航空发动机原理复习思考题

航空发动机原理复习思考题
航空发动机原理复习思考题

机械故障诊断综合大作业—航空发动机的状态监测和故障诊断

机械系统故障诊断 综合大作业 航空发动机的状态监测和故障诊断 1.研究背景与意义 航空发动机不但结构复杂,且工作在高温、大压力的苛刻条件下。从发动机发展现状看,无论设计、材料和工艺水平,抑或使用、维护和管理水平,都不可能完全保证其使用中的可靠性。而发动机故障在飞机飞行故障中往往是致命的,并且占有相当大的比例,因此常常因发动机的故障导致飞行中的灾难性事故。 随着航空科学技术的发展并总结航空发动机设计、研制和使用中的经验教训,航空发动机的可靠性和结构完整性已愈来愈受到关注。自70年代初期即逐步明确航空发动机的发展应全面满足适用性、可靠性和经济性的要求,也就是在保证达到发动机性能要求的同时,必须满足发动机的可靠性和经济性(维修性和耐久性)的要求。 可靠性工作应贯穿在发动机设计-生产-使用-维护全过程的始终。对新研制的发动机,应在设计阶段就同时进行可靠性设计、试验和预估;对在役的发动机,应经常进行可靠性评估、监视和维护。军机和民用飞机的主管部门,设计、生产、使用和维护等各部门,应形成有机的、闭环式的可靠性管理体制,共同促进航空发动机可靠性的完善和提高。 2.国内外进展 自70年代前期,国外一些先进的民用和军用航空公司即着手研究和装备发动机的状态监视和故障诊断系统。电子技术与计算机技术的迅速发展,大大促进了航空发动机的状态监视与故障诊断技术的发展。至今,监视与诊断技术作为一项综合技术,已发展成为一门独立的学科,其应用已日趋广泛和完善。 按民航适航条例规定航空发动机必须有15个以上的监视参数。现今美国普?惠公司由有限监视到扩展监视,逐步完善了其TEAMIII等系统,美国通用电气公司也不断在发展其ADEPT系统。 从各国空军飞机发动机的资料来看,大都采用了发动机状态监视与故障诊断系统。包括发动机监视系统EMS,发动机使用情况监视系统EUMS和低循环疲劳计数器LCFC等,同时为了帮助查找故障,近年来还发展了发动机故障诊断的专家系统,如XMAN和JET—X。美国自动车工程协会(SAE)E-32航空燃气涡轮监视委员会研究并颁布了一系列指南,包括航空燃气涡轮发动机监视系统指南、有限监视系统指南、滑油系统监视指南、振动监视系统指南、使用寿命监视及零件管理指南等。 我国相关民用航空公司和院校开展的发动机状态监测与故障诊断的研究工作已初见成效。并且对于新研制的高性能发动机已将实施状态监视列为重要的技、战术指标,因此正较全面的开展这方面的研究工作。但是总的看来,国内该项工作开展得还不够,亟待有计划、有步骤地借鉴国外的成功经验,发展并推广我们自己的状态监视与故障诊断技术,以适应飞机和发展的需要。

航空发动机原理

航空发动机原理 航空发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,航空发动机已经形成了一个种类繁多,用途各不相同的大家族。 航空发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,航空发动机可分为两类 1、吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 2、火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为 1、直接反作用力发动机 直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 2、间接反作用力发动机两类。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。 附图: 活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。 为航空器提供飞行动力的往复式内燃机。发动机带动空气螺旋桨等推进器旋转产生推进力。 从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。40

2020年航空发动机行业分析报告

2020年航空发动机行业分析报告 2020年2月

目录 一、我国航空发动机国产化势在必行,产业链各环节企业将迎来重大 发展机遇期 (5) 1、国家级基金战略扶持:预计2017年启动的国家级两机专项计划投入规模 6在3000亿以上 ........................................................................................................ 2、国家安全战略重要保障:两机是工业领域皇冠上的明珠,是国家安全的重 7要战略保障 .............................................................................................................. 3、产业链条足够长、市场空间足够大:预计未来10年全球两机市场规模将 达到6000亿美元,产业链各环节企业发展空间巨大 (8) 二、我国航空发动机产业发展现状及标的梳理 (12) 1、航空发动机产业发展特点:技术壁垒高、经济回报高、研制周期长 (12) (1)技术壁垒高 (12) (2)经济回报高 (13) (3)研制周期长、研制投入大 (13) 2、我国国产军用航空发动机发展现状 (14) (1)仿制和改进 (14) (2)部分自主设计 (15) (3)拥有自主知识产权 (15) 3、我国航空发动机等两机产业链标的梳理 (16) 三、两机产业链:全球维度看切入两机供应体系,国内维度看自主可 控加速技术与产品落地 (17) 1、航发动力:我国航空发动机制造龙头企业,整机制造处垄断地位 (18) 2、应流股份:两机叶片千亿美金赛道,从此有了中国制造 (19)

航空发动机结构强度设计 大作业

航空发动机结构强度设计 大作业 王延荣主编 北京航空航天大学能源与动力工程学院 2013.3

2 1 某级涡轮转子的转速为4700r/min ,共有68片转子叶片,叶片材料GH33的密度ρ为8.2 ×103 kg/m 3,气流参数沿叶高均布,平均半径处叶栅进、出口的气流参数,叶片各截面的重心位置(X , Y , Z ),截面面积A ,主惯性矩I ξ,I η以及ξ轴与x 轴的夹角α,弯曲应力最大的A , B , C 三点的坐标ξA , ηA , ξB , ηB , ξC , ηc 列于下表,试求叶片各截面上的离心拉伸应力、气动力弯矩、离心力弯矩、合成弯矩及A ,B ,C 三点的弯曲应力和总应力。 截 面 0 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ X , cm 0.53 0.41 0.41 0.40 0.24 0.12 Y , cm -0.41 -0.38 -0.30 -0.19 -0.11 -0.02 Z , cm 62.8 59.1 56.0 53.0 49.4 45.8 A , cm 2 1.80 2.32 3.12 4.10 5.48 7.05 I ξ, cm 4 0.242 0.304 0.484 0.939 1.802 I η, cm 4 6.694 9.332 12.52 17.57 23.74 ξA , cm -2.685 -2.847 -2.938 -2.889 -2.894 ηA , cm 0.797 0.951 1.094 1.232 1.319 ξB , cm -0.084 -0.205 -0.303 -0.219 -0.302 ηB , cm -0.481 -0.521 -0.655 -0.749 -1.015 ξC , cm 3.728 3.909 4.060 4.366 4.597 ηC , cm 0.773 0.824 0.840 1.130 1.305 α 31o 40’ 27o 49’ 25o 19’ 22o 5’30’’ 16o 57’ 12o 43’ c 1am c 1um ρ1m p 1m c 2am c 2um ρ2m p 2m 297m/s -410m/s 0.894kg/m 3 0.222MPa 313m/s 38m/s 0.75 kg/m 3 0.178MPa 2 某一涡轮盘转速12500r/min,盘材料密度8.0×103kg/m 3 , 泊松比0.3,轮缘径向应力140MPa,盘厚度h 、弹性模量E、线涨系数α及温度t 沿半径的分布列于下表,试用等厚圆环法计算其应力分布。 截面, n 半径r , cm 盘厚h , cm E, GPa t , ℃ α,10-6/℃平均半径 平均厚度 0 0.0 4.86 162 165 16.5 1 5.0 3.90 16 2 165 16.5 2.5 4.38 2 10.0 2.97 157 250 17.1 7.5 3.435 3 14.0 2.2 4 148 360 18.2 12.0 2.60 5 4 15.0 1.8 6 140 400 19.0 14.5 2.05 5 15.8 1.60 13 7 430 19.4 15.4 1.73 6 16.6 1.80 134 460 19.7 16.2 1.70 7 17.4 2.30 130 500 20.3 17.0 2.05 3 某转子叶片根部固定,其材料密度2850kg/m 3,弹性模量71.54GPa ,叶片长0.1m ,各截面 位置、面积、惯性矩列于下表,试求其前3阶固有静频。 截面号i 0 1 2 3 4 5 6 7 8 9 10 x , m 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 A , 10-4m 2 1.70 1.46 1.26 1.09 0.96 0.86 0.77 0.73 0.70 0.68 0.68 I , 10-8m 4 0.02790.0212 0.0157 0.01080.00840.00610.00450.00370.0032 0.0030 0.0030

航空发动机原理试题

《气体动力学基础》试卷 一、 填空(30分,每空1分) 1. 气体密度是指_单位容积内气体的质量_。从微观上讲,密度的大小代表了_气体分子的疏密程度_。气体流过航空发动机的喷管时,其密度的变化规律是__减小__。 2.从微观上讲,气体压力是_大量气体分子无规则运动碰撞器壁的总效应_。在比容一定的情况下,气体温度升高,引起气体压力的变化规律是_增大 。 3.定压比热是指_在压力一定的条件下,1kg 气体温度升高或降低1℃,所需吸收或放出的热量_;定压比热与定容比热的关系式可以写成 R c c v p +=。 4.绝热过程是指 气体在和外界没有任何热交换的前提下,所进行的热力过程 ;在该过程中压力和比容的关系式可以写成k v v p p )(2 112=;该过程的外(容积)功的计算式可以写成)(1 11122v p v p k l --=。 5.“一维定常流”中“一维”是指_气流参数是一维坐标的函数_。 6.可压流的连续性方程可以写成 常数=V A ρ ,它说明_在一维定常流的条件下,流过各截面的气体流量相等_。 7. 一维定常流能量(焓)方程的一般形式是 1221222 i i V V l q -+-=±±外 。气体流过发动机的涡轮时,能量方程可以改写成 l V V i i +-=-2 212221 ,此方程表示的能量转换关系是 气体焓的下降,用来对外作功和增加气体的动能 ;气体流过发动机进气道时,能量方程可以改写成常数=+2 2 V i ,此方程表示的能量转换关系是_焓和动能之和保持不变 。 8.滞止压力(总压)是指_理想绝能条件下,将气流滞止到速度为零时的压力_。气体流过发动机的进气道时,在不考虑流动损失的情况下,总压的变化规律是 不变_的。

航空发动机原理

航空发动机主要有三种类型:活塞式航空发动机,燃气涡轮发动机和冲压发动机。 航空发动机的发展经历了活塞发动机,喷气时代的活塞发动机,燃气涡轮发动机,涡轮喷气发动机/涡轮风扇发动机,涡轮螺旋桨发动机/涡轮轴发动机。本文主要利用动态图来说明航空发动机的工作原理。 星型活塞发动机(常见于旧飞机,例如B-36,yun-5等): 星型活塞发动机的原理与汽车发动机的原理相同。燃料在汽缸中爆炸并燃烧以推动活塞工作,但汽缸装置为星形。汽车上的活塞发动机通常以V或w的形式布置。活塞式航空发动机由于效率低,噪音大,燃油消耗大而已基本取消。 涡轮喷气发动机:(J-7,MiG-25等) 涡轮喷气发动机是涡轮发动机的一种。取决于气流产生推力。它通常用于为高速飞机提供动力,但其燃油消耗高于涡轮风扇发动机。著名的MiG-25和SR-71黑鸟侦察机均配备了涡轮喷气发动机,其最大速度可突破3马赫。由于油耗高,逐渐被涡轮风扇发动机取代。 涡轮螺旋桨发动机:(Y-8,C-130,a-400m等) 涡轮喷气发动机的本质类似于带有减速器和外部螺旋桨的涡轮喷气发动机。涡轮螺旋桨发动机的推力主要由螺旋桨产生,而喷气机产生的推力很小,仅为螺旋桨的十分之一。涡轮螺旋桨发动机的优点是速度低,效率高,适用于运输机,海上巡逻机等。由于螺旋桨旋转的面积较大,因此在高速飞行时会有很多阻力,因此涡轮螺旋桨发动

机不适合高速飞行。 涡轮风扇发动机:(涡轮风扇10,AL-31F,f-135等,cmf56)涡轮风扇发动机是从涡轮喷气发动机发展而来的。与涡轮喷气发动机相比,涡轮风扇发动机的主要特点是第一级压缩机的面积要大得多。目前,大多数先进的飞机都使用涡扇发动机。涡扇发动机相当于涡轮螺旋桨发动机和涡轮喷气发动机性能的折衷产品,适用于以400-1000 km / h的速度飞行。 优点:高推力,高推进效率,低噪音,低油耗,飞行距离长。 缺点:风扇直径大,迎风面大,阻力大,发动机结构复杂,设计困难。 螺旋桨风扇发动机:(ge-36) 螺旋桨式风扇发动机不仅可以被视为具有先进高速螺旋桨的涡轮螺旋桨发动机,而且除了外部管道外,还可以被视为超高旁通比涡轮风扇发动机。它具有涡轮螺旋桨发动机低油耗率和涡轮风扇发动机高飞行速度的优点。实验中的Ge36显示出非常低的燃料消耗,但是由于噪音,它并未在任何飞机上使用。

2013级《航空发动机原理》期末考试复习

《航空发动机原理》复习 一、单项选择题(共20题每题2分共40分) 1.以下哪个是衡量发动机经济性的性能参数( A )。 A EPR B FF C SFC D EGT 2.涡轮风扇发动机的涵道比是( D )。 A流过发动机的空气流量与流过内涵道的空气流量之比 B流过发动机的空气流量与流过外涵的空气流量之比 C流过内涵道的空气流量与流过外涵道的空气流量之比 D流过外涵道的空气流量与流过内涵道的空气流量之比 3.高涵道比涡扇发动机是指涵道比大于等于( C ). A 2 B 3 C 4 D 5 4.涵道比为4的燃气涡轮风扇发动机外涵产生的推力约占总(C )。 A20% B40% C80% D90% 5.涡桨发动机的喷管产生的推力约占总推力的( B ) A.85-90% B.10-15% C.25% D. 0 6.涡桨发动机使用减速器的主要优点是:( C ) A能够增加螺旋桨转速而不增加发动机转速 B螺旋桨的直径和桨叶面积可以增加 C可以提高发动机转速而增大发动机的功率输出又能使螺旋桨保持在较低转速而效率较高 D在增大螺旋桨转速情况下,能增大发动机转速 7.双转子发动机高压转子转速N2与低压转子转速Nl之间有( C ) A N2<Nl B N2=Nl C N2>Nl D设计者确定哪个大 8.亚音速进气道是一个( A )的管道。 A扩张形B收敛形 C先收敛后扩张形 D圆柱形 9.亚音速进气道的气流通道面积是( D )的。 A扩张形 B收敛形 C先收敛后扩张形 D先扩张后收敛形10.气流流过亚音速进气道时,( D )。 A速度增加,温度和压力减小 B速度增加,压力增加,温度不变 C速度增加,压力减小,温度增加 D速度减小,压力和温度增加11.在离心式压气机里两个起扩压作用的部件是( D )。 A涡轮与压气机B压气机与歧管C叶片与膨胀器D叶轮与扩压器12.轴流式压气机的一级由( C )组成。 A转子和静子 B扩压器和导气管 C工作叶轮和整流环 D工作叶轮和导向器 13. 空气流过压气机工作叶轮时, 气流的( C )。 A相对速度增加, 压力下降B绝对速度增加, 压力下降

航空发动机维修工程大作业

一、描述MGS-2和MSG-3的不同之处? MGS-2飞机维修大纲规定的维修要 求主要是针对飞机系统单独项目的维修方式(定时、视情和状态监控维修方式);而MGS-3飞机维修大纲规定的维修要求是针对飞机系统或分系统的维修工作 (润滑、勤务、操作检查、目视检查、检查、功能测试、性能恢复和报废等)。 MGS-2飞机的维修工作应用的 分析逻辑是从组件(units)→零部件 (component)→分系统(subsystem)→飞机系统 (system)的这种自下而上、从小到大的流程。应用分析逻辑到最低管理层面(组件层面、零部件层面、飞机系统或飞机层面逐层递加)为止,即只要可以为较低的管理层面指定一个适当的维修方式就无需再对更高一级管理层面指定维修方式。MGS-2分析逻辑只对飞机系统和飞机结构进行分析。分析结果是为飞机系统单独项目指定不同的维修方式,即定时维修(hard time)、 视情维修(on condition)和状态监控(condition monitoring)维修方式维修方式是保持飞机、飞机系统、系统单独项目的设计固有可靠性水平而规定的维修程序。按规定的方式维修飞机就可以保证满足维修大纲的要求, 保持飞机持续适航性。 与MGS-2飞机不同,MGS-3飞机的维修要求是应用MGS-3分析逻辑确定的。应用MGS-3分析逻辑指定分析逻辑完全不同的方法。其分析逻辑是针对维修工作的分析逻辑,分析工作是从飞机系统(system)→分系统(subsystem)→零部件(component)→组件 (unit or part)的这种从大到小、自上而下的流程。只要可以为上一级的管理维修工作的飞机叫MGS-3飞机。MGS-3飞机采用的是与MGS-2 层面指定一个适当的维修工作,就无需再对下一层面指定维修工作。MSG-3是为飞机系统、分系统指定不同级别的维修工作,即润滑、勤务、操作检查、目视检查、检查、功能测试、性能恢复和报废等维修工作。完成这些维修工作所需的维修成本和技能 要求是逐渐递加的。 MSG-3分析逻辑的应 用除了对飞机系统和飞机结构进行分析以外,增加了针对区域 (zonal)的分析。 MSG-3与MSG-2 分析逻辑比较除了增加区域分析外,出发点也 不相同。在充分吸取过去经验的基础上, MSG-3分析逻辑首先 从飞机系统,即最高的可管理层面开始,且在指定维修工作时不仅考 虑所指定的工作是否适用,同时还要看所指定的工作是否有效。在充分考虑适用性和有效性的基础上,就排除了原来 MSG-2飞机指定维修要求时只考虑适 用性所指定的并不一定必要的维修要求。

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 8.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 9.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 10.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 11.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 12.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 13.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 14.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源; 采用单个燃油喷嘴,燃油—空气匹配不够好; 火焰筒刚性差;

航空发动机原理复习思考题

试题一 一、概念简答题(每题8分,共40 分) 1、目前航空燃气轮机主要有哪几种类型?简述其结构和应用特点。 2、什么是化学反应速度?它与那些因素有关?在燃气轮机燃烧室设计中,应怎样考虑利用这些因素来强化燃烧? 3、主燃烧室按结构形式可分为哪几类?试从工作原理上比较它们的优缺点。 4、双轴涡轮喷气发动机低压转子与高压转子的共同工作点为什么不是独立变化的? 5、调整放大或缩小尾喷管临界截面积对单轴涡轮喷气发动机共同工作线有什么影响?为什么? 二、计算题(每题15分,共60 分) 6、某 压气机增压比为8.5,效率为0.8, 求(1)当进气温度是200C 时的压气机出口总温。(2)压气机对每千克气体的加功量。(3)如测得压气机流量为65kg/s, 计算压气机所需的压缩功率。(绝热指数k=1.4;气体常数 R=287J/kg.K ) 7、装在协和号飞机的发动机,其原压气机进口级装有预旋导流叶片。在其动叶进口处C T 0*115=,叶尖处的s m u s m C s m C u a /360,/125,/20011===,求: (1)叶尖1aw M ? (2)在改型中去掉预旋导流叶片,且叶尖s m C a /2101=,问这时的叶尖1aw M =? 8 、具有收敛尾喷管的涡轮喷气发动机在地面台架上试车时,已知空气流量为69kg/s ,喷管出口处总温1200K ,总压5104.1?Pa ,尾喷管出口面积22.0m ,试估算发动机推力。 9、假定在巡航条件8.00=a M ,a kP P 110=,K T 2160=下,分别排气涡轮风扇发动机的风扇增压比和效率为85.0,6.1==f f ηπ;经风扇后内涵气流进入高压压气机,84.0,25==cH cH ηπ,(1)计算风扇出口总温和高压压气机出口总温。

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析 报告 中国报告网

2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告 ?【报告来源】中国报告网—https://www.360docs.net/doc/ce17333952.html, ?【关键字】市场调研前景分析数据统计行业分析 ?【出版日期】2016 ?【交付方式】Email电子版/特快专递 ?【价格】纸介版:7200元电子版:7200元纸介+电子:7500元 中国报告网发布的《2016-2022年中国航空发动机产业现状调查及十三五运营管理深度分析报告》内容严谨、数据翔实,更辅以大量直观的图表帮助本行业企业准确把握行业发展动向、市场前景、正确制定企业竞争战略和投资策略。本报告依据国家统计局、海关总署和国家信息中心等渠道发布的权威数据,以及我中心对本行业的实地调研,结合了行业所处的环境,从理论到实践、从宏观到微观等多个角度进行市场调研分析。它是业内企业、相关投资公司及有关部门准确把握行业发展趋势,洞悉行业竞争格局,规避经营和投资风险,制定正确竞争和投资战略决策的重要决策依据之一。本报告是为了了解行业以及对本行业进行投资不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章:中国航空发动机行业发展综述13 1.1 航空发动机的相关概述13 1.1.1 航空发动机的定义13 1.1.2 航空发动机的分类13 1.1.3 航空发动机属“四高”行业14 (1)高技术14 (2)高投入15 (3)高风险15 (4)高壁垒16 1.1.4 航空发动机价值拆分情况17 (1)发动机占飞机价值的30% 17 (2)发动机生命周期费用拆分18 (3)航空发动机部件价值拆分19 (4)航空发动机制造成本拆分20 1.2 我国航空发动机行业的发展综述21 1.2.1 航空发动机是航空工业的短板21 1.2.2 航空发动机行业发展历程分析22 1.2.3 航空发动机行业生命周期分析23

航发动力业务梳理及盈利能力分析(2021年)

航发动力:我国军用航发龙头,整机制造几乎处行业垄断地位 航发动力在发动机整机制造行业几乎处于垄断地位,具备涡喷、涡扇、涡轴、涡桨等全种类军用航空发动机生产能力,是我国三代主战机型国产发动机唯一供应商。在国际上, 公司是能够自主研制航空发动机产品的少数企业之一。主要产品和服务有军民用航空发动机整机及部件、民用航空发动机零部件出口、军民用燃气轮机、军民用航空发动机维修保障服务。拥有我国航空主机业务动力系统的全部型谱,完成包括“昆仑”(WP-14)、 “秦岭”(WS-9)、“太行”(WS-10)等多个重点发动机型号的研制与批产工作。公司实控人是中国航空发动机集团。 图表 30:航发动力股权结构 公司业务包括航空发动机及衍生产品(覆盖研制、生产、试验、销售、维修保障五大环节)、外贸转包生产(国际新型民用航空发动机零部件试制等)及非航空产品三大板块。 2019 年航空发动机及衍生产品营收(220.25 亿元,+11.73%,占比 87.36%),是主要业务板块。其中西航集团、黎明公司、南方公司和黎阳动力四大航空发动机核心资产是上市公司净利润主要来源,2019 年四大航空发动机厂净利润总和为 13.11 亿元,上市公 司归母净利润为 10.77 亿元。 图表 31:2019 年航发动力营收结构-分业务 图表 32:航发动力 2016-2019 各业务毛利率 航空发动机制造及 衍生产品 外贸转包生产 非航空产品及其他 其他业务 25% 20% 15% 10% 5% 0% 2016 2017 2018 2019

图表 33:航发动力主要业务及子公司(亿元) 持股 2018 年 2019 年 2020H1 公司 主营介绍 集团 司 岭)、涡扇 10(太行)等 公司 (昆仑)、涡扇 10(太行)等 公司 桨 5/6/9/10 动力 涡扇 13 公司 国 GE 、PWA 、英国 RR 等航发巨头 叶片 向世界顶尖航空发动机生产商供货多年 西航集团、黎明公司、南方公司和黎阳动力四大航发核心资产几乎涵盖国内所有型号航空发动机,具备涡喷、涡扇、涡轴、涡桨、活塞全种类军用航空发动机生产能力。国内航空发动机整机制造商还包括成发公司、兰翔机械厂等等,但主要发动机型号(如涡扇 -10 等)均由航发动力制造。 2016 2017 2018 2019 2020H1 2018 2019 2020H1 航发动力2020 年三季报业绩超市场预期。2019 年公司实现营收(252.11 亿元,+9.13%),归母净利润(10.77 亿元,+1.27%)。2020 年(1-9)月营收(154.68 亿元,+20.90%),归母净利润(6.34 亿元,+53.30%);存货 233.4 亿元,较年初增 25.88%,主要是产品 图表 34:航发动力四大主机厂营收情况(百万元) 图表 35:航发动力四大主机厂营收增速 14000 12000 10000 8000 6000 4000 2000 西航集团 黎明公司 南方公司 黎阳动力 西航集团 黎明公司 南方公司 黎阳动力 60% 50% 40% 30% 20% 10% 0% -10% 2017 2018 2019 2020H1 图表 36:航发动力四大主机厂利润总额情况(百万元) 图表 37:航发动力四大主机厂净利润情况(百万元) 2016 2017 2018 2019 2020H1 800 600 400 200 0 -200 600 400 200 -200 占比 营收 净利润 营收 净利润 营收 净利润 西航 母公 大中军用航空发动机:代表产品涡喷 8、涡扇 9(秦 64.10 4.10 67.40 5.32 26.99 0.97 黎明 大中推力航空发动机:代表产品涡喷 5/6/7、涡喷 14 100% 112.79 3.98 125.64 4.08 45.28 1.46 南方 中小型航空发动机:代表产品涡轴 8/9/10/11/16、涡 100% 49.44 3.53 58.53 3.77 24.47 1.61 黎阳 中等推力涡喷及涡扇发动机:代表产品涡喷 7/13、 100% 21.84 -0.46 21.12 -0.05 9.99 0.16 莱特 叶盘、机匣、盘、环、结构件等零部件,客户包括美 100% 7.89 - 9.18 - 3.40 - 安泰 两机叶片:具备全球最先进精密锻造及机加工工艺, 100% 0.65 - 0.70 - 0.12 -

航空发动机项目投资分析报告

航空发动机项目投资分析报告 规划设计/投资分析/实施方案

报告说明— 该航空发动机项目计划总投资4076.34万元,其中:固定资产投资3292.14万元,占项目总投资的80.76%;流动资金784.20万元,占项目总投资的19.24%。 达产年营业收入6606.00万元,总成本费用4966.52万元,税金及附加76.47万元,利润总额1639.48万元,利税总额1942.09万元,税后净利润1229.61万元,达产年纳税总额712.48万元;达产年投资利润率40.22%,投资利税率47.64%,投资回报率30.16%,全部投资回收期4.82年,提供就业职位110个。 航空发动机是一种将燃料的化学能转化为燃气的热能,进而转化为飞行器的动能,从而为飞行器提供动力的热力机械。作为一种高度复杂和精密的装置,航空发动机的研发需要大量投入,典型发动机研制经费均超过9亿美元。

第一章项目概况 一、项目概况 (一)项目名称及背景 航空发动机项目 (二)项目选址 某经济新区 场址选择应提供足够的场地用以满足项目产品生产工艺流程及辅助生产设施的建设需要;场址应具备良好的生产基础条件而且生产要素供应充裕,确保能源供应有可靠的保障。 (三)项目用地规模 项目总用地面积12332.83平方米(折合约18.49亩)。 (四)项目用地控制指标 该工程规划建筑系数66.77%,建筑容积率1.67,建设区域绿化覆盖率7.17%,固定资产投资强度178.05万元/亩。 (五)土建工程指标

项目净用地面积12332.83平方米,建筑物基底占地面积8234.63平方米,总建筑面积20595.83平方米,其中:规划建设主体工程14895.37平 方米,项目规划绿化面积1477.19平方米。 (六)设备选型方案 项目计划购置设备共计90台(套),设备购置费1474.24万元。 (七)节能分析 1、项目年用电量438481.37千瓦时,折合53.89吨标准煤。 2、项目年总用水量5252.65立方米,折合0.45吨标准煤。 3、“航空发动机项目投资建设项目”,年用电量438481.37千瓦时, 年总用水量5252.65立方米,项目年综合总耗能量(当量值)54.34吨标准煤/年。达产年综合节能量22.20吨标准煤/年,项目总节能率25.88%,能 源利用效果良好。 (八)环境保护 项目符合某经济新区发展规划,符合某经济新区产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成 项目预计总投资4076.34万元,其中:固定资产投资3292.14万元, 占项目总投资的80.76%;流动资金784.20万元,占项目总投资的19.24%。

航空发动机控制系统浅析

航空发动机控制系统浅析 【摘要】航空发动机控制系统是一个多变量、时变、非线性、多功能的复杂系统,其性能的优劣直接影响发动机及飞机的性能。本文主要论述了航空发动机控制系统的发展历程、相关技术及其技术优缺点,并预测了国际发动机控制技术的未来发展。 【关键词】航空发动机控制系统;机械液压;FADEC;分布式;综合控制 1.概述 发动机的工作过程是极其复杂的气动热力过程,在其工作范围内随着发动机的工作条件和工作状态(如巡航、加速及减速等)的变化,它的气动热力过程将发生很大的变化,对于这样一个复杂而且多变的过程如果不加以控制,可以想象系统不但达不到设计的性能要求,而且根本无法正常工作。所以,航空发动机控制系统的目的就是使其在允许的环境条件和工作状态下都能稳定、可靠地运行,充分发挥其性能效益。 2.发展历程 随着航空发动机技术的不断进步和性能不断提高,其控制系统也由简单到复杂。航空发动机控制系统发展阶段的分类方法有很多种,目前,按发动机控制技术的发展和应用阶段大致分为以下4种,作简要介绍:(1)机械液压控制;(2)数字电子式控制;(3)分布式控制;(4)综合控制。 2.1 机械液压控制系统 机械液压控制系统:是使用基于开环控制或单输入单输出(SISO)闭环反馈控制等经典控制理论,采用由凸轮和机械液压装置组成的机械液压控制器即可成功地对发动机进行控制。 机械液压控制系统典型应用的机种:最典型的就是俄罗斯AN-*系列飞机。 这种简单的单输入单输出控制系统优点:(1)方法简单;(2)易于实现;(3)能保证发动机在一定使用范围内具有较好的性能。因此这种控制方法目前仍然应用于许多发动机的控制中。目前,国内运输机飞机上,发动机控制仍然用的是凸轮和机械液压装置组成的机械液压控制器。 随着发动机控制功能的增加,控制系统的复杂度也越来越大。这种简单的液压机械控制系统的缺点就显现了出来:(1)仅适用于:飞行速度比较小、飞行高度比较低、发动机的推力不大的飞机。(2)机械液压流量控制和伺服部件变得越来越大、越来越重、越来越昂贵。

航空发动机原理

航空发动机原理 您说的这个“如此简洁”的原理都是错的,重要的一步膨胀做功都没有,你让人家搞涡 轮的怎么办。。。 如果您只把“进气道进气—压气机增压—燃烧室加热—涡轮膨胀做功—尾喷管加速喷 出”这几个过程当作“航空发动机原理”当然可以说航空发动机的原理太简单了,但将这 个最基础的原理实现的过程就不算航空发动机原理了吗? 就从您提出的这个最简单的原理开始简单的捋一下: 1)知道了原理,首先得开始建模吧,不考虑损失的,将这个”进气—增压—加热—膨 胀做功—加速喷出“的过程用物理模型描述出来就是布雷顿循环——理解这个至少得学 过“工程热力学”吧。 2)有了循环,搞总体的人根据一定的经验和预估,按设计要求设计了循环参数(这 时就不能只考虑理想模型了,还要考虑效率和损失)。按最简单的,至少有总压比, 涡轮前温度和涵道比——最低要求学过“航空发动机原理”这门课(当然远远远远远远 远不够)。

3)有了循环参数得知道如何实现吧,这就需要对各个部件进行设计,得出各个部件 的工作曲线——每个部件的设计的基础理论都不止一本书要学。而每个部件设计又并 不是独立的,发动机各个部件的工作状态是耦合的,为了得到更好的性能,就需要各 个部件的设计人员进行讨(si)论(bi)。除此以外总体人员提出的设计参数又不一定 能够实现,这时为了团(shuai)结(guo)总体和设计又要开始讨(si)论(bi)。 重复(2)(3)直至收敛。 4)按照气动要求设计出来的各个部件还要满足结构要求,既要满足强度要求还要满 足刚度要求,板壳震动轴的一二三阶频率气动耦合振动叶片振动轮盘震动转子整体震 动等等等等一堆震动问题要解决,最可恶的是同时还要求重量轻!用结构老师的话 讲:如果航空发动机中的一个结构只有一两个作用,拿它的设计就是失败的。——知 道这些在说什么至少看过“航空发动机结构”吧。

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

相关文档
最新文档