硬质合金显微组织的金相测 定第1部分金相照片和描述编制 说明

硬质合金显微组织的金相测    定第1部分金相照片和描述编制    说明
硬质合金显微组织的金相测    定第1部分金相照片和描述编制    说明

钢铁中常见的金相组织

钢铁中常见的金相组织区别简析 钢铁中常见的金相组织 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,

金相试样的制备及金相组织观察

金相试样得制备及金相组织观察 一、实验目得 1、了解金相显微镜得基本原理、构造,初步掌握显微镜得正确使用。? 2、掌握金相显微试样得制备过程与基本方法。 3、了解浸蚀得基本原理,并熟悉其基本操作 4、学习利用金相显微镜进行显微组织观察.通过在显微镜下观察到得金相显微组织初步分析材料类型以及材料可能具备得机械性能等。 二、实验设备与用品 1、金相显微镜 2、不同粗细得金相砂纸一套、玻璃板、侵蚀剂(4%硝酸酒精) 3、抛光机 4、待制备得金相试样 三、金相显微镜得基本原理、构造及使用 1、显微镜得放大倍数 利用透镜可将物体得象放大,但单个透镜或一组透镜得放大倍数就是有限得,为此,要考虑用另一组透镜将第一次放大得象再行放大,以得到更高放大倍数得象。金相显微镜就就是基于这一要求设计得。显微镜中装有两组放大透镜,靠近物体得一组透镜为物镜,靠近观 察得一组透镜为目镜. 金相显微镜得光学原理图1如图所示。 物体AB置于物镜得一倍焦距F1与二倍焦距 之间,它得一次象在物镜得另一侧二倍焦距 以外,形成一个倒立、放大得实象A′B′;当 实象A′B′位于目镜得前一倍焦距F2以内时 则目镜复又使映象A′B′放大,而在目镜得前 二倍焦距 2 F2以外,得到A′B′得正立虚象 A″B″。因此最后得映象A″B″就是经过物镜、 目镜两次放大后所得到得。其放大倍数应为 物镜放大倍数与目镜放大倍数得乘积。 物体AB经物镜第一次放大得倍数: M物=A′B′/ AB=(Δ+f1′)/ f1 式中f1、f1′—-物镜前焦距与后焦距 Δ—-显微镜得光学镜筒长 与Δ相比,物镜得焦距f1′很短,可略, 所以M物≈Δ/ f1 象A′B′经目镜第二次放大得倍数: M目= A″B″/A′B′≈D/ f2 式中f2——目镜得前焦距 D——人眼明视距离,D≈图1 显微镜光学原理图 250㎜。 所以显微镜得放大倍数应为: M=M物·M目=(Δ/ f1)·(D/ f2) 当显微镜得机械镜筒长度等于光学镜筒长度时,M= M物·M目;而当这二者不等时,M= M物·M目·C,C就是与机械镜筒长、光学镜筒长有关得系数,一般为1,有时为0、63,其C

实验金相试样的制备

实验金相试样的制备 一、实验目的 1.熟悉金相显微试样的制备过程 2.了解掌握金相显微试样的制备方法 二、概述 在利用金相显微镜作金相显微分析时,必须首先制备金相试样,我们在显微镜中所观察到的显微组织,是靠光线从试样观察面上的反射来实现的。若试样观察面上的反射光能进入物镜。我们就可以从目镜中观察到反射的象,否则就观察不到。 图2-1 光线在不同表面上的反射情况 由图2-1所示可见,未经制备的试样的表面相当于无数多个与镜筒不垂直的平滑表面,这是不能成象的。因此,我们要先把试样观察面制备成光滑平面。但是光滑平面在显微镜下只看到光亮一片,而不能看到显微组织结构特征,故还须用一定的浸蚀剂浸蚀试样观察面,使某些耐浸蚀弱的区域不同程度地受到浸蚀而呈现微观察的凸凹不平。这些区域的反射光线被散射而呈暗色。由于明暗相衬,在显微观察中就能表示试试样磨面组织结构的特征了。 金相试样的制备包括试样的切取、镶嵌、磨制抛光、锓蚀等五个步骤。 1. 取样 试样应根据分析目的和要求在有代表的位置上截取。一般地说,取横截面主要观察:1、试样边缘到中心部位显微组织的变化。2、表层缺陷的检验、氧化、过滤、折叠等。3、表面处理结果的研究,如表面淬火、硬化层、化学热处理层、镀层等。4、晶粒度测定等。通过纵截面可观察:1、非金属夹杂;2、测定晶粒变形程度;3、鉴定带状组织及通过热处理消除带状组织的效果等。试样一般可

用手工切割、机床切割、切片机切割等方法截取(试样大小为φ12×12mm圆柱体或12×12×12mm的立方体)。不论采用哪种方法,在切取过程中均不宜使试样的温度过高,以免引起金属组织的变化,影响分析结果。 2. 镶嵌 当试样的尺寸太小(如金属丝、薄片等)时,直接用手来磨制很困难,需要使用试样夹或利用样品镶嵌机,把试样镶嵌在低熔点合金或塑料(如胶木粉、聚乙烯及聚合树脂等)中,如图2-2所示。 图2-2 试样的镶嵌(见实验室挂图) 3. 磨制 试样的磨制一般分粗磨和细磨两道工序。 a. 粗磨:粗磨的目的是为了获得一个平整的表面,钢铁材料试样的粗磨可用锉刀锉平,也可在砂轮机上磨制。但应注意:试样对砂轮压力不宜过大。否则会在试样表面形成很深的磨良,增加精磨和抛光的困难,要随时用水冷却试样,以免受热引起组织交化;试样边缘的棱角若无保存必要,可先行磨圆(倒角),以免在细磨及抛光时撕破砂纸或抛光布,甚至造成试样从抛光机上飞出伤人。 b. 细磨:经粗磨后试样表面虽较平整,但仍还存在有较深的痕(如图2-3)所示。细磨的目的就是为了消除这些磨痕,以得到平整而光滑的磨面,为下一步的抛光作好准备;将粗磨好的试样用水冲洗擦干后就开始进行细磨,细磨是在一套粗细程度不同的金相少纸上,由粗到细依次顺序进行的。细磨时将砂纸放在玻璃扳上,手指紧握试样,并使磨面朝下,均匀用力向前推行磨制。在回程时,应提起试样不与砂纸接触。以保证磨面平整面不产生弧度,每更换一号砂纸时,须将试样的研磨方向转90°,即与上道磨痕方向垂直。直到将上一号砂纸所产生的磨

常见金相组织

定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体

调质钢的金相组织

调质钢的金相组织及检验 调质钢通常是指采用调质处理(淬火加高温回火)的中碳优质碳素结构钢和合金结构钢,如35、45、50、40Cr、 40MnB、40CrMn、30CrMnSi、38CrMoAlA、40CrNiMoA和40CrMnMo 等。 调质钢主要用于制造在动态载荷或各种复合应力下工作的零件(如机器中传动轴、连杆、齿轮等)。这类零件要求钢材具有较高的综合力学性能。 调质钢的热处理 (一)预先热处理 为了消除和改善前道工序(铸、锻、轧、拔)遗存的组织缺陷和内应力,并为后道工序(淬火、切削、拉拔)作好组织和性能上准备而进行退火或正火工序就是预先热处理。 关于调质钢在切削加工前进行的预先热处理,珠光体钢可在Ac3 以上进行一次正火或退火;合金元素含量高的马氏体钢则先在Ac3 以上进行一次空冷淬火,然后再在Ac1以下进行高温回火,使其形成回火索氏体。 (二)最终热处理 调质钢一般加热温度在Ac3以上30~50℃,保温淬火得到马氏体组织。淬火后应进行高温回火获得回火索氏体。回火温度根据调质件的性能要求,一般取500~600℃之间,具体范围视钢的化学成分和零件的技术条件而定。因为合金元素的加人会减缓马氏体的分解、碳化物的析出和聚集以及残余奥氏体的转变等过程,回火温度将移向更高。 二、调质钢的金相检验 (一)原材料组织检验调质工件在淬火前的理想组织应为细小均匀的铁素体加珠光体,这样才能保证在正常淬火工艺下获得良好的淬火组织---细小的马氏体。(二)脱碳层检验钢材在热加工或热处理时,表面因与炉气作用而形成脱碳层。脱碳层的特征是,表面铁素体量相对心部要多(半脱碳)或表面全部为铁素体(全脱碳),从而使工件淬火后出现铁素体或托氏体组织,回火后硬度不足,耐磨性和疲劳强度下降。因此调质工件淬火后不允许有超过加工余量的脱碳层。金相试样的磨面必须垂直脱碳面,边缘保持完整,不应有倒角。脱碳层的具体测量方法可按GB/T 224-1987标准进行。(三)锻造的过热和过烧检验 锻造加热时,由于加热温度高,不仅奥氏体晶粒粗大,而且有些夹杂物发生溶解而在锻后冷却时沿奥氏体晶界重新析出。一般过热时,仅出现粗大的奥氏体晶粒并产生魏氏组织。在一些低合金钢中还会出现粗大的贝氏体或马氏体组织。过热时沿奥氏体晶界析出的常为MnS 或FeS。用一般试剂无法侵蚀显示奥氏体晶界,最好方法用饱和的硝酸铵溶液进行电解侵蚀。侵蚀后试样的奥氏体晶界呈白色网状。由于过热锻件晶粒粗大,使得塑性和韧性下降,容易造成脆断。 当钢加热到更高温度,接近液相线时,会出现过烧现象。过烧特征是钢的粗大晶界被氧化和熔化,锻造时将产生沿晶裂纹,在锻件表面出现龟裂状裂纹。(四)调质钢的淬火回火组织 调质钢正常淬火组织为板条状马氏体和针片状马氏体,当含碳量较低时,如30CrMo等,形态特征趋向于低碳马氏体。当含碳量较高,如60Si2、50CrV等,形态特征趋向于高碳马氏体。 如果淬火加热温度过低,或保温不足,奥氏体未均匀化,或淬火前预先热处理不当,未使原始组织变得细匀一致,导致工件淬火后的组织为马氏体和未溶的铁素体,后者即使回火也不能消除(图5-1)。

金属材料金相热处理检验方法标准汇编

金属材料金相热处理检验方法标准汇编 一、金属材料综合检验方法 GB/T4677.6—1984金属和氧化覆盖层厚度测试方法截面金相法 GB/T6394—2002金属平均晶粒度测定方法 GB/T6462—2005金属和氧化物覆盖层厚度测量显微镜法 GB/T13298—1991金属显微组织检验方法 GB15735—2004金属热处理生产过程安全卫生要求 GB/T15749一1995定量金相手工测定方法 GB/T18876.1—2002应用自动图像分析测定钢和其他金属中金相组织、夹杂物含量和级别的标准试验方法第1部分:钢和其他金属中夹杂物或第二相组织含量的图像分析与体视学测定 二、钢铁材料检验方法 GB/T224一1987钢的脱碳层深度测定法 GB/T225—1988钢的淬透性末端淬火试验方法 GB/T226—1991钢的低倍组织及缺陷酸蚀检验法 GB/T227—1991工具钢淬透性试验方法 GB/T1814—1979钢材断口检验法 GB/T1979—2001结构钢低倍组织缺陷评级图 GB/T4236一1984钢的硫印检验方法 GB/T4335—1984低碳钢冷轧薄板铁素体晶粒度测定法 GB/T4462—1984高速工具钢大块碳化物评级图 GB/T6401—1986铁素体奥氏体型双相不锈钢中а-相面积含量金相测定法 GB/T7216—1987灰铸铁金相 GB/T9441—1988球墨铸铁金相检验 GB/T9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 GB/T11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T13299—1991钢的显微组织评定方法 GB/T13302—1991钢中石墨碳显微评定方法 GB/T13305—1991奥氏体不锈钢中а-相面积含量金相测定法 GB/T13320—1991钢质模锻件金相组织评级图及评定方法 GB/T13925—1992铸造高锰钢金相 GB/T14979—1994钢的共晶碳化物不均匀度评定法 GB/T15711—1995钢材塔形发纹酸浸检验方法 GB/T16923—1997钢件的正火与退火 GB/T16924—1997钢件的淬火与回火 GB/T18683—2002钢铁件激光表面淬火 YB/T130—1997钢的等温转变曲线图的测定 YB/T153一1999优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图 YB/T169一2000高碳钢盘条索氏体含量金相检测方法 YB/T4002—1991连铸钢方坯低倍组织缺陷评级图 YB/T4003—1997连铸钢板坯低倍组织缺陷评级图 YB/T4052—1991高镍铬无限冷硬离心铸铁轧辊金相检验 YB/T5127—1993钢的临界点测定方法(膨胀法) YB/T5128—1993钢的连续冷却转变曲线图的测定方法(膨胀法)

金相显微分析技术

金相显微分析技术 作业指导书 一、前言 金属材料的性能与其组织形态之间存在着密切的联系。除化学成份(材料配比)、晶体结构(固有特性)外,材料在不同加工条件下可获得不同的组织,并对其在加工过程和使用过程中所表现的理化、机械性能,均可产生明显的影响。显微分析是研究金属内部组织的最重要方法之一,而金相显微镜是用于观察金属内部组织结构的重要光学仪器;因此,有必要通过金相显微分析手段来揭示材料的组织状态,并据此为材料的开发和加工提供参照。 二、适用范围 本制度适用于本公司金相室的管理。 三、职责 1.工程技术中心负责金相室的管理; 2.工程技术中心负责金相室内设备、仪器的使用、维护和保养。 四、操作要求 1.操作人员必须经过专业教育或经过培训后达到规定技能的专业人才。 2.初次操作前心须熟悉、了解各仪器的结构、性能;认真仔细阅读说明书,掌握其正确的使用、维护和保养方法。 五、操作规范 (一)试样的制备及观察、成像 用光学显微镜观察和研究金属内部组织,包括四个步骤:1)制备试样;2)采用适当的腐蚀手段显示试样表面的组织;3)用显微镜观察和研究试样表面的组织;4)截取有代表性的区域成像、保存。 1.试样的制备 1.1试样的截取:金相试样截取部位取决于检验的目的与要求,本公司所涉及到的试样有横向和纵向截取两种;横向试样垂直丝线轴线方向,主要研究表层

缺陷及夹杂(偏析);纵向试样平行于丝线轴线方向截取,主要研究夹杂的类型 以及晶粒拉长的长度; 1.2试样的镶嵌:尺寸过于细薄和软的试样需进行镶嵌; 1.3磨光与抛光:试样须经磨光、抛光呈镜面才能进行腐蚀; 2.试样的腐蚀 2.1腐蚀剂:抛光好的金相试样,要得到有关显微组织的信息,必须经过组织的显示,即腐蚀;不同材料采用的腐蚀剂不尽相同,本公司目前材料所用腐蚀 剂如表一; 表一金相腐蚀剂 代号配比浸蚀条件适用范围 TL-01 蒸馏水 100ml 盐酸 2~5ml 几秒~几分钟Sn Sn-Cd Sn-Fe Sn-Pb Sn-Sb-Cu TL-02 蒸馏水 100ml 盐酸 2~5ml 三氯化铁 10g 10s~30s 富锡轴承合金 Sn-Cu Sn-Bi TL-03 氢氟酸 5ml 硝酸 25ml 盐酸 75ml 3~15min 纯铝晶粒 TL-04 蒸馏水 100ml 氧化铬 20g 硫酸钠 1.5g 2~3min 大多数锌合金 TL-05 蒸馏水 78ml 氧化铬 18g 硫酸 4g ~60s 铸造Zn-Al-Cu合金 TL-06 蒸馏水 100ml 氢氧化钠 10g 1~5s 纯Zn Zn-Co Zn-Cu 低合金Zn TL-07 蒸馏水 80ml 硝酸 20ml 冰醋酸 15ml 40℃,13~14min(新配制) 铅焊料 Pb-Sn合金 2.2腐蚀方法:浸入法、擦拭法; 2.3腐蚀时间:腐蚀的合适时间是以试样的抛光面颜色的变化来判断,腐蚀 时光亮的表面失去光泽变成银灰色或灰黑色即可; 3.观察和分析:选择适当的放大倍数对试样进行观察和分析; 4.成像:选择有代表性的区域成像保存。 (二)仪器的使用、维护、保养

金相样品制备的一般方法

金相样品制备的一般方法 1 实验目的 1.掌握金相样品制备的一般方法(机械抛光和化学侵蚀)。 2.了解金相样品制备的其他方法。 2 实验设备及材料 1.金相显微镜一台 2.碳钢试样一块 3.金相砂纸一套 4.抛光机及抛光液 5.侵蚀液,酒精,玻璃器皿,镊子,脱脂棉,滤纸等。 3 实验过程 3.1预磨机磨样 取得样品,用食指抵住样品顶端,大拇指和中指夹紧样品。打开预磨机,将水龙头的水量调到合适的大小,将样品放置于砂纸的中间位置附近,轻压下样品,让砂纸充分研磨样品表面。等样品表面上的划痕都朝一个方向时,将样品旋转九十度重新磨样,直到新划痕覆盖上一次的划痕,这样重复3~4次,最后一次划痕都朝一个方向时,磨样完成,关闭水龙头和预磨机,准备抛光。 3.2样品抛光 在样品表面抹上一点抛光膏,打开抛光机,将水龙头水量调到合适大小,为防止抛光膏被抛光布打飞,倾斜将样品慢慢抵至抛光布上,然后轻压样品是其和抛光布充分接触,,期间将样品旋转90°2~3次,使抛光更均匀,抛光至样品表面光亮如镜,看不到细小的划痕即可。关闭抛光机和水龙头,完成抛光。 3.3样品侵蚀 将抛光完成的样品置于水流下冲洗几秒,将抛光过程中的杂质冲洗干净,准备侵蚀。用镊子将蘸满侵蚀液(4%硝酸酒精)的棉团均匀擦拭样品表面,重复擦拭5~8次,直至样品表面变成均匀的浅灰色,然后立即将样品表面用水流冲洗,将侵蚀液清洗干净,防止过度侵蚀。 清洗完成后用蘸满酒精的棉团擦拭样品表面,然后用吹风机将样品表面吹干,至此样品侵蚀完成,准备样品的观察。 3.4样品观察 将样品置于载物台上,打开显微镜光源,切换低倍物镜,将样品调高至与物镜相距2~3毫米,然后观察目镜,同时用粗调旋钮向下调节样品位置,直至在视野中观察到样品组织,然后用细调旋钮调节使视场更加清晰。 视场找到后,将物镜切换至高倍镜,调节细调旋钮,直至能清晰观察到样品组织即可。

焊缝的宏观和微观金相检验方法

附件A 焊缝的宏观和微观金相检验方法 A1范围 本附件是为宏观和微观检测的试样制备、试验程序及其目的,规定的推荐方法。 A2 术语和定义 A2.1 宏观检验 用肉眼或低倍放大镜(放大倍数一般小于50)检查试样,试样表面可处理或不处理。 A2.2 微观检验 用显微镜检查试样,一般放大倍数为50~500,试样表面可处理或不处理。 A2.3检验操作人员 进行宏观、微观检验的操作人员。 A3 缩略语 本方法采用的缩略语如下: (1)A,宏观检验; (2)I,微观检验; (3)E,腐蚀处理; (4)U,不腐蚀处理。 A4 原理 宏观和微观检验用来显示焊缝的宏观和微观特性,通常检验焊缝的横截面。 A5 试验目的 宏观和微观检验目的是单纯地评定组织(包括晶粒组织、形态和取向,沉淀和夹渣)、与各种裂纹和空穴关系。检测截面还要能记录截面平面的取样形状。 A6 试样的截取

试样的截取方向一般垂直于焊缝轴线(横截面),试样包括焊缝熔敷金属和焊缝两侧的热影响区。但也可以从其它方向截取试样。 在试验前应确定时间的位置、方向和数量,以及参照应用标准。 A7 试验程序 A7.1一般原则 应给出下列信息: (1)母材和焊接材料; (2)试验对象; (3)腐蚀剂的组成/名称; (4)表面抛光(见A7.2.1); (5)腐蚀方法(见A7.2.2); (6)腐蚀时间; (7)安全措施(见A7.3); (8)其他附加要求。 A7.2试样制备 用于检验试样的制备包括通过切割、镶嵌、研磨、抛光、适当腐蚀。这些加工过程不应对检验表面产生有害的影响。 A7.2.1 表面抛光 表面抛光的要求取决于下述因素: (1)检验类型; (2)材料种类; (3)记录(例如照片)。 A7.2.2 腐蚀 A7.2.2.1 腐蚀方法 在腐蚀前,先确定腐蚀方法。在常用的方法有以下几种: (1)把试样侵入腐蚀剂中腐蚀; (2)擦拭试样表面腐蚀; (3)电解腐蚀。

金相实验报告(成分组织观察分析)

金相综合实验报告 实验名称: 碳钢成分-工艺-组织-性能综合分析实验专业: 材料科学与工程 班级: 材料11(1) 指导老师:席生岐高圆 小组组长: 仇程希 小组成员:齐慧媛李敏朱婧王艳姿闫士琪陈长龙黄忠鹤郭晓波丁江蒋经国庞小通林乐 二〇一四年四月三日

一、实验目的 1.了解碳钢热处理工艺操作; 2.学会使用洛氏硬度计测量材料的硬度性能值; 3.利用数码显微镜获取金相组织图像,掌握热处理后钢的金相组织分析方法; 4.探讨淬火温度、淬火冷却速度、回火温度对45和T12钢的组织和性能(硬度)的影响; 5.巩固课堂教学所学相关专业知识,体会材料的成分—工艺—组织—性能之间关系。 二、实验内容 1.进行45和T12钢试样退火、正火、淬火、回火热处理,工艺规范参考相关资料; 2.用洛氏硬度计测定试样热处理试样前后的硬度; 3.制备所给表中样品的金相试样,观察并获取其显微组织图像; 4.对照金相图谱,分析探讨本次实验可能得到的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。三、实验原理 热处理是一种很重要的金属加工工艺方法。热处理的主要目的是改变钢的性能,热处理工艺的特点是将钢加热到一定温度,经一定时间保温,然后以某种速度冷却下来,从而达到改变钢的性能的目的。研究非平衡热处理组织,主要是根据过冷奥氏体等温转变曲线来确定。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构发生了的一系列的变化。采用不同的热处理工艺,将会使钢得到不同的组织结构,从而获得所需要的性能。 钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。 (一)碳钢热处理工艺 1.加热温度 亚共析钢加热温度一般为Ac3+30-50℃,过共析钢加热温度一般为Ac 1+30-50℃(淬火)或Acm+50-100℃(正火)。 淬火后回火温度有三种,即:低温回火(150-250℃)、中温回火(350-500℃)、

(完整版)金相检验标准汇总表

金相检验标准 GB/T 10561-89 钢中非金属夹杂物含量的测定标准评级图显微检验法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 6394-2002 金属平均晶粒度测定方法 GB/T 6394-2002 系列图I(无孪晶晶粒++浅腐蚀100×) GB/T 6394-2002 系列图Ⅱ(有孪晶晶粒++浅腐蚀+100×) GB/T 6394-2002 系列图Ⅲ(有孪晶晶粒+深腐蚀75×) GB/T 6394-2002 系列图Ⅳ(钢中奥氏体晶粒++渗碳法100×) GB 224-1987 钢的脱碳层深度测定法 GB 226-1991 钢的低倍组织及缺陷酸蚀检验法 GB 2828-1987 逐批检查记数抽样程序及抽样表 GB 4236-1984 钢的硫印检验方法 GB 16840.4-1997 电气火灾原因技术鉴定方法第4部分:金相法 GB/T 9450-2005 钢件渗碳淬火硬化层深度的测定和校核 GB/T 13298-1991 金属显微组织检验方法 GB/T 18876.1-2002 应用自动图像分析测定钢和其他金属中金相组织、夹杂物含量和级别的标准试验方法第1部分 GB/T 4340.1-1999 金属维氏硬度第一部分:试验方法 GB/T 14999.4-94 高温合金显微组织试验方法 GB/T 230.1-2004 金属洛氏硬度试验第1 部分: 试验方法( A, B, C, D, E, F, G, H, K, N, T 标尺) GB/T 231.1-2002 金属布氏硬度试验第1 部分: 试验方法 GB/T 3488-1983 硬质合金显微组织的金相测定 GB/T 3489-1983 硬质合金孔隙度和非化合碳的金相测定 GB/T 4194-1984 钨丝蠕变试验,高温处理及金相检查方法 GB/T 5617-1985 钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 6401-1986 铁素体奥氏体型双相不锈钢中α-相面积含量金相测定法 GB/T 7216-1987 灰铸铁金相 GB/T 8493-1987 一般工程用铸造碳钢金相 GB/T 8755-1988 钛及钛合金术语金相图谱 GB/T 9441-1988 球墨铸铁金相检验 GB/T 9450-1988 钢件渗碳淬火有效硬化层深度的测定和校核 GB/T 9451-1988 钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 11809-1998 压水堆核燃料棒焊缝金相检验 GB/T 13305-1991 奥氏体不锈钢中α--相面积含量金相测定法 GB/T 13320-1991 钢质模锻件金相组织评级图及评定方法 GB/T 13925-1992 铸造高锰钠金相 GB/T 17455-1998 无损检测表面检查的金相复制件技术 GB 1814-1979 钢材断口检验方法 GB 2971-1982 碳素钢和低合金钢断口检验方法 GB/T 7998-2005 铝合金晶间腐蚀测定方法 GB/T 1298-2008 碳素工具钢 GB/T 1299-2000 合金工具钢

铜及铜合金的金相组织分析.

铜及铜合金的金相组织分析一)结晶过程的分析 结晶是以树枝状的方式生长,树枝状的结晶容易造成夹渣外,通常形成显微疏松。 取决于模壁的冷却速度外,还取决于合金成分、熔化与浇注温度等。 (二)宏观分析中常见缺陷 在浇注过程中往往产生缩孔、疏松、气孔、偏析等缺陷。 浇注温度和浇注方式的影响,铸锭、紫铜中容易出现气孔和皮下气孔。 由于合金元素的熔点、比重不一,熔炼工艺不当造成铸锭的成分偏析。 铸造时热应力可产生裂纹。 浇注工艺不当(浇注温度过低),浇注时金属液的中断会造成冷隔。 (三)微观分析 与铜相互作用的性质,杂质可分三类: 1. 溶解在固态铜中的元素(铝、铁、镍、锡、锌、银、金、呻、锑)。 2. 与铜形成脆性化合物的元素(硫、氧、磷等)。 3. 实际上不溶于固态铜中与铜形成易熔共晶的元素(铅、铋等)。 铋与铜形成共晶呈网状分布于铜的基体上,淡灰色。 铅含量很少时和铋一样呈网状分布于晶界,其颜色为黑色; 铅含量大时在铜的晶粒间界上呈单独的黑点。 暗场观察:铅点呈黑色,孔洞为亮点。 硫与氧的观察:均与铜形成化合物(Cu2S、Cu2O),又以共晶形式(Cu2S+ Cu、 Cu2O+ Cu)分布在铜的晶界上。 氯化高铁盐酸水溶液浸蚀:Cu2O变暗,Cu2S不浸蚀。 偏振光观察:Cu2O呈暗红色。 QJ 2337-92 铍青铜的金相试验方法 金相分析晶粒度检测金属显微组织分析,晶粒度分析,GB/T 6394-02 金属平均晶粒度测定方法 ASTM E 112-96(2004) 金属平均晶粒度测定方法

YS/T 347-2004 铜及铜合金平均晶粒度测定方法 GB/T13298-91 金属显微组织检验方法 GB/T 13299-91 钢的显微组织评定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 ASTM E45-05 钢中非金属夹杂物含量测定方法 GB/T 224-87 钢的脱碳层深度测定方法 ASTM E407-07 金属及其合金的显微腐蚀标准方法 GB/T 226-91 钢的低倍组织及缺陷酸蚀检验方法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 5168-85 两相钛合金高低倍组织 GB/T 9441-1988 球墨铸铁金相检验 ASTM A 247-06 铸件中石墨微结构评定试验方法 GB/T 7216-87 灰铸铁金相 EN ISO 945:1994 石墨显微结构 GB/T 13320-07 钢质模锻件金相组织评级图及评定方法 CB 1196-88 船舶螺旋桨用铜合金相含量金相测定方法 JB/T 7946.1-1999 铸造铝合金金相 铸造铝硅合金变质 JB/T 7946.2-1999 铸造铝合金金相 铸造铝硅合金过烧 JB/T 7946.3-1999 铸造铝合金金相铸造铝 氧是铜中最常见的杂质,可产生氢脆。所以含氧量应严格规定。 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89

关于金相组织的基本知识

关于金相组织的基本知识

首先金相人员进行试样组织分析时候,必须了解铁碳相图Fe-C(Fe-Fe?C)的意义和特点,以及点、线、区的之间意义;大家可以参考资料铁碳相图的原理和知识基础。 图中ABCD为液相线,AHJECF为固相线; 相图中有五个单相区,它们是:ABCD以上--液相区(用L符号表示); AHNA--固溶体区(用θ表示) NJESGN—奥氏体区(用A或表示)

GPQG—铁素体区(用F表示) DFKZ—渗碳体区(用Fe3C或Cm表示) 相图中有七个两相区,分别是:L+γ,L+δ,L+Fe3C,γ+δ,γ+α,γ+Fe3C,α+Fe3C 鉄碳相图中的特性点; A点 1538℃w(C) 0% 纯铁的熔点; B点1495℃w(C)0.53% 包晶转变时液态合金的成分; C点 1148℃w(C) 0.43% 共晶点; D 点 1227℃w(C)6.69% 渗碳体的熔点; E点 1148℃w(C) 2.11% 碳在γ-Fe中的最大溶解度;G点 912℃w(C) 0% α-Fe<=>γ-Fe转变温度; H点 1495℃w(C) 0.09% 碳在γ-Fe中的最大溶解度;J点 1495 w(C)包晶点; K点 727 ℃w(C) 6.69% 渗碳体的成分; M 点 700 w(C) 0%纯铁的磁性转变点; N点 1394 ℃w(C) 0% γ-Fe<=>δ-Fe的转变温度;P点 727℃w(C)0.0218% 碳在α-Fe中的最大溶解度; S点 727℃w(C) 0.77% 共析点; Q点 600℃w(C) 0.0057% 600℃时碳在α-Fe中的溶解度; 相图中还有两条磁性转变线:MO线(770℃)为铁素体的磁性转变线; 230℃虚线为渗碳体的磁性转变线。 Fe-Fe3C相图上有3条水平线,即HJB-包晶转变线;ECF-共晶转变线;PSK-共析转变线 HJB-包晶线:在1495℃恒温下,碳的质量分数为0.53%的液相与碳的质量分数为0.09%的的δ铁素体发生包晶反应,形成碳的质量分数为0.17%的奥氏体,其反应式为:LB+δh<=>γj 共晶转变线(ECF线):发生在1148℃的恒温中,由碳的质量分数为4.3%的液相转变为碳的质量分数 2.11%的奥氏体和渗碳体[w(C)=6.69%]所组成的混合物,称为莱氏体,用Ld表示;反应式为:Ld<=>γE+Fe3C。

铸态AZ系镁合金的彩色金相研究

铸态AZ 系镁合金的彩色金相研究* 付启涛1,潘复生1,2,汤爱涛1,2,刘传璞2 (1 重庆大学材料科学与工程学院,重庆400044;2 重庆大学国家镁合金材料工程技术研究中心,重庆400044)摘要 铸态A Z 系镁合金一般都需要经过固溶处理才能腐蚀出晶界,不但耗时而且可能导致结果失真。尝试将乙酸 苦醇试剂用于铸态A Z 系镁合金的金相腐蚀,并且在偏振光下辅以灵敏色片进行观察以得到彩色晶粒衬度。试验了不同铝含量的铸态A Z 系镁合金在不同浓度乙酸 苦醇试剂和不同时间下的腐蚀效果,找到了各自的最佳腐蚀参数,得到了晶粒衬度鲜明的彩色金相照片。 关键词 镁合金 彩色金相 化学腐蚀 Investigation on Color Metallography of As cast AZ Series Magnesium Alloys FU Qitao 1 ,PAN Fusheng 1,2 ,TA NG Aitao 1,2,LIU Chuanpu 2 (1 College o f M aterials Science and Engineer ing,Chong qing U niversity,Chong qing 400044;2 N atio na l Eng ieer ing Research Center for M agnesium Allo ys,Chong qing U niverity,Chong qing 400044)Abstract U sually the gr ain bo unda ries of as cast A Z series mag nesium a lloys can o nly be r evealed after solu tion heat treatment w hich is t ime co nsuming and may lead to dist ort ed result.A cetic picral r eagent is used for the me tallog raphic etching of as cast A Z ser ies mag nesium allo ys,and the etched specimens are view ed with po lar ized lig ht plus sensitiv e tint in or der to g ener ate co lo r contrast.Specimens w ith different aluminum content are etched in acetic picral reag ents w ith diverse concentr atio ns and for different etching time.T he o ptimum parameter s fo r testing as cast A Z series mag nesium alloy s ar e found separ at ely and metallo gr aphic color images w ith viv id gr ain co ntr ast are ob ta ined. Key words mag nesium allo y,co lo r metallog ra phy,chemical etching *国家973项目(2007CB613700);国家杰出青年基金项目(50725413);国际合作项目(2008DF R50040) 付启涛:男,1982年生,硕士研究生,主要从事镁合金材料研究 T el:023 ******** E mail:fuqitao@https://www.360docs.net/doc/ce15573260.html, 0 引言 镁合金是目前最轻的商用金属结构材料,具有高比强度、高比刚度、防磁、散热、环保等诸多优点,在航空航天、交通和3C 等行业得到了越来越广泛的应用[1-4] 。在众多镁合金系列中,AZ 系镁合金因具有良好的力学性能、铸造性能和抗大气腐蚀性而成为目前室温下应用最广泛的合金系[5]。铸态合金的力学性能与其晶粒度密切相关,但对于铸态A Z 系镁合金,不管是用硝酸酒精、苦味酸试剂还是其它腐蚀剂,一般都只能得到枝晶组织,无法显示出晶界。为了显示出铸态AZ 系镁合金的晶界,人们进行了一系列的尝试并总结出一些成果[6-12]。通常情况下,铸态镁铝合金需先进行固溶处理,然后用相应的腐蚀剂才能腐蚀出晶界[6-8,11,13,14],这也是现在最常用的方法。但这种方法很费时,且固溶处理有可能使晶粒长大,从而使结果失真[7,8,11] 。后来人们发展了一些应用于铸态AZ 系镁合金的彩色金相方法来得到镁合金的晶界轮廓,包括电解浸蚀[9,10]、化学浸蚀[12]和EBSD 等。但电解浸蚀比较复杂,影响因素很多,用起来远不如化学浸蚀方便;EBSD 制样要求非常高,而且价格昂贵,可视范围也很有限。Malt ais 等[12]曾报道过一种 乙酸 酒精 水 腐蚀剂,经 过简单化学浸蚀即可得到铸态AZ91D 的彩色金相,能够同时分辨出晶粒和枝晶,但经过反复试验,发现这种试剂只适用于含铝量高的镁铝合金(如AZ91),对含铝量低的合金(如AZ31)并没有什么效果。铸态A Z31经过这种试剂腐蚀后,在吹干的过程中没有出现如AZ91一样肉眼可见的晶粒衬度,与文献[12]中所提到的基体中只有铝含量超过3%时才会产生裂纹薄膜从而通过形状双折射形成彩色金相的说法一致。乙酸 苦醇试剂及其它一些以此为基础的试剂经常被用于镁合金的金相腐蚀,但基本上只用于黑白金相,将其用于铸态AZ 系镁合金来显示晶界的彩色金相还未见报道。本实验尝试将乙酸 苦醇试剂用于铸态AZ 系镁合金的金相腐蚀,并在偏振光下辅以灵敏色片进行观察以得到彩色衬度。考察了不同浓度、不同腐蚀时间下铸态AZ 系镁合金形成彩色金相的能力,获得了不同含铝量的铸态A Z 系镁合金的彩色晶粒衬度,并同时显示出它们的枝晶组织。 1 实验 1.1 试样材料 本实验选用半连续铸造得到了铸态AZ31和AZ91镁合金,其成分见表1(质量分数/%)。 ! 46!材料导报:研究篇 2010年10月(下)第24卷第10期

金相组织分析 可下载 可修改 优质文档

实验三碳钢的非平衡组织及常用金属材料 显微组织观察 实验目的概述实验内容实验方法实验报告思 考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。 转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC) 珠光体型相 变珠光体 (P) >650 在400~500X金相显微镜下可以观察到 铁索体和渗碳体的片层状组织 ~20 (HBl80~200)索氏体 (S) 600~650 在800一]000X以上的显微镜下才能分 清片层状特征,在低倍下片层模糊不清 25~35 屈氏体 (T) 550~600 用光学显微镜观察时呈黑色团状组织, 只有在电子显徽镜(5000~15000X)下 才能看出片层状 35—40 贝氏体型相 变上贝氏体 (B上) 350~550 在金相显微镜下呈暗灰色的羽毛状特 征 40—48 下贝氏体 (BT) 230~350在金相显微镜下呈黑色针叶状特征48~58

金相样品的制备

实验一金相样品的制备 一、实验目的 1、初步掌握金相样品的制备过程; 2、了解显微组织的显露方法。 二、实验原理 利用金相显微镜来研究金属和合金组织的方法叫光学显微分析法。它可以解决金属组织方面的很多问题,如非金属夹杂物,金属与合金的组织,晶粒的大小和形状,偏析、裂纹以及热处理工艺是否合理等。 金相样品是用来在显微镜下进行分析、研究的试样,金相样品的制备过程包括取样、磨光、抛光、腐蚀等步骤。 1、取样 显微试样的选取应根据研究目的,取其具有代表性的部位。例如,在检验和分析失效零件的损坏原因时,除了在损坏部位取样外,还需要在距破坏较远的部位截取试样,以便比较;在研究金属铸件组织时,由于存在偏析现象,必须从表层到中心同时取样进行观察;对轧制和锻造材料,则应同时截取横向(垂直于轧制方向)及纵向(平行于轧制方向)的金相试样,以便于分析比较表层缺陷及非金属夹杂物的分布情况;对于一般热处理后的零件,由于金相组织比较均匀,试样的截取可在任一截面进行。 试样的截取方法视材料的性质不同而异,软的金属可用手锯或锯床切割,硬而脆的材料(如白口铸铁)则可用锤击取下,对极硬的材料(如淬火钢),则可采用砂轮片切割或电火花线切割加工。但不论用哪种方法取样,都应避免试样受热或变形而引起金属组织变化。为防止受热,必要时应随时用水冷却试样。试样尺寸一般不要过大,应便于握持和易于磨制。其尺寸常采用直径为12~15mm的圆柱体或边长为12~15mm的方形试样。对形状特殊或尺寸细小不易握持的试样,或为了试样不发生倒角,可采用图1.1所示的镶嵌法或机械装夹法。 图1.1 金相试样的镶嵌方法图 镶嵌法是将试样镶嵌在镶嵌材料中,目前使用的镶嵌材料有热固性塑料(如胶木粉)及热塑性材料(聚乙烯、聚合树脂)等。此外还可将试样放在金属圈内,然后注入低熔点物质,如低熔点合金等。 2、磨制 试样的磨制一般分为粗磨和细磨两道工序。 粗磨的目的是为了获得一个平整的表面。试样截取后,将试样的磨面用砂轮或锉刀制成平面,同时尖角倒圆。在砂轮上磨制时,应握紧试样,压力不宜过大,并随时用水冷却,以防受热引起金属组织变化。经粗磨后试样表面虽较平整,但仍存在有较深的磨痕。

相关文档
最新文档