技术, 其中抽水蓄能电站的技术已经成熟, 并得到实际应用。正在研究的有超导储能技术、压缩空气储能技术、蓄电池储能技术、电容器储能技术、飞轮储能技术等。超导储能技术很有吸引力, 但近期难以取得突破性进展, 飞轮储能技术被认为是近期最有希望和最有竞争能力的新型调峰技术, 受到国内外的重视。

飞轮储能技术是在电网负荷处于低谷时, 机组作为电动机拖动飞轮, 把电能转换为动能, 在用电高峰时, 飞轮拖动机组作为发电机把动能转化为电能。飞轮储能系统的运行是典型的周期性运行, 系统的寿命期望达10 年以上。它可以放置在户外的地下, 减小了对用户可用空间的需求。

和抽水蓄能相比, 飞轮储能具有很多优点, 二者的比较情况如表2 所示。从表中可看出, 飞轮储能机组比抽水蓄能电站明显优越, 尤其在我国北方缺乏水利资源地区, 建设飞轮储能调峰电源应是首选方案。预期在2000 年以前单机容量1MW、储能5MW. h 的飞轮储能机组将在电网中投入运行。

4.2 飞轮储能系统对电力系统稳定性的影响

飞轮储能机组在电网中投入运行后, 可以有效地调节电力系统负荷水平, 同时可使电力系统的静态稳定和暂态稳定水平有较大的提高。飞轮储能机组还可作为可调无功电源和事故备用电源, 有效地提高了系统的电压水平和供电可靠性。图2 为应用我们编制的面向对象式电力系统稳定影响的情况。

最大运行方式下, 无飞轮储能机组时的电压分布如图3 所示。

最大运行方式下, 仅A 节点有飞轮储能机组调节时的电压分布如图4 所示。

由以上可以看出, 最大运行方式下A

节点有飞轮储能机组调节时, A 节点以及其它负荷节点的电压幅值增大, 角度减小, 有效地提高了系统的电压水平和静态稳定水平。

4.3 关键技术

目前飞轮储能技术主要有两大分支,第一个分支是以接触式机械轴承为代表的大容量飞轮储能技术,其主要特点是储存动能、释放功率大,一般用于短时大功率放电和电力调峰场合。第二个分支是以磁悬浮轴承为代表的中小容量飞轮储能技术,其主要特点是结构紧

凑、效率更高,一般用作飞轮电池、不间断电源等。

为提高飞轮的转速和降低飞轮旋转时的损耗,飞轮储能的关键技术包括高强度复合材料技术、高速低损耗轴承技术、高速高效发电/电动机技术、飞轮储能并网功率调节技术、真空技术等。

4.4 国外对飞轮储能技术在电力系统中的研究现状 1999年欧洲Urenc Power 公司利用高强度碳纤维和玻璃纤维复合材料制作飞轮,转速为42 000 rad /min ,2001年1月系统投入运行,充当UPS ,储能量达到18 MJ 。美国波音公司Phantom 工厂研制的高温超导磁浮轴承100 kW /5 kWh 飞轮储能装置,已用于电能质量控制和电力调峰。部分飞轮储能装置在电力系统中

的应用情况见表1。

表1一飞轮储能装置在电力系统中应用项目 Tab .1 Some kinetic energy storage systems

installed in power system

美国能源部与州立爱迪生电力公司、阿贡国家试验室合作, 并组织有关单位进行高温超导磁悬浮轴承飞轮储能系统的研究开发。已进行了大量的高温超导磁悬浮轴承的试验研究。轴承摩擦系数已达到了3×10- 7的世界记录。1 994 年研制了飞轮直径达15in( lin= 0. 254 m) , 重量为25 lb( 1lb= 0. 454 kg, ) 极限储能容量为2~5 kW. h 的高lb 温超导飞轮储能系统。在此基础上准备以每年增大一个数量级的步伐加速开发, 1997 年将进行1MW. h 单元研制。美国的休斯敦大学, 也进行了高温超

导磁悬浮轴承飞轮储能的研究, 已研制了19kg 重的飞轮系统以进行试验研究。日本已投资3500 万美元进行高温超导磁悬浮轴承飞轮储能研究, 由三菱、日立、精工等公司和多个研究所、高校组成3 个研究组合作承担。已研制出3 种试验模型机, 并进行了储能8MW. h 容量1000kW 的飞轮储能机组的概念设计。欧洲的法国国家科研中心、德国的物理高技术研究所、意大利的SISE 均正开展高温超导磁悬浮轴承的飞轮储能系统研究。

5 结语

本文研究了飞轮储能技术在电力系统调峰和电力系统稳定性中的应用,飞轮储能机组对电力系统可以起到削峰填谷的作用,可以提高电力系统的静态稳定性, 还可提高电力系统的暂态稳定性和供电可靠性。随着超导技术的发展和高强度复合材料的出现以及电力电子技术的新进展, 开发飞轮储能技术已经成为可能。从经济和技术角度看, 飞轮储能机组作为一种重要的调峰手段分散接入电网是可行的。由于飞轮机组运行控制的灵活性, 可使电力系统的运行可靠性和稳定性得到提高。

参考文献

[1]程时杰,文劲宇,孙海顺.储能技术及其在现代电力系统中的应用[J].电气应用,2005,24(4):1-8.

[2]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.

[3]陈建斌,胡玉峰,吴小辰.储能技术在南方电网的应用前景分析[J].南方电网技术,2010,4(6):32-36.

[4]Kirk J A, Anand D K. Ov er v iew of a Flyw heel StackEner gy System . Pro c. 23r d I nt ersoc. Energ y Co nv.Eng rg . Co n. , Denv er , CO, USA, 1988. 2. 37~2. 425 Hig gins M A. Flyw heel Ener gy St or age for Electric Utility Load Leveling . Mar yland, USA, 1991 [5]Neimey er L H. A Hig h Efficiency Mo to r fo r the M agnetically Suspended Flywheel Stack. MS T hesis, Univ. of M D, 1989

Understanding of the interactive features of the smart grid

(Sichuan University Chengdu 610065,China)

Abstract:This paper analyzes the status and role of energy storage technologies in power system development and change, a broad overview of the four major categories of energy storage technology. Described in detail the basic principles of the flywheel energy storage technology, technical characteristics, development status, the main problems and the need to break through key technologies such as a more comprehensive overview. The necessity and feasibility of flywheel energy storage technology for power system peaking were analyzed and compared and mature technology Pumped Storage Power Station. A power system static stability flow calculation results show that the flywheel energy storage units can improve the static stability of the power system, but also to improve power system transient stability and reliability of power supply.

Key words: Power systems; energy storage; flywheel energy storage; peaking; system stability

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

飞轮储能技术的发展现状

飞轮储能技术的发展现状 摘要: 飞轮储能技术已成为国际能源界研究的热点之一。从飞轮储能技术的技术进展(包括飞轮本体、转子支承系统、电动/发电机、电力转换器与真空室)角度出发,系统地介绍了该技术国内外的发展现状。 关键词: 飞轮储能系统,电动机/发电机,电力转换器,真空室 近年来,飞轮储能技术发展非常迅速。国内外都积极地投入大量资金和人力在这项储能技术上,目前已经有了可喜成果,以飞轮储能五大关键技术为出发点,分别对其技术发展现状进行阐述。 1飞轮转子技术现状 美国休斯顿大学的德克萨斯超导中心致力于纺锤形飞轮开发,这是一种等应力设计,形状系数等于或接近1,材质同样为玻璃纤维复合材料,储能1kWh、重19kg、飞轮外径30.48cm。美国Beacon 电力公司推出的Beacon 智能化储能系统,其飞轮转子以一种强度高、重量轻的石墨和玻璃纤维复合材料制成,用树脂胶合。美国Satcon 技术公司开发的伞状飞轮,这种结构有利于电机的位置安放,对系统稳定性十分有利,转动惯量大,节省材料,轮毂强度设计合理。 NASA Glenn 中心和美国宾州州立大学高级复合材料制造中心等单位均采用湿法缠绕工艺制备了复合材料飞轮。 2飞轮储能的轴承支承系统技术现状 2.1机械轴承 美国TSI 公司应用高级的润滑剂、先进的轴承材料及设计方法和计算机动态分析,成功地开发出内部含有固体润滑剂的陶瓷轴承,最新又研制的基于真空罩的超低损耗轴承,其摩擦系数只有0.000 01。 2.2被动磁轴承(PMB) 目前对永磁轴承的研究较少,目前主要集中在对超导磁轴承(SMB)的研究上。 西南交通大学超导技术研究所从20 世纪90 年代初期开始,就一直致力于高温超导磁悬浮技术的应用基础研究,2000 年研制成功了世界首辆载人的高温超导磁悬浮实验车。 日本ISTEC 正在对10kWh/400kW 等级飞轮系统中的SMB 进行组装实验,同时加工设计100kWh等级飞轮定子。 德国ATZ 公司则从2005 年开始对5kWh/250kW 等级的飞轮进行研究。ATZ 公司与 L-3MM 合作生产高温超导储能,并即将进行工程应用电性能测试。并且两家机构还达成共

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

储能技术的三类价值体现

储能技术的三类价值体现 在过去相当长一段时间,储能在电网的应用技术主要是抽水蓄能,应用领域主要是移峰填谷、调频及辅助服务等。近年来,随着新能源发电技术的发展,风电、太阳能光伏发电等波动性电源接入电网的规模不断扩大,以及分布式电源在配网应用规模的扩大,储能及其在电网的应用领域和应用技术都发生了很大变化。储能技术类型不断增多,应用范围也在扩大,本文就从储能技术的类型与应用范围谈起。 储能技术即能量存储和再利用的技术,按其基本原理分类,可分为物理储能、化学储能以及一些前沿储能技术,其中物理储能包括抽水蓄能、压缩空气储能、飞轮储能、超导储能等,化学储能有铅炭电池、锂离子电池、液流电池、钠硫电池、超级电容器等,液态金属电池、铝空气电池、锌空气电池等属于比较前沿的技术。不同的储能技术其特征和应用范围也有所区别。单从储能技术评价指标来看,就包括功率规模、持续时间、能量密度、功率密度、循环效率、寿命、自放电率、能量成本、功率成本、技术成熟度、环境影响等。可以说,没有一种单一储能技术可以适应所有的储能需求,应按需选择合适的储能技术或技术组合。 1、储能技术简介 1.1抽水蓄能电站 抽水蓄能使用两个不同水位的水库。谷负荷时,将下位水库中的水抽入上位水库;峰负荷时,利用反向水流发电。抽水储能电站的最大特点是储存能量大,可按任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%——85%。 1.2压缩空气储能 压缩空气储能系统主要由两部分组成:一是充气压缩循环,二是排气膨胀循环。在夜间负荷低谷时段,电动机—发电机组作为电动机工作,驱动压缩机将空气压入空气储存库;白天负荷高峰时段,电动机—发电机组作为发电机工作,储存的压缩空气先经过回热器预热,再与燃料在燃烧室里混合燃烧后,进入膨胀系统中(如驱动燃气轮机)发电。 1.3飞轮储能系统 飞轮储能利用电动机带动飞轮高速旋转,将电能转化成机械能储存起来,在需要时飞轮带动发电机发电。近年来,一些新技术和新材料的应用,使飞轮储能技术取得了突破性进展,例如:磁悬浮技术、真空技术、高性能永磁技术和高温超导技术

飞轮物理储能系统分析及应用

飞轮物理储能系统分析及应用 随着人们生活质量在不断提高,对于电力的需求在不断加大,随着储能技术日趋成熟和成本快速下降,中国储能产业快速发展,逐步从研发示范向商业化阶段过渡,但整体来看储能产业还处于发展初期阶段,仍存在发展前景不明晰、技术标准不完善、商业模式和市场机制不清晰等问题。从发展规模、技术经济性、产业链等方面总结中国储能发展现状,基于“源-网-荷-储”协调规划理论,从宏观层面展望新能源大规模发展形势下中长期储能发展前景,研究储能在电力系统中的合理运行方式、与新能源消纳关系等重要问题;从微观层面对储能在电源侧、电网侧和用户侧等场景的应用关键问题及发展对策进行分析,并提出相关建议,为推动中国储能产业健康发展提供参考。 标签:飞轮储能系统;交流侧储能;直流侧储能;储能前景分析 1、引言 通过对相关一系列储能技术进行分析和研究,就能对我国电力系统在实际运行过程中的状况进行全面的了解。通过运用新能源,能科学有效的处理能源大规模缺乏这一问题。在对系统自身稳定性进行加强的基础上,还能对其全面性给予保证,进一步提高功率在波动过程中的指令,加强电能质量,对出现的问题进行科学处理。现阶段无论是储能系统的前期规划,还是中期进行推动的过程,都能加强经济性,对资源配置进行不断优化的基础上,还能保证不同场合的储能系统都能得到科学有效的运用。 2、飞轮物理储能系统简介 飞轮储能系统是一种机电能量转换的储能装置,突破了化学电池的局限,用物理的方式实现储能,通过电动机/发电机互逆式双向电机,实现电能与高速旋转的飞轮的机械动能之间的相互转换与存储,并通过电力电子设备实现与不同系统之间的接入与控制。 当充电时,采用电动机工作模式,电能通过电力转换器变换后驱动电机运行,电动机带动飞轮加速旋转,将电能转变为机械能存储,完成充电过程;当放电时,采用发电机工作模式,利用发电机将飞轮高速旋转的动能转变为电能,经电力转换器输出适用于负载的电流与电压,完成放电过程。 2.1飞轮系统核心组件 飞轮模块:系统核心部件,可实现20年免维护 图形用户界面:提供系统状态监测、系统功能设定等功能 飞轮控制单元:实现飞轮储能系统的监测、控制、通信等功能

飞轮储能

蒋书运 研究领域: 1、高速加工机床(高速精密电主轴;机床结构动、热态特性分析等) 2、电能存储新技术(飞轮储能系统) 项目 1、飞轮储能系统机电耦合与解耦设计的理论与方法; 国家自然科学基金; 2002-2004; 应用基础研究。 2、新型高效飞轮储能关键技术研究; 国家863计划项目; 2007-2009年; 高技术研究。 3、带电涡流阻尼器与大承载永磁悬浮轴承的储能飞轮转子动力学研究; 国家自然科学基金; 2012-2015;

应用基础研究。 4、中国博士后科学研究基金:飞轮储能系统机电耦合非线性振动与飞轮本体结构优化设计 文章 1、鞠立华, 蒋书运. 飞轮储能系统机电耦合非线性动力学分析[J]. 中国科学:技术科学, 2006, 36(1):68-83. 2、Jiang S, Lihua J U. Study on electromechanical coupling nonlinear vibration of flywheel energy storage system[J]. 中国科学:技术科学, 2006, 49(1):61-77.飞轮储能系统机电耦合非线性振动研究 3、Wang H, Jiang S, Shen Z. The Dynamic Analysis of an Energy Storage Flywheel System With Hybrid Bearing Support[J]. Journal of Vibration & Acoustics, 2009, 131(5):051006.具有混合轴承支撑的储能飞轮系统的动态分析 4、Jiang S, Wang H, Wen S. Flywheel energy storage system with a permanent magnet bearing and a pair of hybrid ceramic ball bearings[J]. Journal of Mechanical Science and Technology, 2014, 28(12):5043-5053.具有永磁轴承和一对混合陶瓷球轴承的飞轮储能系统 一、什么是飞轮储能 飞轮储能是指利用电动机带动飞轮高速旋转,在需要的时候再用飞轮带动发电机发电的储能方式。 飞轮储能系统主要包括转子系统、轴承系统和转换能量系统三个部分构成。另外还有一些支持系统,如真空、深冷、外壳和控制系统。基本结构如图所示。 转子系统

飞轮储能技术

飞轮储能技术研究 汽车08-2班张吉泉0707130226 摘要:介绍了飞轮储能技术的基本原理和应用.飞轮储能技术作为一种新型能源储备方式,具有大储能、高功率、无污染、适用广、维护简单、可实现连续工作等优点越来越为世界各国所重视,成为研究热点。 关键词:飞轮储能;电力;复合材料;飞轮电池 引言:近年来.世界各地屡屡发生大面积停电等重人电力事故.美国、加拿人、英国、瑞典、意人利等都遭遇了地铁瘫痪、民航、铁路运输中断等事故.经济损失达上千亿美元.大面积停电和严重缺电能够迅速波及整个网络.其损失和造成的影响都是难以估量的.采取一些有效的措施把用电低谷时多余的电能储存起来.在用电高峰时释放出来缓解用电压力是各国都在积极考虑的问题.现在己采取的储能技术有机械储能(飞轮、抽水、弹簧、压缩空气等)、热能蓄能(显热、潜热、蒸发、融解、升华等)、电磁蓄能(电容器、超导等)和化学蓄能(蓄电池、合成燃料、浓度差发电、物理化学能量等).其中发展最快、规模最大的是抽水蓄能.其次是压缩空气蓄能.排在第二位的就是飞轮蓄能.飞轮蓄能装置可配置在城市和用电中心附近的变电所.用来调峰调频.它的规模己达几十和几百MW级.特别是由于高温超导磁力轴承的开发和应用.将加速飞轮储能技术的发展.与其他形式的储能方式相比较.飞轮储能具有大容量、高效率、无限循环寿命、零排放、无污染和装置对环境无要求等优点. 1飞轮储能原理 飞轮储能系统主要包括3个部分:(1)转子系统;(2)支撑转子的轴承系统;(3)转换能量和功率的电动/发电机系统.另外还有一些支持系统,如真空、深冷、外壳和控制系统.基木结构如图1所示. 1 .1飞轮转子 飞轮转子是飞轮储能系统的一个重要的组成部分.储存在飞轮内的动能E用下式表示为 式中J和w分别表示飞轮的转动惯量和转动角速度.考虑到制造飞

储能技术及其在现代电力系统中的应用

储能技术及其在现代电力系统中的应用 内容摘要 从电力系统安全高效运行的角度论述了电能存储技术的重要性,介绍了目前常用的几种储能技术的发展现状,指出了该领域当前的热点研究问题。 现代电力系统中的新问题 安全、优质、经济是对电力系统的基本要求。近年来,随着全球经济发展对电力需求的增长和电力企业市场化改革的推行,电力系统的运行和需求正在发生巨大的变化,一些新的矛盾日显突出,主要的问题有:①系统装机容量难以满足峰值负荷的需求。②现有电网在输电能力方面落后于用户的需求。③复杂大电网受到扰动后的安全稳定性问题日益突出。④用户对电能质量和供电可靠性的要求越来越高。⑤电力企业市场化促使用户则需要能量管理技术的支持。⑥必须考虑环境保护和政府政策因素对电力系统发展的影响。 2000年到2001年初,美国加州供电系统由于用电需求的增长超过电网的供电能力,出现了电力价格大范围波动以及多次停电事故;我国自2002年以来,已连续四年出现多个省市拉闸限电的状况;在世界上的其他国家和地区,也不同程度地出现了电力供应短缺的现象。系统供电能力,尤其是在输电能力和调峰发电方面的发展已经落后于用电需求的增长,估计这种状况还会在一段时间内长期存在,对电力系统的安全运行将带来潜在的威胁。 加强电网建设(新建输电线路和常规发电厂),努力提高电网输送功率的能力,可以保证在满足系统安全稳定运行的前提下向用户可靠地输送电能。但是,由于经济、环境、技术以及政策等方面因素的制约,电网发展难以快速跟上用户负荷需求增长的步伐,同时电网在其规模化发展过程中不可避免地会在一段时间甚至长期存在结构上的不合理问题;另一方面,随着电力企业的重组,为了获取最大利益,企业通常首先选择的是尽可能提高设备利用率,而不是投资建设新的输电线路和发电厂。因此,单靠上述常规手段难以在短时间内有效地扭转电力供需不平衡的状况。 长期以来,世界各国电力系统一直遵循着一种大电网、大机组的发展方向,按照集中输配电模式运行。在这种运行模式下,输电网相当于一个电能集中容器,系统中所有发电厂向该容器注入电能,用户通过配电网络从该容器中取用电能。对于这种集中式输配电模式,由于互联大系统中的电力负荷与区域交换功率的连续增长,远距离大容量输送电能不可避免,这在很大程度上增加了电力系统运行的复杂程度,降低了系统运行的安全性。 目前,电力系统还缺乏高效的有功功率调节方法和设备,当前采用的主要方法是发电机容量备用(包括旋转备用和冷备用),这使得有功功率调控点很难完全按系统稳定和经济运行的要求布置。某些情况下,即使系统有充足的备用容量,如果电网发生故障导致输电能力下降,而备用机组又远离负荷中心,备用容量的电力就难以及时输送到负荷中心,无法保证系统的稳定性。因此,在传统电力系统中,当系统中出现故障或者大扰动时,同步发电机并不总是能够足够快地响应该扰动以保持系统功率平衡和稳定,这时只能依靠切负荷或者切除发电机来维持系统的稳定。但是,在大电网互联的模式下,局部的扰动可能会造成对整个电网稳定运行的极大冲击,严重时会发生系统连锁性故障甚至系统崩溃。美国和加拿大2003年8月14日发生的大停电事故就是一个惨痛的教训。如果具有有效的有功和无功控制手段,快速地平衡掉系统中由于事故产生的不平衡功率,就有可能减小甚至消除系统受到扰动时对电网的冲击。 在现代电力系统中,用户对于电能质量和供电可靠性的要求越来越高。冲击过电压、电压凹陷、电压闪变与波动以及谐波电压畸变都不同程度地威胁着用户设备特别是敏感性负荷的正常运行。电力市场化的推行也促使电力供应商和用户一起共同寻求新的能量管理技术支

储能电站技术要求概要

性能要求 2.1 总体要求 2.1.1 2.1.2 测。 2.1.3 电池储能系统的监控系统及其子系统(包括电池管理系统、变流装电池储能系统要求能够自动化运行,运行状态可视化程度高。交直流回路及监控软件须能够对交直流各回路进行电流和电压监 置就地控制器、储能系统配套升压变及高低压配电装置监控单元等)所采用的通讯协议应向客户完全开放,且需符合国际通用标准及客户要求。 2.1.4 电池组的布置和安装应方便施工、调试、维护和检修,若有特殊要 求应特别注明;变流器应安装简便,无特殊性要求。 2.1.5 电池储能系统设备均为室内布置。投标方所提供的设备尺寸和数量 (考虑了检修和巡视通道后)应满足房间尺寸要求,不得大于该房间尺寸。 2.2 环境条件 表2.1 环境条件参数表 环境项目 海拔高度(m)安装地点 最高温度(℃)最低温度(℃) 户外环境温度 最大日温差(K)最高日平均气温(℃) 耐地震能力 (按IEC61166进行试验,安全系数1.67) 水平加速度 g 垂直加速度 招标人要求值≯1600m 户内 投标人保证值 2.3 技术参数与指标 2. 3.1 投标方应提供的技术数据表 投标文件中应包含如下数据(按2MW电池储能系统填写)及所依据的计算方法,并保证供货设备的性能特性与提供的数据一致。 表2.2 磷酸铁锂电池储能系统(以2MW为单元) 序号 1 额定放电功率

名称 招标人要求值 2MW 投标人保证值投标人填写 备注 性能应达到1.5倍放 电功率 额定充电功率 2MW 8MWh(第一包填写) 3 额定储能容量 12MWh(第二包填写) 投标人填写 即2MW×6h 投标人填写 投标人填写即2MW×4h 4 储能能量效率—投标人填写 以35kV侧出线侧为考核点 5 6 7 8 充放电转换时间单体电池数量电池串并联方式柜体或台架材料外形尺寸<1s ——— 投标人填写额定功率时投标人填写投标人填写投标人填写 9 (长×深×高,mm) 10 11 12 13 14 15 15.1 15.2 重量(kg)防护等级(户内)噪音 —投标人填写 — IP2X 65dB 投标人填写投标人填写投标人填写投标人填写投标人填写 投标人填写投标人填写投标人填写投标人填写投标人填写 距离设备1m处 20~200Ah 运行环境温度(户内)℃~+35℃待机损耗防雷能力标称放电电流残压额定容量(Ah)额定电压 <3% >25kA <1kV 投标人填写—— 16

飞轮储能系统的并网控制方法设计

飞轮储能系统的并网控制方法设计 中国科学院电工研究所的研究人员刘文军、唐西胜等,在2015年第16期《电工技术学报》上撰文,采用带LCL滤波器的背靠背双PWM变流器作为飞轮电机与电网进行能量交换的接口,提出一种飞轮储能系统并网控制方法。 该方法由电网侧变流器控制和电机侧变流器控制两部分组成,并经过充电、预并网和并网运行三个阶段。 在充电和预并网阶段,电网侧变流器采用不控整流方式,电机侧变流器先后采用速度外环和电压外环控制方式; 在并网运行阶段,电网侧变流器控制采用基于电网侧电流外环、变流器侧电流内环的直接功率控制策略,控制并网有功功率的大小及流向;电机侧变流器控制采用直流母线电压外环、电流内环的双闭环控制策略,维持直流母线电压恒定。 采用零极点对消降阶法及对称优化函数等效法分别设计电机侧内外环控制器参数。进行了飞轮储能系统的充电、预并网和并网运行实验。实验结果验证了所提飞轮储能系统并网控制方法的可行性。 飞轮储能由于具有无环境污染、使用寿命长、充放电次数无限制等特点,且与传统化学电池相比优势明显,已得到了国内外研究学者的广泛关注。采用飞轮储能系统并网运行,可以主动调节电网有功功率,确保系统供需平衡,减少有功负荷变化、间歇性可再生能源接入电网等对系统稳定性、可靠性的影响,在电力系统调频、间歇式可再生能源发电等领域具有广阔的应用前景。 飞轮储能并网控制方法作为飞轮储能系统的关键技术之一,是飞轮储能系统成功参与电网功率调节的关键,具有重要意义。 背靠背双PWM变流器目前在具有再生能量反馈的交直交变频调速系统中得到了广泛的应用。文献采用背靠背变流器将电机制动时产生的能量回馈给电网,其直流母线电压由电网侧变流器控制,电机侧变流器采用速度外环、电流内环,但由于该控制方法以电机转速为控制目标,其从电网吸收和回馈给电网的功率不可控。

国内外飞轮储能技术发展现状研究

国内外飞轮储能技术发展现状研究 时间:2011-11-1 来源:北极星电力网 一、大规模发展新能源和推动节能环保亟须发展大容量储能产业 传统能源的日益匮乏和环境日趋恶化,极大地促进了新能源的发展,新能源发电的规模也快速攀升。但风电、太阳能发电自身所固有的随机性、间歇性特征,决定了其规模化发展必然会对电网调峰和系统安全运行带来显著影响,必须要有先进的储能技术作支撑。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全;但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并入常规电网。 中国新能源大发展在即,对储能产业有更急迫的现实需求。预计到2020年风电和太阳能发电装机会突破1.7亿千瓦,占全国发电装机总量的比例会超过15%。但由于目前我国电力系统煤电比例较高,在部分地区又主要是调峰能力差的供热机组,核电发展很快但却不能参与调峰,水电、燃气发电等调峰性能优越的电源所占比例过低,导致现有电力系统接纳新能源的能力很弱。再加上我国能源资源所在地多远离负荷地,不得不实施风电、光电的“大规模集中开发、远距离输送”,这更进一步加大了电网运行和控制风险。随着国内新能源发电规模的快速扩大,电网与新能源的矛盾越来越突出,对储能的需求更为迫切。 大容量储能还可提高能源利用效率,为国家节约巨额投资。为应对城市尖峰负荷,电力系统每年都要新增大量投资用于电网和电源后备容量建设,但利用率却非常低。以上海为例,2004—2006年间,为解决全市每年只有183.25小时的尖峰负荷,仅对电网侧的投资每年就超过200亿元,而为此形成的输配电能力的年平均利用率不到2%。同样是为了应对尖峰负荷,转而采用大容量储能技术,不仅投资会成倍减少,而且由于储能设施占地少、无排放,其节地、节能、减排的效果是其他调峰措施无法比拟的。 二、全球大容量储能技术呈多元化发展格局,中国企业已掌握关键技术,拥有自主知识产权。 全球储能技术主要有化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。钠硫电池的充电效率已可达到80%,能量密度是铅酸蓄电池的3倍,循环寿命更长。日本在此项技术上处于国际领先地位,2004年日本在本国Hitachi自动化工厂安装了当时世界上最大的钠硫电池系统,容量是9.6MW/57.6MWh。液流钒电池的基础材料是钒,该电池具有能量效率高、蓄电容量大、能够100%深度放电、寿命长等优点,已进入商业化阶段。锂离子电池的基础材料是锂,已开始在电动自行车、电动汽车等领域应用,近年来由于磷酸亚铁锂、纳米磷酸铁锂等新材料的开发与应用,大大改善了锂离子电池的安全性能和循环寿命,大容量锂电池储能电站正逐渐兴起。 物理储能中最成熟也是世界应用最普遍的是抽水蓄能,主要用于电力系统的调峰、填谷、调频、调相、紧急事故备用等。其能量转换效率在70%—75%左右。目前世界范围内抽水蓄能电站总装机容量9000万千瓦,约占全球发电装机容量的3%。压缩空气技术早在1978年就实现了应用,但由于受地形、地质条件制约,没有大规模推广。飞轮蓄能的特点是寿命长、无污染,动态特性好,但超大容量的飞轮,目前技术尚不成熟。电磁储能技术现在仍很昂贵,还没有商业化。

飞轮储能系统及简述

飞轮储能系统及简述 在电网的调频调峰方面,飞轮储能电站与核电站,火电站等其他类型的电站相比,在爬升能力,调峰调频比率等方面有着一定的优势。 1研究意义 储能技术应用于电力系统,可以改变电能生产、输送与消费必须同步完成的传统模式。目前,我国正在规划与大力发展坚强智能电网,全面覆盖发-输-变-配-用-调的六大环节与信息平台的建设。储能技术将是未来智能电网的重要组成部分,涉及其建设的各个主要环节。发展储能技术重要意义包括削峰填谷、调节节约能源、提高电力电网系统效率、保证电力电网系统安全等方面。同时采用储能技术可以弥补新能源发电的随机性、波动性,并实现新能源发电的平滑输出,使大规模风电及太阳能发电更安全更可靠地并入常规电网。储能技术也可以解决电动汽车充电的随机性、波动性问题,有效调节电动汽车充电引起的电网电压、频率及相位的变化,为新能源汽车的大规模推广提供基础。随着智能电网、分布式供电等新技术的推广应用,储能的作用进一步突现出来。大规模储能技术的发展和应用将对新能源乃至整个电力系统带来革命性的影响。 2飞轮储能的原理 飞轮储能是利用高速旋转的飞轮将电能以动能形式储存起来。典型的飞轮储能系统的基本结构如图1所示, 主要由五部分组成:飞轮转子、支撑轴承、高速电机、双向变流器、真空室。为了减少空闲运转时的损耗,提高飞轮的转速和飞轮储能装置的效率,飞轮储能装置轴承的设计一般都使用非接触式的磁悬浮轴承技术,而且将电机和飞轮都密封在一个真空容器内以减少风阻。通常发电机和电动机使用一台电机来实现,通过轴承直接和飞轮连接在一起。

图1飞轮储能系统的基本结构 其工作原理为:系统储能时,高速电机作为电动机运行,由工频电网提供的电能经变频器驱动电机加速,电机拖动飞轮加速储能,能量以动能形式储存在旋转的飞轮体中。当飞轮达到设定的最大转速后,系统处于能量保持状态,直到接收到一个释放能量的控制信号,系统释放能量,高速旋转的飞轮利用其惯性作用拖动电机减速发电,经变流器输出适用于电网要求的电能,完成动能到电能的转换。在整个飞轮储能装置中,飞轮是其中的核心部件,它决定了整个装置的储能多少,其储存的能量为: J 为飞轮的转动惯量, 与飞轮的形状和重量有关;ω为飞轮转动的角速度。 3飞轮储能的技术优势 储能技术是指,将电能通过某种装置转换成其他便于存储的能量高效存储起来,在需要时,可以将所存储的能量方便地换成所需形式能量的一种技术。储能技术主要有物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)、化学储能(如各类蓄电池、可再生燃料电池、液流电池、超级电容器等)和电磁储能(如超导电磁储能等)。 飞轮储能是用物理方法实现电能存储, 是一种高度机电一体化产品, 是最有发展前途的储能技术之一。飞轮储能与其他几种典型储能方式性能比较如表1所示。飞轮储能使用寿命可达到20年以上,超过了其他几种储能方式,并且由于飞轮储能是机械储能方式,对于工作温度没有特定的要求,对于环境几乎没有影响。飞轮储能具有较大的容量密度和功率密度,维护周期长,系统稳定性强,适用于调峰调频,电能质量调节,输配电系统稳定性,UPS等场合。

现有的储能发电方式

部分2:现有的储能发电方式 作为智能电网发展的重要环节的储能技术,是智能电网关键的支撑技术之一。新能源、可再生能源的不断发展给储能技术带来了新的机遇。我国目前在储能产业发展的前景是:抽水储能型电站将进入高峰期,应用于智能电网的储能技术将飞速发展。 1、抽水蓄能系统 在电力系统中发展得最为成熟,且应用也最为广泛的电力储能是抽水储能。抽水蓄能型发电站是利用两个不同水位的水库,即上游、下游两个水库,也称上池、下池,在谷负荷时,抽水蓄能设备处于电动机工作状态,将下池中的水抽至上池保存,在峰负荷时,抽水储能设备处于发电机工作状态,利用储存在上池中的水进行发电。抽水储能电站可根据任意容量进行改造,其最大的储能特点是储存能量很大,同时释放的时间可以几个小时到几天,且综合效率在70%到80%。但是抽水储能型电站需要的一次性投入的费用很大,且受到地形的制约,当电站距离用电区域较远时输电损失会比较大。 日、美、西欧等国家和地区在20 世纪60~70 年代进入抽水蓄能电站建设的高峰期。到目前为止,美国和西欧经济发达国家抽水储能机组容量占世界抽水蓄能电站总装机容量55%以上,其中美国约占3%,日本则超过了10%。未来抽水蓄能电站的重点将着眼于运行的可靠性和稳定性,在水头变幅不大和供电质量要求较高的情况下使用连续调速机组,实现自动频率控制。提高机电设备可靠性和自动化水平,建立统一调度机制以推广集中监控和无人化管理,并结合各国国情开展海水和地下式抽水蓄能电站关键技术的研究。 2、压缩空气储能系统 压缩空气储能电站(CAES)是一种调峰用燃气轮机发电厂,主要是利用压缩空气储能系统进行储能发电。该系统主要分为两部分,即充气压缩循环系统和排气膨胀循环系统。在夜间电网负荷低谷时,利用剩余电力,将电动机-发电机组作为电动机进行工作,驱动空气压缩机将空气进行压缩并储存在空气储存密封设施中;在白天的负荷高峰时,电动机-发电机组作为发电机进行工作,将储存的压缩空气经过回热器预热后,再与燃料在燃烧室内进行混合燃烧后,进入排气膨胀系统进行发电。压缩空气储能发电站的建设投入和发电成本都低于抽水储能型发电站,但是因其能量密度很低,所以对地质结构有特殊要求,建设会受到地形的制约。CAES 储气库漏气开裂可能性极小,安全系数高,寿命长。压缩空气蓄能发电系统的关键是气室的密封性、经济性、可靠性等。 世界上第一座商业运行的CAES 是1978 年投入运行的德国Huntorf电站,目前仍在运行中。机组的压缩机功率为60 MW,释能输出功率为290MW,系统将压缩空气存储在地下600 m 的废弃矿洞中。机组可连续充气8 h,连续发电2 h。1991 年投入商业运行的美国Alabama 州Mclntosh的CAES,其地下储气洞穴在地下450 m,压缩机组功率为50MW,发电功率为110 MW,可以实现连续41 h 空气压缩和26 h 发电。另外日本、意大利、以色列等国也分别有CAES 正在建设过程中。我国对压缩空气储能系统的研发起步较晚,但对压缩空气储能系统的研究,逐渐受到相关科研院所、电力企业和政府部门的重视。

我国电力系统对大规模储能的需求分析

我国电力系统对大规模储能的需求分析 摘要:电化学储能作为一种调节速度快、布置灵活、建设周期短的调节资源日 益受到人们的关注和重视。推动 GW 级电化学储能建设应用,构建更加灵活高效的电力系统,是保障“十四五”以及未来新能源健康发展和电力系统稳定运行的 必然要求。本文所研究的大规模储能指的是技术上的电化学储能,所提及 的储能电站指的工程上的电化学储能电站。 关键词:电力系统;大规模储能;需求分析 常见储能技术 (1)物理储能包括抽水蓄能、压缩空气储能、飞轮储能等,其中最成熟的也是最普及 的是抽水储能,其主要的应用场景是在电力系统中参与削峰填谷、调频调相等。抽水储能的 时间长短各异,从几个小时一直到几天,其能量转换效率为 70%~85% 之间。但抽水储能电 站也有其不利因素,其建设受到地形的限制因素较多,建设周期也因地形地貌而异,一般周 期都较长。当用电的区域与抽水蓄能电站相距较远时,其效率也得不到保证,过程中的消耗 较大。压缩空气储能早在 1978 年就实现了应用,但由于受地形、地质条件制约,没有大规 模推广。飞轮储能是将电能转化成机械能,以能量转换的方式将能量储存起来,在需要时飞 轮运转使发电机发电产生电能。飞轮储能的有点是寿命较长且无污染,但是其可发出的能量 密度较低,可以考虑作为蓄电池方式的补充方案进行建设。(2)化学储能的方式是现有的 几种储能方式中最多的。在化学储能范围内其技术水平和应用的条件也各有不同。首先,蓄电池储能是最成熟,最被广泛大众所应用的技术,根据其化学组成部分的不同可分为铅酸电池、镍镉电池、镍氢电池、锂离子电池、钠硫电池等。铅酸电池的技术在现阶段已经成熟, 可以作为大容量大规模储能系统,其单位成本和储能成本都很低,安全性可靠性也十分优秀,已经与小型的风力、光伏发电系统和中小型的分布式发电系统中得到了应用,但是铅酸电池 有一个致命弱点就是铅是重金属,会对环境造成污染,不符合当下绿色能源、清洁能源的发 展趋势,所以其不具备未来的发展空间,仅能在现阶段小范围使用。锂离子、钠硫、镍氢电池等这些蓄电池存在着其制造成本过高的问题,作为大规模的储能电站还不成熟,产品的性 能目前尚无法满足储能的要求,其经济性也无法实现商业化运营。最后超级电容是 1970 年 来开始产生的储能器件,其原理是使用特殊的电极材料和电解质,这种超级电容是普通的 20-1000 倍,其优点是容量巨大,而且还保留了传统的电容器的释放能量快的特点,目前已 经不断应用于高山气象站、边防哨所等电源供应场合。 我国电力系统对大规模储能的需求分析 特高压电网过渡期面临的问题 随着大容量直流、高比例新能源的发展,我国电源、电网格局都发生了重大变化。以低 惯量、弱支撑为特征的新能源机组在电网中的比例不断增加,跨区输送的大容量直流替代了 受端电网的部分常规电源,导致电网中传统的同步发电机组占比逐渐降低,同步电网的惯量支撑和一次调频能力不断下降,频率的支撑和调节能力难以应对大容量直流闭锁造成的功率 不平衡量冲击,造成频率跌落深度增大,频率恢复困难,系统安全稳定受到威胁。在跨大区 交直流混联电网中,跨区直流的闭锁还可能引发大区间交流联络线上的大规模潮流转移,造成跨区同步互联电网之间的失稳和解列事故。2015 年 9 月 19 日锦 苏特高压直流发生双极闭锁,引起华东电网瞬时损失功率 490 万千瓦 ( 设计容量 720 万 千瓦 ),当日负荷水平 1.5 亿千瓦,网内开机容量

储能电站技术方案

储能电站技术方案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

储能电站总体技术方案 2011-12-20 目录

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。 2.设计标准 GB 21966-2008 锂原电池和蓄电池在运输中的安全要求 GJB 4477-2002 锂离子蓄电池组通用规范 QC/T 743-2006 电动汽车用锂离子蓄电池 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变

飞轮储能系统研究方案

电机与电器专题课报告——飞轮储能系统研究 哈尔滨工业大学 2014年6月

飞轮储能系统研究 摘要:飞轮储能系统(FESS)又称飞轮电池或机电电池,由于它与化学电池相比所具有的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。本文针对该领域近年来的研究成果,对飞轮储能系统的几大关键部件全面的论述。 引言: 飞轮电池是一种高科技机电一体化产品,它在国防工业、汽车工业、电力工业、电信业等领域具有广阔的应用前景。作为电池家族的成员,这种新型的电池与化学电池相比具有以下几方面突出的优点。 (1)储能密度高。转子转速大于60000r/min的飞轮电池,在75%放电深度下 产生大于20Whr/lb的比能量(此值还不是最高的),而镍氢电池只有5~6Whr/lb的比能量,其放电深度一般限制在30%~40%的范围内。 (2)无过充电、过放电问题。化学电池一般不能深度放电,也不能过充电, 否则其寿命会急剧下降。而飞轮电池在深度放电时,其性能完全不受影响,而且在电力电子协助下,非常容易防止过充电(实际上是限制转子的最高转速)。飞轮电池的寿命主要取决于其电力电子的寿命,故一般可达到20年左右。 (3)容易测量放电深度,充电时间较短。飞轮电池只要测出转子的转速,就 能确切知道其放电深度,而化学电池就没有这么容易了。另外,飞轮电池的充电一般在几分钟之内即可完成,而化学电池则需要几个小时,常

见的需要七八个小时。 (4)对温度不敏感。化学电池在高温或低温时其性能会急剧下降,而飞轮电 池则不然。 (5)对环境友好。化学电池在报废后会对环境产生恶劣影响,而且回收成本 较高。飞轮电池是一种绿色电池,它不会对环境产生任何影响,故它在电动汽车方面的应用极具潜力。 飞轮电池的发展开始于20世纪70年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA)及其后的美国能源部(DoE)资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究Lewis研究中心(LeRC)在ERDA 的协助和美国航空航天局(NASA)的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA同时也资助Goddard空间飞行中心(GSFC)研究适用于飞行器动量飞轮的电磁轴承。80年代,DoE削减了飞轮储能研究的资助,但NASA继续资助GSFC研究卫星飞轮系统的电磁轴承,同时还资助了Langley研究中心(LaRC)及Marshall空间飞行中心(MSFC)关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维复合材料(抗拉强度高达8。27GPa)、磁悬浮技术和高温超导技术、高速电机/发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等)、汽车工业(电动汽车)、电力行业(如电力质量和电力负载调节等)、医疗和电信业(作UPS用)等。NASA的应用有航天器(宇宙飞船)、发射装置、飞行器动力系统、不间断电源(UPS)和宇宙漫步者。

屋顶光伏与储能一体化发电系统的设计分析

屋顶光伏与储能一体化发电系统的设计分析 随着社会持续发展,能源消耗量日益增加。随之,环境污染日益加重,必须开发利用各种清洁能源,减少能耗量,降低对周围环境的污染程度。作为一种重要的可持续再生能源,太阳能的应用在世界范围内不断扩大,光伏系统在我国的应用也逐渐增多,发挥着不可替代的作用,在缓解日益加重能源危机的基础上,也满足了用户的用电需求。因此,本文作者对屋顶光伏与储能一体化发电系统设计这一课题予以了探讨。 标签:屋顶;光伏;储能;一体化;发电系统;设计;分析 0 引言 随着社会经济持续发展,人们的生活水平日渐提高,传统能源已经无法满足他们的客观需求,其供应日渐紧张,加上传统能源不具备可再生性,大大加重了人类社会在经济可持续发展方面的担忧。面对这种情况,迫切需要开发、利用各种新能源,尤其是可再生能源,取代那些资源有限、严重污染周围环境的常规能源,缓解日益加重的能源危机。太阳能属于重要的定性清洁能源,具有独特的优势,已成为社会大众关注的焦点,具有非常广阔的应用前景。为此,需要全方位分析各种主客观影响因素,优化设计屋顶光伏与储能一体化的发电系统,使其更好地发挥自身作用。 1 屋顶光伏发电系统概述 就屋顶光伏发电系统而言,由多种元素组合而成,比如,计量装置、光伏组件、并网逆变器,各自发挥着不同的作用。当下,晶体硅太阳能电池组件、非晶硅薄膜电池组件是光伏组件的核心组成要素。前者具有多样化的优势,比如,较长的使用寿命,较强的抗风和抗冰雹能力,光电的转换率可以到14%—17%;而后者是由半导体材料组成,只有几微米厚,其光电转换率为6%—6.5%,能够附在各类廉价的基片上,比如,玻璃。如果发电量、功率相同,非晶硅太阳能薄膜电池成本远远低于晶体硅太阳能电池,已成为新时期最有可能实现发电成本和上网电价的一种新技术。 就屋顶光伏发电系统而言,把太阳能电池组件准确安装在屋顶合理的位置,这样在有太阳照射的时候,逆变器就会把光伏组件发出的直流电顺利转换为正弦交流电,可以直接用于电源驱动负荷,还可以把它切换到外面的公用电网中,实现小型光伏系统并网运行。在夜晚或者阴雨天的时候,太阳能电池组件没有产生电能或者所产生的电能无法满足负载需求的时候,可以发挥电网的作用进行供电,确保电力系统处于安全、稳定运行中。 2 光储一体化发电系统设计 2.1 太阳能资源分析

相关文档
最新文档