高中数学-三角函数图像及性质与值域及最值

高中数学-三角函数图像及性质与值域及最值
高中数学-三角函数图像及性质与值域及最值

高中数学总复习- 三角函数

第5课 三角函数的图像和性质(一) 【考点导读】

1.能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦函数在[0,2]π,正切函数在(,)22

ππ

-

上的性质; 2.了解函数sin()y A x ω?=+的实际意义,能画出sin()y A x ω?=+的图像; 3.了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】

1. 已知简谐运动()2sin()()3

2f x x ππ

??=+<的图象经过点(0,1),则该简谐运

动的最小正周期T =_____6____;初相?=______6

π

____.

2. 三角方程2sin(2

π

-x )=1的解集为_______________________. 3. 函数),2

,0)(sin(R x x A y ∈π

ω?+ω=的部分图象如图所示,则函数表达为

_)48sin(4π

+π-=x y _.

4. 要得到函数sin y x =的图象,只需将函数cos y x π?

?=- ?3?

?的图象向右平移

______π

6

____个单位.

【范例解析】

例1.已知函数()2sin (sin cos )f x x x x =+.

(Ⅰ)用五点法画出函数在区间,22ππ??-????

上的图象,长度为一个周期;

(Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到.

{2,}3x x k k Z ππ=±∈

分析:化为sin()A x ω?+形式.

解:(I )由x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=

)42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-?+=x x x .

列表,取点,描图:

x 8

- 8π-

8π 83π 8

5π y

1

21-

1

21+

1

故函数)(x f y =在区间]2

,2[-上的图象是:

(Ⅱ)解法一:把sin y x =图像上所有点向右平移

4π个单位,得到sin()4

y x π=-的图像,再把sin()4

y x π

=-的图像上所有点的横坐标缩短为原来的12(纵坐标不

变),得到sin(2)4y x π=-的图像,然后把sin(2)4

y x π

=-的图像上所有点纵坐标

伸长到原来的2倍(横坐标不变),得到2sin(2)4

y x π

=-的图像,再将

2sin(2)4y x π

=-的图像上所有点向上平移1个单位,即得到

12sin(2)4

y x π

=+-的图像.

解法二:把sin y x =图像上所有点的横坐标缩短为原来的1

2

(纵坐标不变),得

到sin 2y x =的图像,再把sin 2y x =图像上所有点向右平移8π

个单位,得到

sin(2)4y x π=-的图像,然后把sin(2)4

y x π

=-的图像上所有点纵坐标伸长到原来

,得到)4y x π=-

的图像,再将)

4

y x π

=-的图像上所有点向上平移1

个单位,即得到1)4y x π

=+-的图像.

例2.已知正弦函数sin()y A x ω?=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ;

(2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; (3)作出函数12()()y f x f x =+的图像的简图.

分析:识别图像,抓住关键点.

解:(1)

由图知,A =22(62)16π

ω

=?+=Q ,8π

ω∴=

,即sin()8

y x π

?=+. 将2x =

,y =代入,

sin()4

π

?+=,解得4π?=,

1()sin()84

f x x ππ

=+.

(2)设函数2()f x 图像上任一点为(,)M x y ,与它关于直线8x =对称的对称点为

(,)M x y ''',

得8,2.x x y y '+?=?

??'=?解得16,.x x y y '=-??'=?代

1()sin()84

f x x ππ

''=+中,

2()sin()84

f x x ππ

=-.

(3

)12()()sin()sin()2cos

y f x f x x x x πππππ

=+=+--=,简图如图所

示.

点评:由图像求解析式,A 比较容易求解,困难的是待定系数求ω和?,通常利用周期确定ω,代入最高点或最低点求?.

【反馈演练】

1.为了得到函数R x x y ∈+=),63sin(2π

的图像,只需把函数2sin y x =,x R ∈的图

像上所有的点 ①向左平移6π

个单位长度,再把所得各点的横坐标缩短到原来的3

1倍(纵坐标不变); ②向右平移6π

个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变); ③向左平移6

π

个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ④向右平移6

π

个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).

其中,正确的序号有_____③______.

2.为了得到函数)62sin(π

-=x y 的图象,可以将函数x y 2cos =的图象向右平移

__3

π__个单位长度.

3.若函数()2sin()f x x ω?=+,x ∈R (其中0ω>,2

<)的最小正周期是π,且(0)3f =,则ω=__2____;?=__________.

4.在()π2,0内,使x x cos sin >成立的x 取值范围为____________________. 5.下列函数:

①sin 6y x π??=+ ???; ②sin 26y x π?

?=- ???;

③cos 43y x π??=- ???; ④cos 26y x π?

?=- ??

?.

其中函数图象的一部分如右图所示的序号有_____④_____.

6.如图,某地一天从6时至14时的温度变化曲线近似满足函数

b x A y ++=)sin(?ω

(1)求这段时间的最大温差; (2)写出这段时间的函数解析式.

解:(1)由图示,这段时间的最大温差是201030=-℃

(2)图中从6时到14时的图象是函数b x A y ++=)sin(?ω的半个周期

∴614221-=?ω

π

,解得8πω=

由图示,10)1030(21=-=A 20)3010(21

=+=b

这时,20)8

sin(10++=?π

x y

将10,6==y x 代入上式,可取4

?= 综上,所求的解析式为20)4

38sin(10++=π

πx y (]14,6[∈x )

7.如图,函数π

2cos()(00)2y x x >ωθωθ=+∈R ,,≤

≤的图象与y 轴相交于点(03),,且该函数的最小正周期为π. (1)求θ和ω的值;

(2)已知点π02A ??

???

,,点P 是该函数图象上一点,点00()Q x y ,是的中点,

第6题 3

π 5,44ππ?? ???

第5题

y x 3

O P

A

第7题

当0y =

0ππ2x ??

∈????

,时,求0x 的值.

解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=

因为02

θπ

≤≤,所以6θπ=.

又因为该函数的最小正周期为π,所以2ω=,

因此2cos 26y x π?

?=+ ??

?.

(2)因为点02A π??

???,,00()Q x y ,是PA 的中点,02y =

所以点P 的坐标为022x π?- ?.

又因为点P 在2cos 26y x π?

?=+ ??

?的图象上,所以05cos 46x π??-= ???

因为02x ππ≤≤,所以075194666

x πππ

-≤≤,

从而得0511466x ππ-=或0513466

x ππ-=. 即023

x π

=或034x π=.

第6课 三角函数的图像和性质(二) 【考点导读】

1.理解三角函数sin y x =,cos y x =,tan y x =的性质,进一步学会研究形如函数sin()y A x ω?=+的性质;

2.在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究. 【基础练习】

1.写出下列函数的定义域: (1

)y =______________________________; (2)sin 2cos x y x

=的定义域是____________________. 2.函数f (x ) = | sin x +cos x |的最小正周期是____________.

3.函数 22sin sin 44

f x x x ππ

=+--()()()

的最小正周期是_______. 4. 函数y =sin(2x +3

π

)的图象关于点_______________对称. 5. 已知函数tan y x ω= 在(-2π,2

π

)内是减函数,则ω的取值范围是

______________. 【范例解析】

例1.求下列函数的定义域: (1

)sin tan x

y x =

+(2

)y = 解:(1),2tan 0,2sin 10.x k x x ππ?≠+??≠??+≥??即,2,722.66x k x k k x k πππππππ?≠+??

≠???-≤≤+?,

故函数的定义域为7{226

6x k x k π

πππ-

≤≤+

且,x k π≠,}2

x k k Z π

π≠+∈ {663,}x k x k k Z πππ≤≤+∈ {,}2x x k k Z ππ≠+∈ π π (3

π,0) 10ω-≤<

(2)122log 0,tan 0.x x +≥????≥?即04,.2

x k x k πππ<≤???≤<+??

故函数的定义域为(0,)[,4]2

π

π?. 点评:由几个函数的和构成的函数,其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集.

例2.求下列函数的单调减区间:

(1)sin(2)3y x π=-; (2)2cos sin()42x y x π=-;

解:(1)因为2222

3

2

k x k π

π

π

ππ-

-≤+

,故原函数的单调减区间为

5[,]()12

12

k k k Z π

π

ππ-

+

∈. (2)由sin()042x π-≠,得{2,}2x x k k Z π

π≠+∈,

又2cos 4sin()24sin()42

x x y x π

π=

=+-, 所以该函数递减区间为

3222

242

x k k π

ππππ+

<

+<+,即

5(4,4)()2

2

k k k Z π

π

ππ+

+

∈. 点评:利用复合函数求单调区间应注意定义域的限制. 例3.求下列函数的最小正周期:

(1)5tan(21)y x =+;(2)sin sin 32y x x ππ?

???=++ ? ????? .

解:(1)由函数5tan(21)y x =+的最小正周期为

π

2

,得5tan(21)y x =+的周期2

T π=

. (2)sin()sin()(sin cos cos sin )cos 3233

y x x x x x ππππ

=++=+

2111cos 2sin cos cos sin 222422

x x x x x +=+=+

1sin(2)23

x π

=

++ T π∴=. 点评:求三角函数的周期一般有两种:(1)化为sin()A x ω?+的形式特征,利用公式求解;(2)利用函数图像特征求解.

【反馈演练】

1.函数x x y 24cos sin +=的最小正周期为

_____________.

2.设函数()sin ()3f x x x π?

?=+∈ ???R ,则()f x 在[0,2]π上的单调递减区间为

___________________.

3

.函数()sin ([,0])f x x x x π=∈-的单调递增区间是________________.

4.设函数()sin 3|sin 3|f x x x =+,则()f x 的最小正周期为_______________. 5.函数22()cos 2cos 2

x

f x x =-在[0,]π上的单调递增区间是_______________. 6

.已知函数π124()πsin 2x f x x ?

?- ?

??=?

?+ ?

?

?. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3

cos 5

α=

,求()f α. 解:(Ⅰ) 由πsin 02x ?

?+≠ ???得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z .

故()f x 的定义域为π|π2x x k k ??

∈≠-∈????

R Z ,.

(Ⅱ)由已知条件得4sin 5α===.

从而π124()πsin 2f ααα?

?- ?

??=??

+ ?

?

? 2

π

[,0]6

π

-

32π [,]3

ππ 2[,]63ππ,75[,]63ππ

ππ

1cos2cos sin2sin

44

cos

αα

α

?

++?

??

=

2

1cos2sin22cos2sin cos

cos cos

ααααα

αα

+++

==

14

2(cos sin)

5

αα

=+=.

7.设函数)

(

),

(

)

2

sin(

)

(x

f

y

x

x

f=

<

<

-

+

=?

π

?图像的一条对称轴是直线8

π

=

x.

(Ⅰ)求?;

(Ⅱ)求函数)

(x

f

y=的单调增区间;

(Ⅲ)画出函数)

(x

f

y=在区间]

,0[π上的图像

解:(Ⅰ))

(

8

x

f

y

x=

=是函数

π

Θ的图像的对称轴,,1

)

8

2

sin(±

=

+

?

∴?

π

,.

42

k k Z

ππ

∴+=+∈.

4

3

,0

π

?

?

π-

=

<

<

-

Θ

(Ⅱ)由(Ⅰ)知).

4

3

2

sin(

,

4

π

?-

=

-

=x

y

因此

由题意得.

,

2

2

4

3

2

2

2Z

k

k

x

k∈

+

-

-

π

π

π

π

π

所以函数.

],

8

5

,

8

[

)

4

3

2

sin(Z

k

k

k

x

y∈

+

+

-

=

π

π

π

π

π

的单调增区间为

(Ⅲ)由知

)

3

2

sin(

π

-

=x

y

故函数上图像是

在区间]

,0[

)

x

f

y=

第7课 三角函数的值域与最值 【考点导读】

1.掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;

2.求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法. 【基础练习】

1.函数x x y cos 3sin +=在区间[0,]2π

上的最小值为 1 .

2.函数)(2cos 21

cos )(R x x x x f ∈-=的最大值等于 .

3.函数tan()2y x π=-(44

x ππ-≤≤且0)x ≠的值域是___________________. 4.当2

<

x x f 2sin sin 82cos 1)(2++=的最小值为 4 .

【范例解析】

例1.(1)已知1

sin sin 3

x y +=,求2sin cos y x -的最大值与最小值.

(2)求函数sin cos sin cos y x x x x =?++的最大值. 分析:可化为二次函数求最值问题.

解:(1)由已知得:1sin sin 3y x =-,sin [1,1]y ∈-Q ,则2

sin [,1]3

x ∈-.

22111

sin cos (sin )212

y x x ∴-=--,当1sin 2x =时,2sin cos y x -有最小值1112-;当

2

sin 3x =-时,2sin cos y x -有最小值49.

(2)设sin cos x x t +

=(t ≤≤,则21sin cos 2t x x -?=,则211

22

y t t =+-,

当t =时,y

有最大值为1

2

点评:第(1)小题利用消元法,第(2)小题利用换元法最终都转化为二次函数求最值问题;但要注意变量的取值范围.

43

(,1][1,)-∞-?+∞

例2.求函数2cos (0)sin x

y x x

π-=

<<的最小值. 分析:利用函数的有界性求解.

解法一:原式可化为sin cos 2(0)y x x x π+=<<,得)2x ?+=,即

sin()x ?+=

1≤,解得y ≥y ≤,所以y 解法二:2cos (0)sin x

y x x

π-=

<<表示的是点(0,2)A 与(sin ,cos )B x x -连线的斜率,其中点B 在左半圆221(0)a b a +=<上,由图像知,当AB 与半圆相切时,y 最小,

此时AB k =y

点评:解法一利用三角函数的有界性求解;解法二从结构出发利用斜率公式,结合图像求解.

例3.已知函数2π()2sin 24f x x x ??=+- ???,ππ42x ??

∈????

,.

(I )求()f x 的最大值和最小值;

(II )若不等式()2f x m -<在ππ42x ??

∈????,上恒成立,求实数m 的取值范围.

分析:观察角,单角二次型,降次整理为sin cos a x b x +形式.

解:(Ⅰ)π()1cos 221sin 222f x x x x x ??

??=-+=+ ??????

?∵

π12sin 23x ?

?=+- ??

?.

又ππ42x ??

∈????,∵,ππ2π2633x -∴≤≤,即π212sin 233x ??+- ???≤≤,

max min ()3()2f x f x ==,∴.

(Ⅱ)()2()2()2f x m f x m f x -

∈????

,,

max ()2m f x >-∴且min ()2m f x <+,

14m <<∴,即m 的取值范围是(14),

. 点评:第(Ⅱ)问属于恒成立问题,可以先去绝对值,利用参数分离转化为求最值问题.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力. 【反馈演练】

1.函数))(6

cos()3sin(2R x x x y ∈+--=π

π的最小值等于____-1_______.

2.当04

x π

<<时,函数22cos ()

sin sin x

f x x x

x =-的最小值是______4 _______.

3.函数sin cos 2

x

y x =+4.函数cos tan y x x =?的值域为 .

5.已知函数()2sin (0)f x x ωω=>在区间,34ππ??

-????上的最小值是2-,则ω的最小

值等于_________.

6.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;

(Ⅱ)求函数()f x 在区间π3π84??

????

,上的最小值和最大值.

解:(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ?

?=-+=-=- ??

?.

因此,函数()f x 的最小正周期为π.

(Ⅱ)因为π()24f x x ??=- ???在区间π3π88??????,上为增函数,在区间3π3π84??

????,上

为减函数,又π08f ??

= ???

,3π8f

??

= ???

3π3πππ14244f ????

=-==- ? ?

????

, 3

2

(1,1)-

故函数()f x 在区间π3π84??

????

,,最小值为1-.

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

高中数学函数知识点详细

第 二章 函数 一.函数 1、函数的概念: (1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中 的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则 (3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定 义域一致 (两点必须同时具备) 2、定义域: (1)定义域定义:函数)(x f 的自变量x 的取值范围。 (2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。 (3)确定函数定义域的常见方法: ①若)(x f 是整式,则定义域为全体实数 ②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数x y 111+ = 的定义域。 ③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数 例1. 求函数 () 2 14 34 3 2 -+--=x x x y 的定义域。 例2. 求函数()0 2112++-= x x y 的定义域。 ④对数函数的真数必须大于零 ⑤指数、对数式的底必须大于零且不等于1 ⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10 ≠=x x ⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域 已知函数)(x f 的定义域为[0,1]求)(2 x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域 3、值域 : (1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。 (2)确定值域的原则:先求定义域 (3)常见基本初等函数值域: 一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)

高中数学求函数值域的7类题型和16种方法

求函数值域的7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? ,当0a <时的值域为 24,4ac b a ?? --∞ ??? ., 3.反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R. 6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

高中数学教师备课必备系列(三角函数(一)专题9 三角函数图像与性质

专题九三角函数图像与性质.正弦函数、余弦函数、正切函数的图像 .三角函数的单调区间: 的递增区间是,递减区间是 ; 的递增区间是,递减区间是, 的递增区间是, .函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。 .由=的图象变换出=(ω+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进

行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换 (伸缩变换) 先将=的图象向左(>)或向右(<=平移||个单位,再将图象上各点的横坐标变为原来的 倍(ω>),便得=(ω+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将=的图象上各点的横坐标变为原来的倍(ω>),再沿轴向左(>)或向右(<=平移 个单位,便得=(ω+)的图象。 .由=(ω+)的图象求其函数式: 给出图象确定解析式(ω)的题型,有时从寻找“五点”中的第一零点(-,)作为突破口, 要从图象的升降情况找准 ..第一个零点的位置。 .对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 .求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; .求三角函数的周期的常用方法: 经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法。 .五点法作(ω)的简图: 五点取法是设ω,由取、、π、、π来求相应的值及对应的值,再描点作图。 四.典例解析

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

(完整版)高中数学必修一三角函数图像性质总结(精华版)

x ?正弦、余弦、正切函数图象和性质 正弦函数、余弦函数、正切函数的图像 -5 3 7 ~2~ ” - 丁1 T V x 2*伽 -4 -7 -3 ' 、一 -2 -3 - -1 o '2 5 3 J. ‘ 4 2 2 2

y=ta nx J J J 1 Jr jr y y ; 1 1 / / / I ? r / / / y\ y=cotx 1 1 1 \ i 1 ! i I 1 3f-2 1 f J 1 J f f o 2 f I \ I i 1 I L o I I X2 1 三角函数的性质 1定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y = sinx , y= tanx ;偶函数:y= cosx. ⑺八黒 ' -型三角函数的奇偶性 (i)g(x 丄^ 丁(x€ R) (x)为偶函数- U 山呂in(曲+ 训+ e二匕T +—〔七W E) 由此得- 同理或劝=丿血(阪+呦〔肚丘)为奇函数u 如卩二0吕貯=匕吋上亡£)丘)Q..I —「二一L> : C 2. ■■■ □ 为偶函数;.匚」一⑺一".S 为奇函数 O 炉=Rr+ —(h e 7) 3、周期性 1)基本公式 (i)基本三角函数的周期y= sinx , y= cosx 的周期为; y = tanx , y = cotx 的周期为;T? (ii)—",:'型三角函数的周期 尹=」幻n(购+ 朝 +匕尸=+炉)+上的周期为同 y=cosx

P =」tan (处: + &) +匕尸二(处卄洞+& 的周期为91 . (2)认知 (i ) ?卜巳-,?| 型函数的周期 y = pisin (伽+ 剑| j = A cos(d&r+ 4?)| 的周期为 7T y = |j4tan(dft + 训,y=血 ot 〔伽 + 训 的周期为 ? = |了(曲+卩)+円往无0)的周期 》=|£血(血工+朝胡』=|1(:0£(处+?+上| y = |^tan(&r + ^) +円 j =凶诃(你+昉+刈 的周期为’; 7T 的周期为'? 均同它们不加绝对值时的周期相同,即对 数 的周期不变?注意这一点与(i )的区别? (ii ) 若函数为-’二 型两位函数之和,则探求周期适于“最小公倍数法”. (iii ) 探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明 ? (3)特殊情形研究 y 二门」 彳J 的解析式施加绝对值后,该函 JT (i) y = tanx — cotx 的最小正周期为 ; y = sin z|+|co5z| 7T 的最小正周期为二; 7T (iii ) y = sin 4X + cos 4x 的最小正周期为 二. 由此领悟“最小公倍数法”的适用类型,以防施错对象 . 4、单调性 (1) 基本三角函数的单调区间(族) 依从三角函数图象识证“三部曲”: ① 选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期; ② 写特解:在所选周期内写出函数的增区间(或减区间); ③ 获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族) 循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 . 揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域 (2) 』— 丁 型三角函数的单调区间

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

(完整版)高一数学三角函数的图像和性质练习题

高一数学 三角函数的图像和性质练习题 1.若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B . 2π+k π(k ∈Z ) C .2π+2k π(k ∈Z ) D .-2π+2k π(k ∈Z ) 2.使cosx=m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 3.函数y=3cos ( 52x -6π)的最小正周期是( ) A .5 π2 B .2π5 C .2π D .5π 4.函数y=2sin 2x+2cosx -3的最大值是( ) A .-1 B .21 C .-21 D .-5 5.下列函数中,同时满足①在(0, 2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2x D .y=|sinx| 6.函数y=sin(2x+π6 )的图象可看成是把函数y=sin2x 的图象做以下平移得到( ) A.向右平移π6 B. 向左平移 π12 C. 向右平移 π12 D. 向左平移π6 7.函数y=sin(π4 -2x)的单调增区间是( ) A. [kπ-3π8 , kπ+3π8 ] (k∈Z) B. [kπ+π8 , kπ+5π8 ] (k∈Z) C. [kπ-π8 , kπ+3π8 ] (k∈Z) D. [kπ+3π8 , kπ+7π8 ] (k∈Z) 8.函数 y=15 sin2x 图象的一条对称轴是( )

A.x= - π2 B. x= - π4 C. x = π8 D. x= - 5π4 9.函数 y=15 sin(3x-π3 ) 的定义域是__________,值域是________,最小正周期是________,振幅是________,频率是________,初相是_________. 10.函数y=sin2x 的图象向左平移 π6 ,所得的曲线对应的函数解析式是____ _____. 11.关于函数f(x)=4sin(2x+π3 ),(x∈R),有下列命题: (1)y=f(x)的表达式可改写为y=4cos(2x-π6 ); (2)y=f(x)是以2π为最小正周期的周期函数; (3)y=f(x)的图象关于点(-π6 ,0)对称; (4)y=f(x)的图象关于直线x=-π6 对称;其中正确的命题序号是___________. 12. 已知函数y=3sin (21x -4 π). (1)用“五点法”作函数的图象; (2)说出此图象是由y=sinx 的图象经过怎样的变化得到的; (3)求此函数的最小正周期; (4)求此函数的对称轴、对称中心、单调递增区间. 13. 如图是函数y =A sin(ωx +φ)+2的图象的一部分,求它的振幅、最小正周期和初 相。

高中函数值域的经典例题 12种求法

一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为 . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。

高中数学必修4 三角函数的图像与性质

三角函数的图像和性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0),)1,2 (π ,(π,0),) 1,23( -π,(2π,0). (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),)0,2(π,(π,-1),)0,23(π ,(2π,1). 2.三角函数的图象和性质

(1)周期性 函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π |ω|,y=tan(ωx+φ)的最小正周 期为π |ω|. (2)奇偶性 三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式. 三种方法 求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; (2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域; (3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.

双基自测 1.函数)3cos(π +=x y ,x ∈R ( ). A .是奇函数 B .是偶函数 C .既不是奇函数也不是偶函数 D .既是奇函数又是偶函数 2.函数) 4 tan( x y -=π 的定义域为( ). A . } ,4 |{Z k k x x ∈- ≠π π B .},4 2|{Z k k x x ∈-≠π π C .},4 |{Z k k x x ∈+ ≠π π D .},4 2|{Z k k x x ∈+ ≠π π 3.)4sin(π -=x y 的图象的一个对称中心是( ). A .(-π,0) B .)0,4 3(π- C .)0,2 3( π D .)0,2 (π 4.函数f (x )=cos )6 2(π + x 的最小正周期为________. 考向一 三角函数的周期 【例1】?求下列函数的周期: (1)) 2 3 sin( x y π π - =;(2))6 3tan(π -=x y 考向二 三角函数的定义域与值域 (1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:

智爱高中数学--函数值域求法十一种(详解)

函数值域求法十一种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 1. 求函数 x 1 y = 的值域。 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得: 4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8] 3. 判别式法 4. 求函数 22x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:2 3y 2 1≤≤ (2)当y=1时,0x =,而??????∈23,211 故函数的值域为?? ? ???23,21 5. 求函数)x 2(x x y -+ =的值域。 解:两边平方整理得:0y x )1y (2x 222 =++-(1) ∵R x ∈

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

三角函数图像及其性质

【本讲教育信息】 一.教学内容: 三角函数的图象与性质 二.教学目的: 了解三角函数的周期性,知道三角函数y=A sin(ωx+φ),y=A cos(ωx +φ)的周期为。 能画出y=sin x,y=cos x,y=tan x的图象,并能根据图象理解正弦函 数、余弦函数在[0,2π],正切函数在(-,)上的性质(如单调性、最大值和最小值、图象与x轴的交点等)。 了解三角函数y=A sin(ωx+φ)的实际意义及其参数A,ω,φ对函数图象变化的影响;会画出y=A sin(ωx+φ)的简图,能由正弦曲线y=sin x通过平移、伸缩变换得到y=A sin(ωx+φ)的图象。 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型。 三.教学重点:三角函数的性质与运用 教学难点:三角函数的性质与运用。 四.知识归纳 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 的递增区间是, 递减区间是; 的递增区间是,

递减区间是, 的递增区间是, 3.函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象 与直线的交点都是该图象的对称中心。 4.由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象。 5.由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置. 6.对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 7.求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负。利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8.求三角函数周期的常用方法: 经过恒等变形化成“、”的形式,再利用周期公式,另外还有图像法和定义法。 9.五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x取0、、π、、2π来求相应的x值及对应的y值,再描点作图。

相关文档
最新文档