紫外光辐射交联硅橡胶及其性能_李云辉

紫外光辐射交联硅橡胶及其性能_李云辉
紫外光辐射交联硅橡胶及其性能_李云辉

紫外线的好处和坏处

好处:紫外线能透过空气起杀菌的作用,太阳光有杀菌的能力就是靠的紫外线。紫外线虽然有杀菌的作用,但是它对玻璃的穿透力很差。一层二毫米的玻璃就足以挡住百分之八十的紫外线;如果是两层玻璃,紫外线就完全被挡住了。所以,如果冬天或初春在屋里晒太阳,认为这样也可以杀菌,那就错了。不管是严寒的冬天,还是炎热的夏天,都应该坚持到户外晒太阳。这样既可以锻炼身体,又能预防各种流行的传染病。 日光中的紫外线能提高中枢神经系统的紧张度,增强全身各器官的功能。久雨后的晴天,寒冬清晨的日出,使人顿时觉得身体舒坦,精神振奋,这是由于紫外线的刺激,使神经系统的兴奋增强。 坏处:阳光紫外线UV-B的增加对人类健康有严重的危害作用。潜在的危险包括引发和加剧眼部疾病、皮肤癌和传染性疾病。对有些危险如皮肤癌已有定量的评价,但其他影响如传染病等目前仍存在很大的不确定性。 实验证明紫外线会损伤角膜和眼晶体,如引起白内障、眼球晶体变形等。据分析,平流层臭氧减少1%,全球白内障的发病率将增加0.6-0.8%,全世界由于白内障而引起失明的人数将增加10,000 到15,000 人;如果不对紫外线的增加采取措施,从现在到2075年,UV-B辐射的增加将导致大约1800万例白内障病例的 发生。 紫外线UV-B段的增加能明显地诱发人类常患的三种皮肤疾病。这三种皮肤疾病中,巴塞尔皮肤瘤和鳞状皮肤瘤是非恶性的。利用动物实验和人类流行病学的数据资料得到的最新的研究结果显示,若臭氧浓度下降10%,非恶性皮肤瘤的发 病率将会增加26%。另外的一种恶性黑瘤是非常危险的皮肤病,科学研究也揭 示了UV-B段紫外线与恶性黑瘤发病率的内在联系,这种危害对浅肤色的人群 特别是儿童期尤其严重; 人体免疫系统中的一部分存在于皮肤内,使得免疫系统可直接接触紫外线照射。动物实验发现紫外线照射会减少人体对皮肤癌、传染病及其他抗原体的免疫反应,进而导致对重复的外界刺激丧失免疫反应。人体研究结果也表明暴露于紫外线B 中会抑制免疫反应,人体中这些对传染性疾病的免疫反应的重要性目前还不十分清楚。但在世界上一些传染病对人体健康影响较大的地区以及免疫功能不完善的人群中,增加的UV-B辐射对免疫反应的抑制影响相当大。 已有研究表明,长期暴露于强紫外线的辐射下,会导致细胞内的DNA 改变,人体免疫系统的机能减退,人体抵抗疾病的能力下降。这将使许多发展中国家本来就不好的健康状况更加恶化,大量疾病的发病率和严重程度都会增加,尤其是包括麻疹、水痘、疱疹等病毒性疾病,疟疾等通过皮肤传染的寄生虫病,肺结核和麻疯病等细菌感染以及真菌感染疾病等 爱车贴上隔热膜能隔断99%的紫外线。防止皮肤受伤害,也能减轻汽车内饰老化。

材料的力学性能试验

第一章 材料的力学性能试验 材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。 材料的力学性能试验必须按照国家标准进行。 第一节 拉伸试验 一、实验目的 1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。 2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二、实验设备和仪器 1.万能试验机。 2.引伸仪。 3.游标卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分

组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或 d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 (a ) (b ) 图1-1 拉伸试样 (a )圆形截面试样;(b )矩形截面试样 四、实验原理与方法 1.测定低碳钢的弹性常数 实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。开动万能试验机,预加一定的初载荷(可取kN 4),同时读取引伸仪的初读数。 为了验证载荷与变形之间成正比的关系,在弹性范围内(根据A ?P σ求出的最大弹性载荷不超过kN 14)采用等量逐级加载方法,每次递加同样大小的载荷增量F ?(可选kN 2=?F ),在引伸仪上读取相应的变形量。若每次的变形增量大致相等,则说明载荷与变形成正比关系,即验证了胡克定律。弹性模量E 可按下式算出 l A l F E ????=

聚乙烯辐射交联发泡

聚乙烯辐射交联发泡 聚乙烯泡沫塑料继承了原材料聚乙烯树脂的所有优点:强韧、有挠性、耐摩擦、有优异的绝缘、隔热性和耐化学性,还具有飘浮性和缓冲性。PE泡沫多为闲孔,无毒,有优良的二次加工性能,可以进行切削切断,可热成型、真空成型、压花成型,还可与其他材料复合。 PE泡沫分为交联和无交联两种,交联又分为化学交联和辐射交联。化学交联PE最早由美国于1941年研制成功,其生产方法是非连续的。辐射交联PE泡沫由日本于1965 年首先实现工业化,其他从事PE 辐射交联泡沫生产的主要厂家有美国V oltex,德国的Basf及英国的发泡橡胶和塑料公司,而我国在这方面几乎属于空白。 本文将主要就聚乙烯辐射交联发泡的机理和工艺,交联剂的种类,交联方式等展开综述。 1.辐射交联的优点 化学交联和辐射交联的泡沫塑料之间的差别主要在于由辐射交联得到的泡孔质量更好一些。由于生产过程中辐射交联先于发泡所以辐射交联法对于发泡板材的厚度有一定的要求,通常以薄型发泡制品为主。另外,过量的辐射也会导致泡孔破裂并得到高密度制品。而化学交联体系,交联同时在片材的中间和两面发生交联,所以对发泡板的厚度无限制[3]。 化学交联需要在高温下进行,而辐射交联在常温常压下就可以完成,辐射反应便于精确控制,重现性好,均匀性优于化学交联。如,辐射交联产品用于电线电缆时,质量好,绝缘层交联均匀性佳,无烧结,无气泡,绝缘层不粘导体,易剥离,消除了由于熔融造成的偏心和变色。 另外,经过技术经济比较,辐射交联比化学交联应用范围广,生产效率高,成本低,创效大,节能节材[5]。 因此,PE泡沫塑料的辐射交联正在被广泛的应用和研究着。 2. 聚乙烯辐射交联发泡交联机理 高分子辐射交联技术就是利用高能或电离辐射引发聚合物电离与激发,从而产生一些次级反应,进一步引起化学反应,实现高分子间交联网络的行成,是聚合物改性制备新型材料的有效手段之一。 高聚物的辐射交联是一个伴随着交联和主链降解的过程。它的基本原理为:聚合物大分子在高能或放射性同位素作用下发生电离和激发,生成大分子游离基,进行自由基反应;并产生一些次级反应。其反应终止机理大致如下[5]: (1)辐射产生的邻近分子间脱氢,生成的两个自由基结合而交联 (2)产生的两个可移动的自由基相结合产生交联 (3)离子—分子反应直接导致交联 (4)自由基与双键反应而交联 (5)链裂解产生的自由基复合反应实现交联 (6)环化反应导致交联 3. 聚乙烯辐射发泡的工艺 辐射交联的工艺流程为: 将聚乙烯和发泡剂以低于发泡剂分解温度的温度混炼并成型为初坯,接着以剂量1~200kGY的射线辐射,使之交联,然后再加热到发泡剂的分解温度以上,是发泡剂分解放气,就制成了泡沫塑料制品。 PE发泡成型可以采用的化学发泡剂比较多,如偶氮二甲酰胺(AC),偶氮二甲酸二异丙酯,对甲苯磺酰氨基脲等。[3] 对于PE泡沫来说,AC是较理想的发泡剂。研究表明,AC的分解温度很高,约200°C左右,远高于聚乙烯的熔点,发气量大,无毒。氧化锌、硬酯酸锌是促进AC分解的首选助剂,可以使其有较大的发气量和较快的分解速率。为了制备发泡率高,泡孔细小均匀致密的高质量聚乙烯泡沫塑料,要求AC发泡剂在聚乙烯树脂中分解温度要低,AC在聚乙烯中的分解速度要快,分解产生的气体量要大。单纯AC在聚乙烯树脂中的分解温度范围较宽,而含复合助剂的AC在聚乙烯树脂中的分解温度范围较窄。

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

电线电缆辐照交联

辐射交联电线电缆 第一节绝缘材料的辐射交联 电线电缆工业是机械电子工业的一个极其重要的组成部分。电线电缆是传 送电能、传输信息和制造各种电器、仪表不可缺少的基本元件,是电气化、信息化的基础产品。随着社会城市现代化发展的需求,无论在微电子、家电、汽车、航空、通讯、电力等系统,还是交通运输和建筑领域对电线电缆不断提出更高的要求,如耐温性、耐环境老化、和耐开裂性,以提高产品运行的可靠性和安全性。这是常规电线电缆所满足不了的,电线电缆绝缘的交联改性可大大提高电线电缆的工作温度、耐溶剂、耐环境老化,耐开裂等性能。如普通聚乙烯(PE)绝缘电线电缆,由于绝缘是线型聚合物,受熔融温度限制,只能在70℃以下场合使用,耐溶剂性、耐开裂性差。如果绝缘形成交联结构导致性能上显著提高,使其耐温和耐化学试剂性等得到改善。通常PE在70-90℃软化,在110-125℃熔流,而交联后的PE即使在250℃仍然不会改变形状。 线缆工业中有三条途径实现交联:即化学交联(CV)、硅烷交联(SV)和 辐射交联(RP)。辐射交联在中小型电线电缆绝缘的交联加工改性中占绝对优势。二十世纪70年代,随着工业电子加速器的发展和在辐射加工中的应用,电线电缆绝缘的辐射交联已成为辐射技术应用和加工的最大领域。 电线电缆绝缘的辐射交联加工它不仅与聚合物材料的辐射化行为和结构变化有关,还涉及到材料科学、聚合物化学以及加工工艺学,是多学科、多技术结合的共同结果. 1.电线电缆的绝缘材料的选择与配方设计,是辐射交联电线电缆改性的基础。它决定绝缘材料的基本性能、加工工艺性以及辐射加工的可行性。 2.电线电缆的挤出成型,形成电缆的基本结构,取决于聚合材料的加工工艺性和线缆工艺条件。加工决定了聚合物内在相态结构,它又制约着下道工序——辐射加工中发生的化学反应与结构转变。 3.成型的电线电缆,经过电子加速器的电子束(EB)辐射加工,绝缘材料将由线性聚合物转化为三维网状结构,其交联度大小及其均匀性是与加速器的电子束下的传输装置密切相关的。辐射加工中常常伴有不利的副反(效)应,主要是辐射氧化、热效应、静电效应。这些效应的产生与电子能量(穿透深度)、所需辐照剂量大小、剂量率大小、传输过程和方式有关,同时也同聚合物绝缘交联所需要的剂量及配方构成有关。辐射加工是电线电缆成功或失效的关键。辐射加工效率和结果决定于添加剂和聚合物的形态结构。 4.产品的综合性能检测包括:

力学性能试验(重点明确)

力学性能试验 第二章力学性能试验取样基本知识(P18) 第一节试样类型及取样原则(P18) 一、取样依据:GB/T 2975-1998《钢及钢产品力学性能试验取样位 置及试验制备》 二、取样原则: 1、取样对力学性能试验结果的影响; 三要素: 取样部位: 1)加工过程中变形量各处不均匀 2)材料内部各种缺陷分布和金属组织不均匀 取样方向: 材料在加工过程中金属是沿晶粒主加工变形方向流动,晶粒被拉长并排成行,夹杂也沿主加工变形方向排列,因此材料性能各向异性。 例如:纵向试样(试样纵向轴线与主加工方向平行)和横向试样

(试样纵向轴线与主加工方向垂直)有较大差异:薄板材纵向试样抗拉强度,下屈服强度都高于横向试样,断面收缩率更是远远大于横向试样。 取样数量: 1)某些力学性能指标对试验条件和材料本身的特性十分敏感,单个试样结果不足以为信,应采用最小的取样数量; 2)试验结果的分散性及经济因素 2、样品的代表性; 一般性规定:GB/T 2975-1998 专门的规定: 产品材料标准和协议:①材料的平均性能;②取样方便; 一般取其最危险、最薄弱的部位,因为最薄弱、最危险处的力学性能决定了产品的性能;此外受力状态与零部件的受力状态相一致; 三、力学性能试验的试样类型: 1、从原材料上直接取样:

2、从产品(结构或零部件)的一定部位上取样; 3、把实物作为样品。 四、样坯切取方法:无论用什麽方法都应遵循以下原则: (1)应在外观及尺寸合格的材料上取样,试料应有足够的尺寸,以保证机加工出足够的试样进行规定的试验及复验; (2)取样时,应对样坯和试样做出不影响其性能的标记,以保证始终能识别取样的位置和方向; (3)取样的方向应按材料标准规定或双方协议执行; (4)切取样坯时,应防止因过热、过冷、加工硬化而影响其力学性能及工艺性能。 如果过热了怎么办?比如,采用火焰切割法取样时,由于材料是在火焰喷嘴下熔化而使样坯从整体上分离出来,在熔化区域附近,材料承受了一个从熔化到相变点(723℃)以下温度变化区域,这一局部的高温将会引起材料性能的很大变化,所以切割样坯(样坯切割线至试样边缘)必须留有足够的切割余量。这一余量的规定为:一般应不

LCD产业中紫外光辐射的危害与防护

LCD产业中紫外光辐射的危害与防护 液晶显示器(LCD )的制造业是一种高新技术产业,紫外光应用技术在LCD的生产中发挥 重要作用。但是当液晶行业的工程技术人员在应用紫外光技术,取得满意效果的同时,不应忽视紫外辐射的防护问题。本文主要探讨在生产中应采取的紫外辐射防护措施是有意义的。 一、紫外光对人体的危害 紫外光对人体的健康有很大影响,资料表明,除了在人体皮肤中促进维生素D的合成,防 止佝偻病及杀菌外,尚未发现紫外线有其他的有益效应,但对其危害,已引起人们普遍关注。 1紫外光对眼睛的损伤 白内障被认为过量紫外光辐射的主要原因,经紫外光照射后,射线大部分被角膜上皮细胞核蛋白吸收,导致细胞核膨胀,碎裂和细胞死亡,以至损伤眼角膜和晶状体,导致浑浊。总的说来,紫外光辐射增加,人类的白内障患者增加。 2、紫外光对人皮肤的损伤 紫外光的影响有积累作用,它的主要机理:蛋白质受紫外光照射后,形成光解产物,此 外,其溶解度和粘度,对热变性的敏感性及荧光等物理化学和光学性质均有显著的改变。紫外光对皮肤的作用分为急性作用和慢性作用。急性作用表现为红斑效应,其症状为水肿脱皮,全身症状有寒战,发烧,恶心,罕见循环衰竭。慢性作用如致皮肤老化,色素沉着,加速老化,甚至引起肿瘤。轻者皮肤出现水肿性红斑,重者会出现水疱或大疱,还可伴有休克,发热,畏寒,恶心,心悸和头昏等症状。 3、紫外光对其他部位的损伤 紫外光辐射对免疫系统的影响,免疫系统的一些成分存在于皮肤中,皮肤暴露在紫外光 下,使得免疫系统受紫外光辐射,使其功能受到干扰。研究表明,紫外光辐射的免疫抑制作用可导致皮肤癌,同时引起一些传染病和其他一些疾病。 LCD行业对紫外光辐射的防护措施

交联助剂对LLDPE_EPDM共混物辐射交联的影响

第20卷 第1期 2002年2月辐射研究与辐射工艺学报J .Radiat .Res .Radiat .Process .Vo l .20,No .1February 2002·简报· 交联助剂对LLDPE /EPDM 共混物 辐射交联的影响 朱光明 (西北工业大学化工系 西安710072) 徐前永 施永勤 (西北核技术研究所 西安710024) 摘要 线性低密度聚乙烯(LLDP E )和三元乙丙橡胶(EPDM )的共混物可作为交联电缆的护 套材料,但LLDP E 的枝化度低,所需辐射交联的剂量较高。为了克服这个不足,本研究试图通过 添加交联助剂的方法来降低辐射交联剂量,提高生产效率。报道了三羟甲基丙烷三丙烯酸酯 (T M P TM A )、季戊四醇四丙烯酸酯(PET A )、硫磺等对LL DPE /EPDM 共混物的辐射交联所产生影 响的试验结果,测得了3种助剂的用量、辐射剂量对共混物的凝胶含量、力学性能及热老化性能的 影响规律。结果表明,上述3种交联助剂均可不同程度地降低辐射交联的剂量,而硫磺的效果最 好,且具有价格低、添加方便等优点,应为首选。 关键词 L LDPE /EPDM 共混物,辐射交联,护套材料,热收缩材料 中图分类号 O69 国防科研预研经费(97211703)资助 第一作者:朱光明,男,1963年1月出生,1987年6月兰州大学硕士毕业,应用化学专业,副教授 收稿日期:初稿2001-05-15, 修回2001-06-25 近20年以来,利用辐射手段对高分子材料进行改性已取得了极大的进展,辐射交联电线电缆、辐射交联热收缩材料已得到了广泛的应用[1-4]。高分子材料的辐射交联不仅可以提高材料的强度、耐热性、尺寸稳定性、阻燃性等性能,而且还可实现生产工艺的连续化和自动化。线性低密度聚乙烯(LLDPE )为枝化度较低的聚乙烯品种,与普通的高压聚乙烯相比,具有耐老化、强度高、韧性好等特点;三元乙丙橡胶(EPDM )为绝缘性能、耐热性能和抗老化的胶种,LLDPE 和EPDM 共混并经辐射交联可望制得强度高、韧性好、耐老化的架空电线电缆、光纤、船用电缆等护套,也可制得耐热温度高、韧性好、耐老化的热收缩材料。本工作结合实际生产的需要研究了LLDPE /EPDM 共混物的辐射交联规律以及多官能团单体等助剂对共混物辐射交联的影响。 1 实验方法 LLDPE ,牌号7407,M I1.2,密度0.918,大庆石油化工厂生产;EPDM ,日本三井公司产品,不饱和度0.3%-0.6%。先将EPDM 在低于50℃的双辊炼塑机上,塑炼20-30min ,然后升温至120℃,再依次加入LLDPE 、碳黑、硫磺等助剂共混15-20min ,下片;在不锈钢模具中

金属材料-力学性能试验相关术语

金属材料力学性能试验相关术语 编制: 审核: 批准: 生效日期: 受控(1) 受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日

制/修订记录

1.0 目的和范围 本文件定义了金属材料力学性能试验中使用的术语,并为本文件和一般使用时形成共同的称谓。 2.0 规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 2.1 GB/T 228.1 金属材料 拉伸试验 第1部分:室温试验方法 2.2 GB/T 10623 金属材料 力学性能试验术语 3.0 一般术语 3.1 与试样有关的术语 3.1.1 试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试验的材料或部分材料。 3.1.2标距gauge length 用于测量试样尺寸变化部分的长度。 3.1.3原始标距original gauge length 在施加试验力之前的标距长度。 3.1.4 断后标距final gauge length after fracture 试样断裂后的标距长度。 3.1.5参考长度reference length 用以计算伸长的基础长度。 3.1.6平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 3.1.7伸长elongation 在试验期间任一时刻的原始标距Lo 或参考长度Lr 的增量。 3.1.8伸长率percentage elongation 原始标距Lo (或参考长度Lr )的伸长与原始标距(或参考长度Lr )之比百分率。 3.1.9 断后伸长率 percentage elongation after fracture A 断后标距的残余伸长(Lu-Lo )与原始标距之比的百分率。 注:对于比例试样,若原始标距不为(So 为平行长度的原始横截面积),符号A 应附以下脚注说明所使用的比例系数,例如A 11.3表示原始标距为 对于非比例试样,符号A 应附以下脚注说明所使用的原始标距,以毫米(mm )表示。例如,A 80mm 表示原始标距为80mm 的断后伸长率。 3.1.10断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S 0-S u )与原始横截面积(S 0)之比的百分率。 0U 00 S -S = 100%Z X S

普通混凝土力学性能试验方法标准

普通混凝土力学性能试验方法 2004-5-23 15:57:28 admin 普通混凝土力学性能试验方法GBJ81―85 主编部门:城乡建设环境保护部批准部门:中华人民国计划委员会施行日期:1986 年7 月1 日关于发布《普通混凝土拌合物性能试验方法》等三本标准的通知计标〔1985〕1889 号根据原建委(78)建发设字第562 号通知的要求,由城乡建设部中国建筑科学研究院会同有关单位共同编制的《普通混凝土拌合物性能试验方法》等三本标准,已经有关部门会审。现批准《普通混凝土拌合物性能试验方法》GBJ80 -85、《普通混凝土力学性能试验方法》GBJ81-85 和《普通混凝土长期性能和耐久性能试验方法》GBJ82―85 等三本标准为标准,自一九八六年七月一日起施行。该三本标准由城乡建设部管理,其具体解释等工作由中国建筑科学研究院负责。出版发行由我委基本建设标准定额研究所负责组织。

计划委员会一九八五年十一月二十五日编制说明本标准是根据原建委(78)建发设字第562 号通知的要求,由中国建筑科学研究院会同各有关单位共同编制而成的。在编制过程中,作了大量的调查研究和试验论证工作,收集并参考了国际标准和其它国外有关的规标准,经过反复讨论修改而成的。在编制过程中曾多次征求全国各有关单位的意见,最后才会同有关部门审查定稿。本标准为普通混凝土基本性能中有关力学性能的试验方法。容包括立方体抗压强度、轴心抗压强度、静力受压弹性模量、劈裂抗拉强度以及抗折强度等五个方法。由于普通混凝土力学性能试验涉及围较广,本身又将随着仪器设备的改进和测试技术的提高而不断发展,故希望各单位在执行本标准过程中,注意积累资料、总结经验。如发现有需要修改补充之处,请将意见和有关资料寄中国建筑科学研究院混凝土研究所,以便今后修改时参考。城乡建设环境保护部一九八五年七月第一章总则第1.0.1 条为了在确定混凝土设计特征值、检验或控制现浇混凝土工程或预制构件的质量时,有一个统一的混凝土力学性能试验方法,特制订本标准。第1.0.2 条本标准适用于工业与民用建筑和一般构筑物中所用普通混凝土的基本性能试验。

紫外线对健康的危害

一、紫外线- 由来 1800年英国物理学家赫谢耳在三棱镜光谱的红光端外发现了不可见的热射线——红外线。德国物理学家里特(Ritte)对这一发现极感兴趣,他坚信物理学事物具有两极对称性,认为既然可见光谱红端之外有不可见的辐射,那么在可见光谱的紫端之外也一定可以发现不可见的辐射。终于在1801年的一天,当时他手头正好有一瓶氯化银溶液。人们当时已知道,氯化银在加热或受到光照时会分解而析出银,析出的银由于颗粒很小而呈黑色。里特(Ritte)就想通过氯化银来确定太阳光七色光以外的成份,他用一张纸片蘸了少许氯化银溶液,并把纸片放在白光经棱镜色散后七色光的紫光的外侧。过了一会儿,他果然在纸片上观察到蘸有氯化银部分的纸片变黑了,这说明纸片的这一部分受到了一种看不见的射线照射。里特把紫光外附近的不可见光叫做“去氧射线”以强调是化学反应。不久之后,这个名词被简化为“化学光”,并且成为当时广为人知的名词。直到1802年,化学光最终更名为“紫外线”。二、紫外线- 波段划分人类对自然环境破坏的日益加重,使人们对太阳逐渐恐惧起来。有 此人类为防止太阳光线对肌肤造成伤害所进行的研究也成为永恒课题。 紫外线是位于日光高能区的不可见光线。依据紫外线自身波长的不同,主要将紫外线分为三个区域。即短波紫外线、中波紫外线和长波紫外线。 短波(UVC) 简称UVC。是波长280-100nm的紫外光线。短波紫外线在经过地球表面同温层时被臭氧层吸收。不能达到地球表面,对人体产生重要作用。因此,对短波紫外线应引起足够的重视。 中波(UVB) 简称UVB。是波长315-280nm的紫外线。中波紫外线对人体皮肤有一定的生理作用。此类紫外线的极大部分被皮肤表皮所吸收,不能再渗入皮肤内部。但由于其阶能较高,对皮肤可产生强烈的光损伤,被照射部位真皮血管扩张,皮肤可出现红肿、水泡等症状。长久照射皮肤会出现红斑、炎症、皮肤老化,严重者可引起皮肤癌。中波紫外线又被称作紫外线的晒 伤(红)段,是应重点预防的紫外线波段。 长波(UV A) 简称UV A。是波长400-315nm的紫外线。长波紫外线对衣物和人体皮肤的穿透性远比中波紫外线要强,可达到真皮深处,并可对表皮部位的黑色素起作用,从而引起皮肤黑色素沉着,使皮肤变黑,起到了防御紫外线,保护皮肤的作用。因而长波紫外线也被称做“晒黑段”。长波紫外线虽不会引起皮肤急性炎症,但对皮肤的作用缓慢,可长期积累,是导致皮肤老化 和严重损害的原因之一。 由此可见,防止紫外线照射给人体造成的皮肤伤害,主要是防止紫外线UVB的照射;而防止UV A紫外线,则是为了避免皮肤晒黑。在欧美,人们认为皮肤黝黑是健美的象征,所以反而在化妆品中要添加晒黑剂,而不考虑对长波紫外线的防护。这种观点已有所改变,由于认识到长波紫外线对人体可能产生的长期的严重损害,所以人们开始加强对长波紫外线的防 护。 根据生物效应的不同,将紫外线按照波长划分为四个波段: UV A波段,波长320~400nm,又称为长波黑斑效应紫外线;。它有很强的穿透力,可以穿透大部分透明的玻璃以及塑料。日光中含有的长波紫外线有超过98%能穿透臭氧层和云层到达地球表面,UV A可以直达肌肤的真皮层,破坏弹性纤维和胶原蛋白纤维,将我们的皮肤晒黑。360nm波长的UV A紫外线符合昆虫类的趋光性反应曲线,可制作诱虫灯。300-420nm

材料力学性能实验(2个)..

《材料力学性能》实验教学指导书 实验总学时:4 实验项目:1.准静态拉伸 2. 不同材料的冲击韧性 材料科学与工程学院实验中心 工程材料及机制基础实验室

实验一 准静态拉伸 一、实验目的 1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。 2.测定低碳钢的屈服极限σs ,强度极限σb ,断后延伸率δ和断面收缩率ψ。 3.测定铸铁的强度极限σb 。 4.比较低碳钢和铸铁的力学性能的特点及断口形貌。 二、概述 静载拉伸试验是最基本的、应用最广的材料力学性能试验。一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。 静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。 在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s σ和抗拉强度b σ)和塑性指标(伸长率δ和断面收缩率ψ)。通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P —Δl 曲线,习惯上称此曲线为试样的拉伸图。图1即为低碳钢的拉伸图。 试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。当载荷增加到一定值时,拉伸图上出现平台或锯齿状。这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷s P ,s P 除以试样原始横截面面积Ao 即得到屈服极限s σ: 0 s s A P =σ 试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。当载荷达到最大值b P 后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到P b 试样拉断。P b 除以试样原始横截面面积A 0即得到

1125砌体基本力学性能试验方法标准

砌体基本力学性能试验方法标准 来源:发布时间:2004-5-23 9:47:20 主编部门:四川省建设委员会 批准部门:中华人民共和国建设部 施行日期:1990年1月1日 关于发布国家标准《砌体基本力学性能试验方法标准》的通知 (90)建标字177号 根据原国家建委(81)建发设字546号文和国家计委计综[1984]305号文的通知,修订《砖石结构设计规范》,后经国家计委原标准定额局安排,将该规范中的力学性能试验方法进行补充和完善,并单独列为一项标准,为《砌体基本力学性能试验方法标准》,由四川省建筑科学研究院会同有关单位制订,已经有关部门会审。现批准《砌体基本力学性能试验方法标准》(G-BJ129—90)为国家标准,自一九九一年一月一日起施行。 本标准由四川省建设委员会管理,其具体解释等工作由四川省建筑科学研究院负责。出版发行由建设部标准定额研究所负责组织。 建设部 1990年4月19日 编制说明 本标准是根据原国家建委(81)建发设字第(546)号文和国家计委计综字[1984]305号文的通知,修订《砖石结构设计规范》,后经国家计委原标准定额局安排,将该规范中的力学性能试验方法进行补充和完善,并单独列为一项标准,由四川省建筑科学研究院会同有关单位共同编制的。在本标准编制过程中,标准编制组进行了广泛的调查研究,认真总结我国在砌体工程施工、设计和生产使用方面的实践经验,参考了有关国际标准和国外先进标准,针对主要技术问题开展了科学研究与试验验证工作,并广泛征求了全国有关单位的意见。最后,由我委会同有关部门审查定稿。 本标准的主要内容有:试件砌筑和试验的基本规定,砌体抗压试验方法,砌体抗剪试验方法和砌体弯曲抗拉试验方法等。鉴于本规范系初次编制,在施行过程中,请各单位结合实际,认真总结经验,注意积累资料,如发现需要修改和补充之处,请将意见和有关资料寄送四川省建筑科学研究院(四川省成都市梁家巷),以便今后修订时参考。 四川省建设委员会 1990年4月

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

浅谈电缆交联技术

电缆交联技术 上世纪50年代,世界上第一根交联聚乙烯绝缘电缆在美国问世,此后,以其电气性能优异、传输容量大、机械性能高、结构轻便、附件简单等优点在其他各国得以快速发展。我国发展相对较晚,约在80年代末,但发展迅速,目前,我国许多厂家已具有500KV 超高压生产能力。交联聚乙绝缘电缆的产生,结束了油浸纸绝缘时代,并在逐步取代聚氯乙烯绝缘电缆。 交联聚乙烯绝缘电缆的优越性能源与聚乙烯材料分子链结构的变化。低密度聚乙烯分子链成线状,但带有很多甲基支链;中密度聚乙烯分子链成线状带有较少的甲基支链;高密度聚乙烯分子链也成线状但不带甲基支链。这些聚乙烯在物理或化学交联剂作用下,分子链由线形变成网状结构,使聚乙烯由热塑性材料变成热固性材料,即聚乙烯 交联聚乙烯,从而提高了聚乙烯的电气性能、机械性能、耐老化性等,这就是交联聚乙烯电缆的交联机理。 20多年来,为提高产品质量,人们对聚乙烯交联技术的研究从未间断过,形成了多种交联方式,按其交联实质和交联介质的不同可概括为两类:一、物理交联;二、化学交联。详细分类见下图。 在交联电缆产生初期,人们主要采用饱和蒸汽加热的方法使聚乙烯交联,但在实践中发现,此法中制品在高温高压下要与水气接触,材料内部将吸收较多的水分,冷却时过饱和水析出,形成大量的微小气孔,在较高电压下容易发生水树击穿;另外,饱和蒸汽温度与蒸汽压力有关,压力大温度高,但在高蒸汽压力下,温度随压力上升而增加的速率显著降低,这就决定了此法交联温度不是很高,继而限制了交联速度。由于上述原因饱和蒸汽交联一般用于10KV 及以下电缆的生产。

惰性气体保护热辐射交联方法的产生在很大程度上取代了饱和蒸汽交联,但并没完全取代,目前450/750V及以下橡皮绝缘电缆还大多采用这一方法。惰性气体保护热辐射交联方法又称为干法交联,是当前生产500KV及以下塑料绝缘电缆最常用、最普遍的方法,该方法克服了饱和蒸汽交联的所有缺点,并在惰性气体的压力下还能使制品表面致密、防止氧化。 硅烷交联又称为温水交联或低温交联,电缆在70℃~90℃的温水中交联,绝缘中的交联剂—硅烷在吸水后,线形结构反应生成网状结构。目前主要用在10KV及以下交联电缆的生产中。 物理交联又称为辐照交联,分为电子辐射和γ射线交联两种方法。 (1)电子辐射交联,利用电子加速器配合束下辐照装置,采用高能电子束(一般能量仔1.0~3.0MeV之间)对电线电缆绝缘层进行照射,引发高分子材料产生自由基,形成C-C交联键,生成三维网状结构。 (2)γ射线交联由于剂量率低,照射过程中无法穿透线缆的芯线,所以,目前只是在热塑性材料的交联中有应用,而电线电缆生产中一般不采用γ射线交联。 物理交联电线电缆的交联度随着辐照剂量的增加而增加,通过控制加速器及束下设备的运行参数,可以获得重复性非常好的交联度值。同时,由于物理交联是在常温常压下交联,辐照过程中不存在高压力和高温度,不需要加水或加热,交联中没有水和气体生成,因此,长期使用中不会发生水树、电树等影响电线电缆寿命的老化,不存在电线电缆内部结构变动或熔化或降低电线电缆的拉断力,但由于受电子加速器能量以及束下设备的限制,物理交联一般适用于10KV以下630㎜2以内的电线电缆的生产。 熔盐交联、硅油交联和长承模交联技术在国内使用较少。 随着我国经济高速稳定的增长,国际经济技术交流的加快,其他各行业对线缆的要求越来越高,不但要求阻燃、耐火,还要求燃烧时具有低烟无氯等性能,同时出口的产品还要符合进口国严格、苛刻的安全指标,这就促使我们在电缆交联技术等方面不断前进,不断攻克国际贸易技术壁垒。

材 料 力 学 性 能 实 验 报 告.

材料 学性能实院系:材料学院姓名:王丽朦学号:200767027 验报力告 实验目的: 通过拉伸试验掌握测量屈服强度,断裂强度,试样伸长率,界面收缩率的方法;通过缺口拉伸试验来测试缺口对工件性能的相关影响; 通过冲击试验来测量材料的冲击韧性; 综合各项试验结果,来分析工件的各项性能; 通过本实验来验证材料力学性能课程中的相关结论,同时巩固知识点,进一步深刻理解相关知识; 实验原理: 1)屈服强度 金属材料拉伸试验时产生的屈服现象是其开始产生宏观的塑性变形的一种标志。弹性变形阶段向塑性变形阶段的过渡,表现在试验过程中的现象为,外力不增加即保持恒定试样仍能继续伸长,或外力增加到某一数值是突然下降,随后,在外力不增加或上下波动情况下,试样继续伸长变形,这便是屈服现象。呈现屈服现象的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力称为屈服点,记作σs; 屈服现象与三个因素有关:(1)材料变形前可动位错密度很小或虽有大量位错但被钉扎住,如钢中的位错为杂质原子或第二相质点所钉扎;(2)随塑性变形发生,位错快速增殖;(3)位错运动速率与外加应力有强烈的依存关系。影响屈服强度的因素有很多,大致可分为内因和外因。 内因包括:金属本性及晶格类型的影响;晶界大小和亚结构的影响;还有溶质元素和第二相的影响等等。通过对内因的分析可表征,金属微量塑性变形抗力的屈服强度是一个对成分、组织极为敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺都可使屈服强度产生明显变化。 外因包括:温度、应变速率和应力状态等等。总之,金属材料的屈服强度即受各种内在因素的影响,又因外在条件不同而变化,因而可以根据人们的要求予以改变,这在机件设计、选材、拟订加工工艺和使用时都必须考虑到。 2)缺口效应 由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将发生变化,产生所谓的“缺口效应”,从而影响金属材料的力学性能。 缺口的第一个效应是引起应力集中,并改变了缺口前方的应力状态,使缺口试样或机件所受的应力由原来的单向应力状态改变为两向或三向应力状态,也就是出现了σx(平面应力状态)或σy与σz(平面应变状态),这要视板厚或直径而定。

聚氯乙烯的辐射交联

聚氯乙烯的辐射交联 朱志勇,张勇,张隐西 摘要:PVC经交联后,其热性能、电性能、机械性能均大幅度提高,材料使用耐温等级亦相应提高.与传统的化学交联相比,采用高能电子射线进行的辐射交联方法具有产品质量好、生产工艺简单、生产效率高、能耗低、环境污染小等优点.文中综述了在多官能团单体交联剂存在下,以高能电子射线对PVC进行辐射交联的基本原理、交联产品的性能及交联生产的工艺特点,比较了辐射交联与化学交联之间的优缺点,总结了近年来PVC辐射交联技术在理论及工业应用中的最新进展,并介绍了辐射交联PVC材料在电线电缆、建筑材料等领域的应用。 关键词:聚氯乙烯;辐射;交联 分类号:O 644.2 Radiation Crosslinking of PVC Zhu Zhiyong,Zhang Yong,Zhang Yinxi School of Chemistry and Chemical Technology, Shanghai Jiaotong University, China Abstract:The radiation crosslinking of plasticized polyvinyl chloride (PVC) was reviewed, which includes fundamental principles of crosslinking reaction, characteristics of crosslinked products, handling technology in industrial processing and advantages of radiation crosslinking over chemical crosslinking methods. The latest development of PVC radiation crosslinking in theory and industry application was summarized. The uses of radiation crosslinked PVC materials in some fields, such as wire and cable insulation, construction materials etc., were also introduced. Key words:polyvinyl chloride; radiation ;crosslinking 聚氯乙烯(PVC)是一种用途广泛的通用塑料,它成本低廉,成型方便,力学性能优异,耐腐蚀,电绝缘性优良,表面印刷性好,广泛应用于建筑、轻工、化工、电器、电线电缆等领域.PVC材料的主要缺点在于耐温性差,耐候性、耐磨性也较差,并且增塑剂的析出使得老化性能变劣,限制了PVC在苛刻条件下的使用,也不能满足某些特种线缆的要求.交联是克服这些缺点的有效途径之一.PVC材料交联后,耐温等级显著提高,耐老化性、耐候性、耐磨性、耐化学性也同步提高,综合性能大大增强.PVC 交联主要有化学交联和辐射交联两种.与化学交联相比,辐射交联工艺简单,能耗低,产率高,无污染,具有更广泛的工业应用前景. 普通PVC材料在辐射作用下并不交联,主要发生脱氯化氢反应与降解反应,产生共轭双键使产品变色.1959年,Pinner与Miller首先发现,多官能团不饱和单体能够强化PVC辐射下的交联反应,从而使PVC辐射

相关文档
最新文档