射频同轴连接器配用电缆一览表

射频同轴连接器配用电缆一览表
射频同轴连接器配用电缆一览表

射频同轴连接器配用电缆一览表

软性电缆 SJ1132-77

半刚性电缆

射频同轴连接器配用电缆一览表续

软性电缆 SJ1132-77

半刚性电缆

HDMI,歡迎各位積極發貼,發表自己的見解,提出自己的觀點

二、HDMI技术原理解析

由于属于DVI的扩展,HDMI 架构数据传输仍使用TMDS(Transition Minimized Differential Signaling)协议。这个协议是Silicon Image公司提出的。这个协议与DVI标准连接使用的协议也是相同的。

从图中可以看到:二者都是采用的数字T.M.D.S信号联接,HDMI到DVI 无须转换。HDMI标准将8位的数据通过编码变成10位的信号,以差分传动方式传送。而音频和视频数据则通过3个TMDS数据通道来传输。基于DVD音频标准,HDMI支持1-8组非压缩音频传输,音频支持48,96 or 192 kHz等多种采样率。根据视频格式,HDMI可以传输不同数量的采样率在192KHZ的压缩音频。在这里,视频信息以每24bit像素为一组的序列传输,同时以单位点时钟周期传输10bit的速度传输。这里的点时钟周期定义为每传输1个点(象素)所需的时间,数值上等于位传输周期的10倍。(在时间参数上有两个专有名词要区分清楚:Tpixel是指一个画素的时间,Tbit是指一个位的时间。理论上Tbit是Tpixel的十分之一。HDMI也是利用眼状图来呈现讯号的振幅与抖动(Jitter)状况是否在规格内,这也是判断讯号

质量的基准。)

HDMI 1.3以前版本的点时钟频率的范围可在25 MHz~165 MHz之间,但如果某种屏幕格式可以使用低于25 MHz的点时钟频率传输的话(例如,NTSC480i标准[480行,non-interlaced扫描]可以用13.5MHz的点时钟频率传输),那么它就可以用象素重复法(pixel repetition technique)来传输。HDMI标准可以达到每秒传输1650万点象素的速度。HDMI 1.3将升级340MHz,从这个数据我们也可以算出HDMI 1.3 能够传输的最大分辨率。

为了使你更好地理解点时钟的概念以及其重要性,我们以HDTV的720p分辨率为例来说明一下。720p代表着1280x720的分辨率。1280 x 720的乘积就是屏幕的象素数,再乘上帧速(在这里即屏幕刷新频率,或垂直频率),就可以得到在该分辨率下每秒传输的象素总点数。例如1280 x 720的分辨率,60Hz的刷新率,则每秒传输55,296,000点象素,也即55.3 MHz。因为HDMI标准可以达到每秒传输1650万点象素的速度,所以传输1280 x 720分辨率的数据绰绰有余。如果按目前视频最高的屏幕分辨率1080p (1920x1080)来算,假设其刷新率为60 MHz,可以算出其需要124.4MHz的传输速率。显然HDMI 1.2版本仍然可以,最新的1.3版本就更不用说了。而且HDMI 1.3版本在双连接下可以达到680MHz的传输速率,甚至可以支持更高商用产品的分辨率。

HDMI有两种接口:别是?9针的A类型接口和29针的B类型接口。19阵“Type A”A型HDMI接口采用单TMDS连接,可以传输视频采样率在25-165MHZ范围内的视频信号。A 型接口因尺寸小而更多地应用在消费电子行业。对于传输信号采样率高于165MHZ的视频信号,HDMI采用双TMDS的29针B型HDMI接口,这种接口一般用于PC市场。

其中使用A类接口的传输设备只能够通过一端带有A类插头而另一端带有B类插头的电缆连接到使用B类接口的接收设备,但调过来让B类接口的信息源连接到A类接口的接收设备是不行的。由于DVI 与HDMI 是一样的,都是数字视频传输规范,因此HDMI可以完全兼容DVI 。实现的方法也很简单:通过DVI-HDMI接口转接器,我们就可以方便的使用HDMI接口了。其实所谓的DVI 与HDMI 的“转换头”只是接口的机械标准的转换,涉及尺寸、封装、机械规格等。而实际的电气线路上没有变化。HDMI规范规定:一旦HDMI 接口的设备检测到你的这个联接设备的接口信号传输指令中,不包含HDMI 指定特殊标识符的,就认定你这个是DVI 接口的设备。就完全按DVI 的规范来传输,都是数字视频信号,并指明HDMI 向下兼容DVI 。

注:HDMI的TMDS编码传输技术,早从DVI时代就沿用至今,因此在根本上来说,除了脚位不同、接头不同,但基本定义是相同可互通的。

在HDMI规范中,CEA EDID数据传输的第一个时序扩展段中要包含VSDB 信号。就是HDMI Vendor Specific Data Block (HDMIVSDB) ,这是一个EIA/CEA-861B Vendor Specific Data 数据块,这是一个HDMI 批准、许可的数据值。为了测定接收端是否HDMI 设备,HDMI 源设备需要检测接收端设备的EDID 数据传输扩展时序中,是否存在这个VSDB 数据块( 由HDMI 设备制造厂商根据协议制定并提供的)。任何一个HDMI设备都会自动响应一个HDMI VSDB ,只要HDMI 源设备接到这个标示符相关数据的响应,就将接收端设备认定为HDMI 设备。在这里打个比喻。假如你是一个哨兵,这时突然有陌生人,当然你得先审核一下了。你就首先询问一句口令:“ 北京” 若是对方答出“王府井”,你就知道他是自己人了,若是对方答不出来出口令,那就按规矩,一律开火......在HDMI也是这样,HDMI 知道联接的是DVI 接口的设备时,就会完全按照DVI 的规范去传输数字视频信号。所以,

目前HDMI 的新设备去联接DVI 设备,都会很好地兼容的,不必担心什么。

虽然HDMI优势不少,但目前HDMI在推广进程中有一个大问题不得不面对,那就是授权费。目前授权费授权费用相当高,厂商们除了必缴的15,000美元年费以外,每个终端产品都还要另外征收4美分到15美分不等的版税(端视HDCP版权保护的搭配采用与否,以及HDMI标志的标示),如果与HDCP搭配授权,所需付出的授权成本更是倍增,而HDMI 料件成本也需额外增加20美元以上,而其测试认证的过程,也必须收取3,000~7,000美元的费用,这对于已经进入薄利竞争时代的IT产业而言,是个相当大的负担。

射频同轴电缆的技术参数

射频同轴电缆的技术参数 一、工程常用同轴电缆类型及性能: 1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当; 2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了; 3. 频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题; 三、工程应用设计要点 网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。 1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能

常见射频同轴连接器

常见射频同轴连接器大全 射频信号有自己的特点,所以传输信号需要特别的媒介,而相应连接器也很特殊,这里主要介绍常见的射频同轴连接器(RF COAXIAL CONNECTOR),符合标准GB11316-89、IEC169、MIL-C-31012等标准。 一、常见的同轴连接器及主要性能对照表: 除上述连接器以外,还有MINI BNC、SL16、C3、CC4(1.0/2.3)、SMZ(BT-43)、MIM等连接器,但主要是一些公司的型号。 二、常见同轴连接器的选择: BNC是卡口式,多用于低于4GHz的射频连接,广泛用于仪器仪表及计算机互联 TNC是螺纹连接,尺寸等方面类似BNC,工作频率可达11GHz,螺纹式适合振动环境 SMA是螺纹连接,应用最广泛,阻抗有50和75欧姆两种,50欧姆时配软电缆使用频率低于12.4Ghz,配半刚性电缆最高到26.5GHz SMB体积小于SMA,为插入自锁结构,用于快速连接,常用于数字通讯,是L9的换代品,50欧姆可到4GHz,75欧姆到2GHz SMC为螺纹连接,其他类似SMB,有更宽的频率范围,常用于军事或高振动环境 N型连接器为螺纹式,以空气为绝缘材料,造价低,频率可达11GHz,常用于测试仪器上,有50和75欧姆两种 MCX和MMCX连接器体积小,用于密集型连接 BMA用于频率达18GHz的低功率微波系统的盲插连接 每种连接器都有军标和商业标准,军标按MIL-C-39012制造,全铜零件、聚四氟乙烯绝缘、内外镀金,性能最可靠,但造价较高。 商业标准设计则使用廉价材料,如黄铜铸体、聚丙烯绝缘、银镀层等,可靠性就差一些。连接器材料有黄铜、铍铜和不锈钢,中心导体一般镀金,保证低电阻和耐腐蚀。军标要求在

国内常用同轴电缆尺寸表

国内常用同轴电缆尺寸表(RG系列) 电缆型号标称阻抗 Ω 直径尺寸Φ(mm) 内导体 绝缘层屏蔽层护套外径构成外径 软电缆和半刚电缆(MIL-C-17-F) RG-5A/U50单芯 1.29 4.60 6.30D8.33 RG-6A/U75单芯0.72 4.70 6.30D8.43 RG-8/U527×0.7 2 2.177.248.20S10.29 RG-9/U517×0.7 2 2.177.118.70D10.67 RG-10/U527×0.7 2 2.177.248.20S12.07* RG-11/U757×0.4 1.217.248.20S1029 RG-12/U757×0.4 1.217.248.20S12.07* RG-21/U53单芯 1.29 4.70 6.30D8.43 RG-55/U53.5单芯0.81 2.95 4.20D 5.23 RG-58/U53.5单芯0.81 2.95 3.60S 4.95 RG-59B/U75单芯0.58 3.71 4.85S 6.15 RG-140/U75单芯0.64 3.71 4.47S 5.92 RG-141A/ U 50单芯0.99 2.95 3.71S 4.83 RG-142B/ U 50单芯0.99 2.95 4.34D 4.95 RG-144/U757×0.4 5 1.357.258.38S10.40 RG-165/U507×0.8 2.407.258.64S10.40 RG-174/U507×0.1 6 0.48 1.52 2.24S 2.54 RG-178B/ U 507×0.10.300.91 1.37S 2.01 RG-179B/ U 757×0.10.30 1.60 2.13S 2.54 RG-187/U757×0.10.30 1.52 2.13S 2.79 RG-188A/ U 50 7×0.1 8 0.51 1.52 2.06S 2.79 RG-196/U507×0.10.300.86 1.37S 2.03 RG-212/U50单芯 1.44 4.70 6.30D8.43 RG-213/U507×0.75 2.267.258.64S10.29 RG-214/U507×0.7 2.267.259.14D10.80

常见射频同轴连接器大全

常见射频同轴连接器大全

常见射频同轴连接器大全 射频信号有自己的特点,所以传输信号需要特别的媒介,而相应连接器也很特殊,这里主要介绍常见的射频同轴连接器(RF COAXIAL CONNECTOR),符合标准GB11316-89、IEC169、MIL-C-31012等标准。 一、常见的同轴连接器及主要性能对照表: 除上述连接器以外,还有MINI BNC、SL16、C3、CC4(1.0/2.3)、SMZ(BT-43)、MIM等连接器,但主要是一些公司的型号。 二、常见同轴连接器的选择: BNC是卡口式,多用于低于4GHz的射频连接,广泛用于仪器仪表及计算机互联 TNC是螺纹连接,尺寸等方面类似BNC,工作频率可达11GHz,螺纹式适合振动环境 SMA是螺纹连接,应用最广泛,阻抗有50和75欧姆两种,50欧姆时配软电缆使用频率低于12.4Ghz,配半刚性电缆最高到26.5GHz SMB体积小于SMA,为插入自锁结构,用于快速连接,常用于数字通讯,是L9的换代品,50欧姆可到4GHz,75欧姆到2GHz SMC为螺纹连接,其他类似SMB,有更宽的频率范围,常用于军事或高振动环境 N型连接器为螺纹式,以空气为绝缘材料,造价低,频率可达11GHz,常用于测试仪器上,有50和75欧姆两种 MCX和MMCX连接器体积小,用于密集型连接 BMA用于频率达18GHz的低功率微波系统的盲插连接 每种连接器都有军标和商业标准,军标按MIL-C-39012制造,全铜零件、聚四氟乙烯绝缘、内外镀金,性能最可靠,但造价较高。 商业标准设计则使用廉价材料,如黄铜铸体、聚丙烯绝缘、银镀层等,可靠性就差一些。 连接器材料有黄铜、铍铜和不锈钢,中心导体一般镀金,保证低电阻和耐腐蚀。军标要求在SMA和SMB 上镀金,在N、TNC及BNC上镀银,因为银易氧化,用户更喜欢镀镍。 绝缘材料有聚四氟乙烯、聚丙烯及韧化聚苯乙烯,其中聚四氟乙烯绝缘性能最好,但成本较高。 三、常用连接器的性能列表:

浅谈射频同轴电缆

射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。 射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成,其射频泄漏非常小(小于-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的模具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态的聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。 半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种“测试级”的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。 柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 在本节中,详细讨论了射频同轴电缆的各种指标和性能,了解电缆的性能对于选择一条最佳的射频电缆组件是十分有益的。 特性阻抗 射频同轴电缆由内导体,介质,外导体和护套组成。 “特性阻抗”是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸之比有关,同时也和填充介质的介电常数有关。由于射频能量传输的“趋肤效应”,与阻抗相关的重要尺寸是电缆内导体的外径(d)和外导体的内径(D): Zo(?)=138√ε×logDd 常见的射频同轴电缆绝大部分是50?特性阻抗的,这是为什么呢? 通常认为导体的截面积越大损耗就越低,但事实并非完全如此。同轴电缆的每单位长度的损耗是logDd的函数,也就是说和电缆的特性阻抗有关。经过计算可以发现,当同轴电缆的特性阻抗为77?时,单位长度的损耗最低。 对于同轴电缆的最大承受功率,通常认为内外导体的间距越大,则同轴电缆可承受电压越高,即承受功率越大,但实际上也不完全准确。同轴电缆的最大承受功率同样与其特性阻抗有关。可以计算出当同轴电缆的特性阻抗为30?时,其承受的功率最大。 为了兼顾最小的损耗和最大的功率容量,应该在77?和30?之间找一个适当的数值。二者的算术平均值为53.5?,而几何平均值为48.06?;选取50?的特性阻抗可以做到二者兼顾。此外,50?阻抗的连接器也更加容易设计和加工。 绝大部分应用于通信领域的射频电缆的特性阻抗是50?;在广播电视中则用到75?的电缆。 大部分的测试仪器都是50?的阻抗,如果要测量75?阻抗的器件,可以通过一个50~75?的阻

射频同轴电缆行业分析报告

射频同轴电缆行业分析报告

目录 一、所属行业及行业管理体制 (4) 1、所属行业情况 (4) (1)电线电缆行业近年整体呈现快速增长趋势 (5) (2)电线电缆各分支产业发展速度不均衡 (6) (3)企业数量多、规模小,电线电缆行业产业集中度低,但正逐步提高 (6) (4)主要竞争手段由目前的价格竞争正逐步向品牌竞争和技术竞争转变 (6) (5)特种电缆逐渐成为行业内发展的重点领域 (7) 2、行业监管体制 (7) 二、射频同轴电缆的定义、用途、结构及分类 (9) 1、射频同轴电缆的定义及用途 (9) 2、射频同轴电缆的基本结构及分类 (9) (1)射频同轴电缆的基本结构 (9) (2)射频同轴电缆的分类 (11) 三、行业发展概况 (13) 四、行业的主要法律法规及产业政策 (14) 五、行业竞争情况 (16) 1、行业竞争格局 (16) (1)全球竞争格局 (16) (2)国内竞争格局 (16) 2、市场容量、发展前景及市场供求状况 (17) (1)行业市场容量及未来几年的增长趋势 (17) (2)市场前景分析 (18) (3)市场供求情况 (22) 3、行业内的主要企业及其市场份额 (22) (1)行业内主要企业 (22) (2)行业内主要企业的市场份额 (24)

4、行业利润水平的变动趋势及变动原因 (24) 5、进入本行业的主要壁垒 (25) (1)技术壁垒 (25) (2)资金壁垒 (26) (3)客户关系壁垒 (26) 六、影响行业发展的有利因素和不利因素 (27) 1、有利因素 (27) (1)国内宏观经济复苏 (27) (2)国家产业政策支持 (27) (3)全球通信设备制造业采购中心向中国转移 (28) (4)发达国家需求稳定,发展中国家和地区需求快速增长 (28) 2、不利因素 (29) (1)行业自主创新意识和能力不强,知识产权保护不力导致行业竞争无序 (29) (2)原材料价格波动加大行业经营风险 (29) 七、行业技术水平及发展趋势 (29) 1、行业技术水平 (29) 2、行业技术发展趋势 (30) (1)降低衰减和驻波比 (30) (2)提高电缆的特殊性能 (31) (3)研发高端绝缘介质 (31) (4)提高电缆的环保特性 (31) 3、行业的周期性、区域性 (32) (1)行业的周期性 (32) (2)行业的区域性 (32) 八、上下游行业发展状况及其对本行业的影响 (33) 1、上游行业 (33) 2、下游行业 (34)

射频同轴连接器分类及说明

频段划分_射频同轴连接器分类及说用 一.频段的字母表示: 自第二次世界大战以来,雷达系统工程师就使用简短的字母来描述雷达工作的波段。并且这种使用方法一直沿用到今天,而且对于从事相关行业人来说已经成为一个常识。使用这种字母来表示频段的主要原因是:方便、保密和直观(根据字母就可知系统相关特性)。根据IEEE 521-2002标准,雷达频段字母命名和ITU(国际电信联盟)命名对比如下表所示:

二.同轴连接器发展概况及相关标准 1射频连接器的发展概况: 1.1.1939年出现的UHF连接器是最早的RF连接器; 1.2.二战期间随着雷达、电台和微波通信的发展产生了N,C,BNC,TNC等中型系; 1.3.1958年后,随着整机设备的小型化,出出现了SMA,SMB,SMC等小型化产品; 1.4.1964年制定了美国军用标准MIL-C-39012《射频同轴连接器总规范》; 1.5.七十年代末,毫米波连接器出现; 1.6.九十年代初,HP公司推出频率高达110GHz的1.0mm连接器,并用于其仪器设备中; 1.7.九十年代出现表面贴装射频同轴连接器并大量用于手机产品中; 2我国射频同轴连连接器的发展: 2.1我国从五十年代开始由整机厂研制RF连接器; 2.2六十年代末组建专业工厂,开始了专业化生产; 2.3一九七二年国家组织集中设计,使国产的RF连接器是自成系统,只能在国内使用, 产品标准水平低,且不能与国际通用产品对接互换; 2.4八十年代起开始采用国际标准,根据IEC169和MIL-C-39012,颁布了GB11313和 GJB681,使射频同轴连接器的生产和使用逐步与国际接轨; 2.5经过几十年的努力,目前通用RF连接器的整体水平与国外差距不大,但精密连接器 的设计和生产与国外仍有较大差距; 3射频连接器的标准体系; 3.1美军标及其他它先进标准: 美国是世界上最大的通用型RF连接器制造和消费国,其水平也是一流的,因此美国军用标准MIL-C-39012被认为是RF连接器的最高标准; 3.2IEC标准: IEC是指导性标准,不是强制性标准,因此很少被直接应用; 4其它先进标准: 德国的DIN、英国BS,日本JIS; 这些国家的标准大都是参照或等同美军标制订的有些国家甚至直接应用美军标,而不再另行制订标准;值得一提的是,德国在某些专用新型连接器方面也有一些优势,例如:DIN47223的7/16(L29)系列、DIN47297的SAA系列及DIN41626的DSA系列等。这些系列产品在通信领域应用较广泛,德国的标准和产品已得到全世界的认可,但美国尚未相应标准出现。

RF同轴电缆的结构与传输特性

1 RF同轴电缆的结构与传输特性 1.1结构 RF同轴电缆由内导体、绝缘体、外导体和护套4部分组成,绝缘体使内、外导体绝 缘且保持轴心重合,这就是同轴电缆。内外导体由电介质(绝缘材料)隔开,电介质在很大程度上决定着同轴电缆的传输速度和损耗特性,常使用的绝缘材料是干燥空气、聚乙烯、聚丙烯、聚氯乙烯等材料的混合物。物理发泡电缆因损耗小、频率特性好、不易进水得到优选应用。 1.2传输特性 (1)同轴电缆内的电磁场分布 电场强度按正弦分布,在同轴电缆中传输的电波不会泄漏到电缆之外,在应用中,外导体通常是接地的,故具有良好的屏蔽作用,传输的电视信号不受外界杂波的干扰,里面的信号也不会辐射出去。 (2 )趋肤效应 高频信号的电流流过电缆时,电流集中于导体表面而使导体有效横截面积减少、电阻值加大的现象称之为趋肤效应。因为有趋肤效应,同轴电缆中的电流只沿内导体的外侧和外导体的内侧流动,因此,电缆的许多性质取决于内导体的外径和外导体的内径,电缆内、外部的电磁场也不相互干扰。趋肤深度与频率 f (MHz )的平方根成反比, 因此,同轴电缆的导体损耗与频率的平方根成正比。 1.3同轴电缆性能 (1 )特性阻抗 特性阻抗Z c定义为在同轴电缆终端匹配的情况下,电缆上任意点电压与电流的比值。同轴电缆的特性阻抗由导体的直径和导体间介质决定,与电缆长度无关。在CATV 系统中,同轴电缆的特性阻抗均为75 a (2 )衰减常数3与温度系数 RF信号在同轴电缆中传输时的衰减量与电缆的尺寸、介电常数、工作频率有关。同轴电缆信号的衰减程度,以衰减常数( 3 )表示单位长度(如100 m)电缆对信号衰 减的dB数。衰减常数与信号频率的平方根成正比,即在同一段电缆,信号频率越高,衰减常数越大;信号频率越低,衰减常数越小。温度系数表示温度变化对电缆损耗值的影响,温度上升,电缆的损耗值增大;温度下降,电缆的损耗值减小。温度系数定义为温度升高或降低1C,电缆对信号衰减量增大或减小的百分数。表1是根据和平县有线电视 台的频道配置选出8个频道,在33C和13C两个常温下,对汉胜RF同轴电缆-5型和-7 型进行测量的结果。 表1两种常温下的汉胜电缆-7与-5型的衰减常数(3 )频道图像载频(MHz) 33 C dB/100 m13 C dB/100 m -7型-5 型-7 型-5 型

RF同轴电缆的结构与传输特性

1 RF同轴电缆的结构与传输特性 1.1 结构 RF同轴电缆由内导体、绝缘体、外导体和护套4部分组成,绝缘体使内、外导体绝缘且保持轴心重合,这就是同轴电缆。内外导体由电介质(绝缘材料)隔开,电介质在很大程度上决定着同轴电缆的传输速度和损耗特性,常使用的绝缘材料是干燥空气、聚乙烯、聚丙烯、聚氯乙烯等材料的混合物。物理发泡电缆因损耗小、频率特性好、不易进水得到优选应用。 1.2 传输特性 (1)同轴电缆内的电磁场分布 电场强度按正弦分布,在同轴电缆中传输的电波不会泄漏到电缆之外,在应用中,外导体通常是接地的,故具有良好的屏蔽作用,传输的电视信号不受外界杂波的干扰,里面的信号也不会辐射出去。 (2)趋肤效应 高频信号的电流流过电缆时,电流集中于导体表面而使导体有效横截面积减少、电阻值加大的现象称之为趋肤效应。因为有趋肤效应,同轴电缆中的电流只沿内导体的外侧和外导体的内侧流动,因此,电缆的许多性质取决于内导体的外径和外导体的内径,电缆内、外部的电磁场也不相互干扰。趋肤深度与频率f(MHz)的平方根成反比,因此,同轴电缆的导体损耗与频率的平方根成正比。 1.3 同轴电缆性能 (1)特性阻抗 特性阻抗Z c定义为在同轴电缆终端匹配的情况下,电缆上任意点电压与电流的比值。同轴电缆的特性阻抗由导体的直径和导体间介质决定,与电缆长度无关。在CATV 系统中,同轴电缆的特性阻抗均为75 Ω。 (2)衰减常数β与温度系数 RF信号在同轴电缆中传输时的衰减量与电缆的尺寸、介电常数、工作频率有关。同轴电缆信号的衰减程度,以衰减常数(β)表示单位长度(如100 m)电缆对信号衰减的dB数。衰减常数与信号频率的平方根成正比,即在同一段电缆,信号频率越高,衰减常数越大;信号频率越低,衰减常数越小。温度系数表示温度变化对电缆损耗值的影响,温度上升,电缆的损耗值增大;温度下降,电缆的损耗值减小。温度系数定义为温度升高或降低1℃,电缆对信号衰减量增大或减小的百分数。表1是根据和平县有线电视台的频道配置选出8个频道,在33℃和13℃两个常温下,对汉胜RF同轴电缆-5型和-7型进行测量的结果。 表1两种常温下的汉胜电缆-7与-5型的衰减常数(β) 频道图像载频(MHz)

射频同轴连接器特性阻抗的计算

射频同轴连接器特性阻抗的计算 文章介绍了射频同轴连接器特性阻抗的计算方法之一,快速简便的获得阻抗值,方便采购与检验等环节。 标签:同轴连接器;射频转接器;特性阻抗;阻抗匹配 1 前言 微波技术在新世纪得到更广泛的发展,作为微波技术的重要器件射频同轴连接器显得至关重要,选择匹配的连接器可以提高系统的性能。而作为选择连接器的重要因素,阻抗匹配显得很重要,了解和掌握阻抗的计算方法可以一定程度的保证器件选择、产品进货检验等。 2 射频同轴连接器简介 用于射频同轴馈线系统的连接器通称为射频同轴连接器。 射频同轴连接器按连接方式分类为:螺纹式连接器,卡口式连接器,推入式连接器,推入锁紧式连接器。 常用的射频同轴连接器有SMA型、SMB型、SSMB型、N型、BNC型、TNC型等。 射频同轴连接器电气性能方面包括特性阻抗、耐压、最高工作频率等因素,特性阻抗是连接器与传输系统及电缆的阻抗匹配,是选择射频同轴连接器的主要指标,阻抗不匹配会导致系统性能的很大下降。通过计算的阻抗来选择匹配的连接器,方便采购、检验及设计。利用射频同轴连接器的结构尺寸计算其阻抗值的方法,快速简便。 3 射频同轴连接器特性阻抗的计算 射频同轴连接器的特性阻抗主要依据其外导体的内直径和内导体的外直径以及和填充的介质共同决定的。如图1所示 3.3 实例2 BNC 型连接器的特性阻抗: BNC 型连接器使用于低功率,按特性阻抗分为50Ω和75Ω两种。不同于其它类型连接器的特点是50Ω与75Ω的内导体与外导体的尺寸一样,构成特性阻抗不同的区别在是否填充介质,也就是说有一种阻抗的连接器的填充是空气。75Ω特性阻抗的连接器没有填充介质,即空气介质(εr=1)。50Ω特性阻抗的在

射频同轴连接器结构及选择

射频同轴连接器结构及选择 射频同轴连接器的选择既要考虑性能要求又要考虑经济因素,性能必须满足系统电气设备的要求经济上须符合价值工程要求。在选择连接器原则上应考虑以下四方面连接器接口(SMA、SMB、BNC等) 电气性能、电缆及电缆装接端接形式(PC板、电缆、面板等) 机械构造及镀层(军用、商用) 1、连接器接口连接器接口通常由它的应用所决定,但同时要满足电气和机械性能要求。BMA型连接器用于频率达18GHz的低功率微波系统的盲插连接。 BNC型连接器采用卡口式连接多用于频率低于4GHz的射频连接,广泛用于网络系统、仪器仪表及电脑互连领域。 TNC除了螺口外其界面与BNC相仿在11GHz仍能使用在振动条件下性能优良。 SMA螺口连接器广泛应用于航空、雷达、微波通讯、数字通信等军用民用领域。其阻抗有50配用软电缆时使用频率低于12.4GHz 配用半刚性电缆时最高使用频率达26.5GHz,75在数字通信上应用前景广阔。 SMB体积小于SMA,为插入自锁结构,便于快速连接,最典型的应用是数字通信是L9的换代产品商业50N满足4GHz,75用于2GHz。 SMC与SMB相仿因有螺口保证了更强的机械性能及更宽的频率范围主要用于军事或高振动环境。 N型螺口连接器用空气作绝缘材料造价低,阻抗为50及75,频率可达11GHz通常用于区域网络,媒体传播和测试仪器上。 RFCN提供的MCX、MMCX系列连接器体积小,接触可靠,是满足密集型、小型化的首选产品,有其广泛的应用前景。 2、电气性能、电缆及电缆装接A.阻抗: 连接器应与系统及电缆的阻抗相匹配,应注意到不是所有连接器接口都符合50或75的阻抗,阻抗不匹配会导致系统性能下降。 B.电压:

对几种射频同轴电缆的介绍

对几种射频同轴电缆的介绍 (1)SYWV-50Ω系列物理发泡射频同轴电缆 该产品适用于地面移动通讯或其他高频领域中作信号传输线。 (2)MSLYF(Y)VZ-50-9 、MSLYF(Y)VZ-75-9煤矿用漏泄同轴电缆 MSL YF(Y)VZ-50-9物理发泡PE绝缘编织外导体漏泄同轴电缆兼有信号传输线和天线的双重功能,并采用阻燃聚氯乙烯作外导体而生产的双层护套电缆,从而增强了电缆的机械强度及防潮防火性能。 本产品适用于煤矿用漏泄同轴电缆。该系列电缆可用作在30MHz-150MHz频段里的信号传输连接馈线,该电缆在煤矿里必须单独敷设使用。 安装敷设最低气温-15℃;最小弯曲半径150mm;敷设电缆应悬挂在离壁面或地面15c m以上的空间。 电缆连接器的安装:电缆两端安装连接器时,连接要牢固,不得虚设,或接触不良,电缆切口处要清洁,不得有油污或金属屑沫吸附在切口截面上,影响绝缘性能;内导体和外导体间要严格分开,不得碰接。 MSL YF(Y)VZ-75-9煤矿用漏泄同轴电缆,该产品适用于煤矿坑道,隧道,地下室内的75Ω,60-150MHZ频段里的信号传输的连接馈线。 安装敷设最低气温-15℃;最小弯曲半径150mm;敷设电缆应悬挂在离壁面或地面15c m以上的空间 电缆连接器的安装:电缆两端安装连接器时,连接要牢固,不得虚设,或接触不良,电缆切口处要清洁,不得有油污或金属屑沫吸附在切口截面上,影响绝缘性能;内导体和外导体间要严格分开,不得碰接。 (3)SFF聚四氟乙烯绝缘射频同轴电缆--(执行标准SJ1563)——美军标RG系列同轴电缆(MIL-C-17) 适用于无线电通讯设备,固定敷设的高频、超高频传输线及类似的高频电子装置中,作设备内外射频信号的传输。 该系列产品符合欧盟RoHS要求,具备SGS测试报告

射频同轴电缆选择指南

射频同轴电缆选择指南 对一项新的应用来说,选择最适合的同轴电缆需要了解这项应用,并且了解可选择的电缆种类。在为应用选择最合适的同轴电缆的过程中,下列的电缆特性需要被考虑。接下来的章节就详细地讨论了下列每种特性。 A:VSWR和阻抗一致性 B:衰减 衰减一致性 衰减稳定性 C:额定功率 D:屏蔽性 E:截止频率 F:工作温度范围 G:柔韧性 H:电长度稳定性 I: 互调 J: 环境适应性 A:信号反射:VSWR和阻抗一致性 当射频信号输入到同轴电缆组件中时,有三种情况发生:(1)信号被传输到电缆的另一端,正如期望的那样;(2)信号沿着电缆传播时,被转换成热量或从电缆中泄露出去,以这两种形式损失掉;(3)朝着电缆输入的一端反射回来。信号沿着电缆输入的方向反射回来,这是由于沿着电缆长度方向上阻抗的变化引起的。这些变化就包括电缆和其相连的设备阻抗的不同。通常连接器和连接器与电缆的接口是反射的主要因素。另外,电缆本身也可引起反射,电缆反射的一种来源就是来自阻抗周期性的变化。而这种变化是在生产过程中,被加到一个特定的频率上时所产生的。当用一组频率扫描并观察,就会出现一个尖峰。图1就显示了一个尖峰的例子。

反射的大小可以用几种方式表示。可能最熟悉的就是VSWR了。反射也可表示成回损,就是反射功率与入射功率的比。通常用dB表示。 低反射功率或低电压驻波比通常作为同轴部件的指标,包括电缆,连接器,和电缆组件。它表明了电缆的一致性沿着其长度保持得有多好,连接器是否恰当的被设计和被装接;也反映了连接器的尺寸和电缆线径过渡段的匹配有多好。它通常是频率的函数,当频率增大时,反射也增加。 在很多应用方面,低反射功率对于实现好的系统性能是关键的因素。在这种情况下,选择电缆和连接器是关键。另外,为了得到好的结果,还必须小心地将连接器连接到电缆上。购买电缆组件的时候应该考虑VSWR关键的应用。 要注意,在一个特定的频率下,实际的输入阻抗可能和电缆的特性阻抗有很大不同,这是线路中存在反射引起的。一段特定长度电缆的VSWR是电缆实际输入阻抗与它平均特性阻抗差别大小的指针。 B.衰减 衰减是信号沿着电缆传播的损耗,当射频信号穿过电缆,一部分转变成热,一部分通过外导体泄露出去。信号损耗通常用单位长度的dB数表示,而且是在某一特定频率时,因为衰减随频率增加而增加。 对于大多数应用来说,目的是要减少电缆中的损耗或者是在损耗预计范围内保持不变。对于同一结构类型的电缆,损耗随着直径的增加而减小,因此,欲使电缆损耗减小意味着可

射频同轴连接器技术简介

射频同轴连接器技术简介 一、射频连接器发展概况·1939年出现的UHF连接器是最早的RF连接器;·二战期 间,随着雷达、电台和微波通信的发展,产生了N、C、BNC、TNC等中型系列;·1958年后,随着整机设备的小型化,出现了SMA、SMB、SMC等小型化产品;·1964年制定了美国军用标准MIL-C-39012《射频同轴连接器总规范》·七十年代末,毫米波连接器出现;·九十年代初,HP公司推出频率高达110GHz的1.0mm连接器,并用于其仪器设备中;·九十年代出现表现贴装射频同轴连接器,并大量用于手机产品中。我国射频同轴连接器的发展·我国从五十年代开始由整机厂研制RF连接器;·六十年代组建专业工厂,开始了专业化生产;·一九七二年国家组织集中设计,使国产的RF连接器自成体系,只能在国内使用,产品标准水平低,且不能与国际通用产品对接互换;·八十年代起开始采用国际标准,根据IEC169和MIL-C-39012,颁布了GB11313和GJB681,使射频同轴连接器的生产和使用逐步与国际接轨;·经过十几年的努力,目前通用R连接器的整 体水平与国外差距不大,但精密连接器的设计与生产跟国外仍有较大差距。二、射频连接器的标准体系美军标美国是世界上最大的通用型RF连接器制造和消费国, 其技术水平也是一流的因此美国军用标准MLC39012被认为是RF连接器的最高标准。其它先进国家的标准有德国DIN、英国BS、日本JIS和IEC标准等。这些国家或国际标准大都是参照或等同美军标制订的,有些国家或公司甚至直接应用美军标。IEC标准IEC标准是指导性标准,不是强制性标准,因此很少被直接引用;值得一提的是德国在某些专用新型连接器方面也有一些优势,例如:DIN47223、7/16(L29)系列、DIN47297、SAA系列、DIN41626、DSA系列,这些系列产品在通信领域应用较广泛,德国的标准和产品已得到全世界认可,但美国尚无这些标准出现。我国现行标准我国现行通用RF同轴连接器标准分两部分,一部分是军用标准(GJB681、GB680、GJB976及其详细规范)。另一部分是民用产品标准,按IEC169-1制定的GB11313。·不论是国军标还是国标,基本上都是照搬国外先进标准制订的,主要指标不折不扣搬过来,因此,可 以说我们现行标准与国际接轨,且指标和技术水平与国际先进水平同步。三、射频连接器基本概念及技术特点1、RF连接器的定义通常装接在电缆上或安装在仪 器上的一种元件,作为实现传输线电气连接或分离的元件。它属于机电一体化产品。简单地讲它主要起桥梁作用。 2、连接器的分类连接器种类繁多,根据技术特性的不同,按频率划分为音频(Audio)、视频(Vidio)、射频(Radio)、光纤( fribre optic)四大类。频率范围如下:Audio---20KHz 以下Vidio----30MHz~500MHz以下Radio----500MHz ~300GHzFibre-----167THz ~375THz 其中应用在Radio波段的连接器称作RF连接器。工程中常用的波段划分如下(单位 GHz):3、RF连接器的分类1)按端接方式分为连接器MIL-C-39012(GJB681)转接器MIL-A-55339(GJB680)微带与带状线ML-C-83517(GJB976) 2)按连接方式分为:卡口式(内卡口、外卡口)螺纹式(右旋螺纹、左旋螺纹)推入式(直插式、带止动式、自锁式)3)按功能分为:通用型(2级)精密型(0级、1级)专用型(耐辐照、耐高压、防水等)多功能型(含有滤波、调相位、混频、衰减、检波、限幅等)

射频同轴连接器基本知识

射频同轴连接器基本知识 1、单位换算和一些常数: 1.1 1GHz=103MHz =106KHz =109Hz 1.2 1Kg = 9.8N 1.3 1in = 25.4mm 1.4 1bf.in = 0.112985N.m 1.5 1标准大气压= 101325 Pa 1.6 电磁波真空中的速度Co=3×108m/s 1.7 空气介质的相对介电常数εr空=1 1.8 聚四氟乙烯的相对介电常数:国内用εr= 2.05IEC常用εr=2.01 1.9 空气介质的导磁率μ空= 1 1.10 常用铅黄铜(Hpb59-1)的密度= 8.4g/cm3 2、请写出下面名词的定义: 2.1电接触——各个导电件处于紧密地机械接触状态,对两个方向的电流能提供低电阻通路; 2.2接触件——元件内的导电体,它与对应的导电件相插合提供电通路(提供电接触): 2.3弹性接触件——能对插合的零件产生压力具有弹性的接触件; 2.4连接器——通常装接在电缆或设备上,供传输线系统电连接可分离元件(转接器除外) 2.5转接器——连接两根带有不能直接插合连接器传输线的两端口装置;

2.6无极性连接器——能与本身等同的连接器相插合的连接器; 2.7类型——表征连接器对的与结构和尺寸有关的具体插合面和锁紧机构的术语; 2.8品种——表示同一类型的具体型式、形状以及组合。例如:自由端连接器和固定连接器,直式连接器和直角连接器,同类型内直角和直角转换器; 2.9规格——表示品种在特定细节方面的变化,如电缆入口处尺寸的变化; 2.10等级——连接器在机械和电气精密度方面特别是在规定的反射系数方面的水平。 3、产品基本知识和性能: 3.1请分别写出7/16型、N型和SMA型连接器的连接螺纹,并解释螺纹标识中每个字母及数学所表示的含义(对于公制螺纹请说明是粗牙普通螺纹还是细牙普通螺纹) 7/16型——M29×1.5表示标称直径为29mm(1.141in),螺距为1.5mm(0.059in)的公制螺纹,该螺纹为细牙普通螺纹。 N型——5/8-24UNEF-2,表示该螺纹标称直径为5/8英寸,每英寸牙数为24,UNEF表示为超细压螺纹系列。2为精度等级,A为外螺纹,B为内螺纹。 SMA型——1/4-36UNS-2,表示该螺纹标称直径为1/4英寸,每英寸牙数为36,UNS表示为特种螺纹系列。2为精度等级,A为外螺纹,B为内螺纹。 3.2请分别写出7/16型、N型、SMA型三种产品的工作频率范围、并写出他们所有用到的特性阻抗和工作温度范围:

同轴电缆

同轴电缆 同轴电缆是有线电视系统中用来传输射频信号的主要媒质,它是由芯线和屏蔽网筒构成的两根导体,因为这两根导体的轴心是重合的,故称同轴电缆或同轴线。目前,在不能完全实现光纤到户的情况下,同轴电缆的使用量相当大,多方位了解同轴电缆的特性,对于有线电视工作者特别是刚刚从事有线电视工作的同志更是大有益处。 1同轴电缆的结构 射频同轴电缆由内导体、绝缘介质、外导体(屏蔽层)和护套4部分组成。 1.1内导体 内导体通常由一根实心导体构成,利用高频信号的集肤效应,可采用空铜管,也可用镀铜铝棒,对不需供电的用户网采用铜包钢线,对于需要供电的分配网或主干线建议采用铜包铝线,这样既能保证电缆的传输性能,又可以满足供电及机械性能的要求,减轻了电缆的重量,也降低了电缆的造价。 1.2绝缘介质 绝缘介质可以采用聚乙烯、聚丙烯、聚氯乙烯(PVC)和氟塑料等,常用的绝缘介质是损耗小、工艺性能好的聚乙烯。 1.3外导体 同轴电缆的外导体有双重作用,它既作为传输回路的一根导线,又具有屏蔽作用,外导体通常有3种结构。 (1)金属管状。这种结构采用铜或铝带纵包焊接,或者是无缝铜管挤包拉延而成,这种结构形式的屏蔽性能最好,但柔软性差,常用于干线电缆。 (2)铝塑料复合带纵包搭接。这种结构有较好的屏蔽作用,且制造成本低,但由于外导体是带纵缝的圆管,电磁波会从缝隙处穿出而泄漏,应慎重使用。 (3)编织网与铝塑复合带纵包组合。这是从单一编织网结构发展而来的,它具有柔软性好、重量轻和接头可靠等特点,实验证明,采用合理的复合结构,对屏蔽性能有很大提高,目前这种结构形式被大量使用。 1.4护套 室外电缆宜用具有优良气候特性的黑色聚乙烯,室内用户电缆从美观考虑则宜采用浅色的聚乙烯。常用同轴电缆结构如表1所示。 表1常用同轴电缆结构尺寸

射频同轴电缆行业分析报告2011

2011年射频同轴电缆行业分析报告

目录 一、所属行业及行业管理体制 (4) 1、所属行业情况 (4) (1)电线电缆行业近年整体呈现快速增长趋势 (5) (2)电线电缆各分支产业发展速度不均衡 (6) (3)企业数量多、规模小,电线电缆行业产业集中度低,但正逐步提高 (6) (4)主要竞争手段由目前的价格竞争正逐步向品牌竞争和技术竞争转变 (6) (5)特种电缆逐渐成为行业内发展的重点领域 (7) 2、行业监管体制 (7) 二、射频同轴电缆的定义、用途、结构及分类 (9) 1、射频同轴电缆的定义及用途 (9) 2、射频同轴电缆的基本结构及分类 (9) (1)射频同轴电缆的基本结构 (9) (2)射频同轴电缆的分类 (11) 三、行业发展概况 (13) 四、行业的主要法律法规及产业政策 (14) 五、行业竞争情况 (16) 1、行业竞争格局 (16) (1)全球竞争格局 (16) (2)国内竞争格局 (16) 2、市场容量、发展前景及市场供求状况 (17) (1)行业市场容量及未来几年的增长趋势 (17) (2)市场前景分析 (18) (3)市场供求情况 (22) 3、行业内的主要企业及其市场份额 (22) (1)行业内主要企业 (22) (2)行业内主要企业的市场份额 (24)

4、行业利润水平的变动趋势及变动原因 (24) 5、进入本行业的主要壁垒 (25) (1)技术壁垒 (25) (2)资金壁垒 (26) (3)客户关系壁垒 (26) 六、影响行业发展的有利因素和不利因素 (27) 1、有利因素 (27) (1)国内宏观经济复苏 (27) (2)国家产业政策支持 (27) (3)全球通信设备制造业采购中心向中国转移 (28) (4)发达国家需求稳定,发展中国家和地区需求快速增长 (28) 2、不利因素 (29) (1)行业自主创新意识和能力不强,知识产权保护不力导致行业竞争无序 (29) (2)原材料价格波动加大行业经营风险 (29) 七、行业技术水平及发展趋势 (29) 1、行业技术水平 (29) 2、行业技术发展趋势 (30) (1)降低衰减和驻波比 (30) (2)提高电缆的特殊性能 (31) (3)研发高端绝缘介质 (31) (4)提高电缆的环保特性 (31) 3、行业的周期性、区域性 (32) (1)行业的周期性 (32) (2)行业的区域性 (32) 八、上下游行业发展状况及其对本行业的影响 (33) 1、上游行业 (33) 2、下游行业 (34)

常见射频同轴连接器

常见射频同轴连接器 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

常见射频同轴连接器大全 射频信号有自己的特点,所以传输信号需要特别的媒介,而相应连接器也很特殊,这里主要介绍常见的射频同轴连接器(RF COAXIAL CONNECTOR),符合标准GB11316- 89、IEC169、MIL-C-31012等标准。 一、常见的同轴连接器及主要性能对照表: 除上述连接器以外,还有MINI BNC、SL16、C3、CC4、SMZ(BT-43)、MIM等连接器,但主要是一些公司的型号。 二、常见同轴连接器的选择: BNC是卡口式,多用于低于4GHz的射频连接,广泛用于仪器仪表及计算机互联 TNC是螺纹连接,尺寸等方面类似BNC,工作频率可达11GHz,螺纹式适合振动环境SMA是螺纹连接,应用最广泛,阻抗有50和75欧姆两种,50欧姆时配软电缆使用频率低于,配半刚性电缆最高到 SMB体积小于SMA,为插入自锁结构,用于快速连接,常用于数字通讯,是L9的换代品,50欧姆可到4GHz,75欧姆到2GHz SMC为螺纹连接,其他类似SMB,有更宽的频率范围,常用于军事或高振动环境 N型连接器为螺纹式,以空气为绝缘材料,造价低,频率可达11GHz,常用于测试仪器上,有50和75欧姆两种 MCX和MMCX连接器体积小,用于密集型连接 BMA用于频率达18GHz的低功率微波系统的盲插连接 每种连接器都有军标和商业标准,军标按MIL-C-39012制造,全铜零件、聚四氟乙烯绝缘、内外镀金,性能最可靠,但造价较高。

相关文档
最新文档