主板USB接口电路结构图解

主板USB接口电路结构图解
主板USB接口电路结构图解

主板USB接口电路结构图解

因为每个 USB 接口能够向外设提供+ 5V500MA 的电流,当我们在连接板载 USB 接口时,一定要严格按照主板的使用说明书进行安装。绝对不能出错,否则将烧毁主板或者外设。相信有不少朋友在连接前置 USB 插线时也发生过类似的

“ 冒烟事见“ 。这就需要我们能够准确判别前置 USB 线的排列顺序如果我们晓得 USB 接口的基本布线结构,那问题不是就迎刃而解了吗。

USB 接口图解

主机端:

接线图:

VCC

Data -

Data +

GND

实物图:

设备端:

接线图:

VCC

GND

Data -

Data +三、市面上常见的 USB 接口的布线结构

这两年市面上销售的主板,板载的前置 USB 接口,使用的都是标准的九针USB 接口,第九针是空的,比较容易判断。但是多数品牌电脑使用的都是厂家定制的主板,我们维修的时候根本没有使用说明书;还有像以前的 815 主板,440BX , 440VX 主板等,前置 USB 的接法非常混乱,没有一个统一的标准。当我们维修此类机器时,如何判断其接法呢?

现在,把市面上的比较常见的主板前置 USB 接法进行汇总,供大家参考。( 说明:■ 代表有插针,□ 代表有针位但无插针。 )

1 、六针双排

这种接口不常用,这种类型的 USB 插针排列方式见于精英 P6STP -

FL(REV : 1.1) 主板,用于海尔小超人 766 主机。其电源正和电源负为两个前置 USB 接口共用,因此前置的两个 USB 接口需要 6 根线与主板连接,布线如下表所示。

■DATA1+

■DATA1-

■DATA2-

■DATA2+

■ GND

2 、八针双排

这种接口最常见,实际上占用了十针的位置,只不过有两个针的位置是空着的,如精英的 P4VXMS(REV : 1.0) 主板等。该主板还提供了标准的九针接法,这种作是为了方便 DIY 在组装电脑时连接容易。

■ VCC

■DATA -

■DATA +

□NUL

■ GND

■ GND

□NUL

■DATA +

■DATA -

■ VCC

微星 MS-5156 主板采用的前置 USB 接口是八针互反接法。虽然该主板使用的是 Intel 430TX 芯片组,但首先提供了当时并不多见的 USB1.0 标准接口两个,只不过需要使用单独的引线外接。由于该主板的 USB 供电采用了限流保护技术,所以即使我们把 USB 的供电线接反,也不会导致主板无法启或烧毁 USB 设备的情况产生。

■ VCC

■DATA -

■DATA +

■ GND

■ GND

■DATA +

■DATA-

■ VCC

以下这种接口比较常见,多使用于 815 ,或 440BX 较早的主板上。

■ VCC

■DATA +

■DATA -

■ VCC

■DATA +

■DATA-

■ GND

以下这种接口现在不多见,也见于 2001 , 2002 年时期的主板上。

■ VCC

■DATA -

■DATA +

□NUL

■GND

■ VCC

■DATA -

■DATA +

□NUL

■GND

3、九针双排

这种前置USB接口最常见,大多数主板都使用这种接口,有的还带有插槽来限位。如:精英P6IEA,INTEL D845GLVA主板,L4IBMGL2(REV:1.0B),精英865PE-A(REV:2.0),捷波P4X400DA主板,捷波JP4MFM。

■ VCC

■DATA-

■DATA+

■GND

■NC

■ VCC

■DATA-

■DAT A+

■GND

□NUL

有的主板的第十针也接地了,但这对性能改变不大,也没有多大差别,可以接也可以不接。

■ VCC

■DATA-

■DATA+

■GND

■ VCC

■DATA-

■DATA+

■GND

□NUL

有的主板上不但带有限位设计,同时也明确标明了每一根针的定义,如微星MS-845GLML主板。

捷波生产的几款主板的前置USB接口虽然也是九针,但空针的位置有所有同和其他厂家有点特殊,空针的位置正好相反,如845GPRO,845DBA,845DBAR2等主板,空针的位置正好是第十针,而非第九针。

精英L4S5M主板也是九针前置USB接口,但空针的位置是第七针,同时第四针是不使用的,两个USB接口的正好互反。对于互反的USB接口,我们一定要注意不能接错,因为这种情况因为我们接对了一个,往往按经验来判断连接另一个,造成部件损坏。

■GND

■NC

■DATA+

■DATA-

■ VCC

■ VCC

■DATA-

■DATA+

□NUL

■GND

4、十针双排

精英P6STM主板,神舟电脑使用的FC-810T主板使用十针双排USB接口,第九,十两名为闲置插针,两个USB接口的接法相同。

■ VCC

■DATA-

■DATA+

■GND

■NC

■ VCC

■DATA-

■DATA+

■GND

■NC

像微星845 Ultra VER:1主板,虽然使用的也是十针双排接法,但两组USB接法相反,并且使用了双地线。

■ VCC

■DATA-

■DATA+

■GND

■GND

■GND

■GND

■DATA+

■DATA-

■ VCC

微星815E PRO(VER:1)N1996

■ VCC

■DATA-

■DATA+

■GND

■NC

■NC

■GND

■DATA+

■DATA-

■ VCC

5 、十五针双排

这种接口不多见,见于佰钰 P4X266(PR22 - S) ,硕泰克 SL - 65KV2 主板上面,虽然插针多,但 USB 接口也只是两个,多余的上面一排都是地线,是为了减少 USB 线间的干扰,提高工作性能设计的。

■GND

NULL

■GND

■GND

■GND

■GND

■GND

■GND

■ VCC

■DATA -

■DATA +

■GND

■ VCC

■DATA -

■DATA +

■GND

实物:

以下这种接口不多见,多见于一些 OEM 主板上面。

■GND

■GND

■DATA+

■DATA-

■ VCC

□NUL

■DATA+

■GND

■ VCC

■DATA -

■DATA +

■GND

■GND

□NUL

■ VCC

■DATA-

6 、四针单排

见于华硕 CUSL2-C(REV : 1.02) ,三帝 P651ML ,精英 L4VXA2 等主板。■ VCC

■DATA+

■DATA-

■GND

□NUL

主板 USB 接口电路结构图解

四、机箱端的接法

目前市场上销售的 DIY 机箱的 USB 接头也有两种,一种是散的,一种是组合的,分别对应使用于非标 USB 接口和标准 USB 接口。

1 、散线接头

2 、标准组合接头

一般情况下,机箱使用的 USB 接头都使用 4 种不同颜色的线来使用之区别,其中黑色线为地线 (GND) ,红色线为电源正级 (VCC 或+ 5Volt) ,白色线为数据负线 (USB Port- 或 Data-) ,绿色线为数据正线 (USB Port+ 或 Data+) 。

无论是散头接法还是组合接法,我们一定确定我们的安装正确无误后 ( 特别是电源正负的接法 ) ,才能加电试机,否则就必须使用万用表来帮助我们判断板载 USB 插针的正确接法。

五、 USB 接口的基本判断方法

USB 线的插头方法最多,有六针的,也有八针,九针,十针的,但是因为 USB 线使用 +5V 电源和地线,这就为我们判别其正确定义提供了帮助。因为计算机在使用过程中会向空气中发射频带很宽的大量的电磁波,为了防止这些电磁波对其他家用电器的干扰,都使用了全钢机箱,并且箱体安全接地。

还有一点需要大家明白,不但机箱接地,同时机箱也是开关电源次级的电源地,即我们通常所说的“ 电源负极” 。所以在我们判别 USB 接口的地时,只要把万用表置于 *1 档或导通档,测试 USB 接口中那根针与机箱是导通的,这样就可以马上判断出地线。只要知道地线了,与其隔两根针的就是“ 电源正” ,即 VCC 端。其余就可以按位置排列了。

基本方法:

将万用表置于通断档或电阻档的 *1 档。

用黑表笔接触主板的地线,如 USB 接口或键盘接口,固定螺丝位置的边缘,这些位置都是地线。

黑表笔不动,用红表笔记逐个接触前置 USB 接口的插针。

当接到某一插针时,万用表发出鸣叫或电阻档指示为 0 或较小数值时,就表示此时红表笔接触的前置 USB 插针是地线 (GND) 。接下来再根据 USB 连线的基本布局就可以判断电源正 (VCC) 和其他两根数据线了。

如果还不放心,我们还可以继续判断电源正。因为 USB 使用的 +5V 电源,是由 ATX20 针电源插头的 +5V( 红色 ) 或者是 +5VSB( 紫色 ) 供应的,只要测量有哪根针与 ATX 电源的红或紫导通就可以了。

一些高档主板的 USB 供电不是直接由电源提供的,而是通过功率电源管按制 USB 供电当故障发生时切断对外设供电,或者使用限流 IC 把 USB 接口的输出电流限定为 500MA 。我们可以通过观察 PCB 板上线路连接来判断电源正的接法;也可以通过使用万用表的电阻档测量,与 USB 接口相连的保险电阻或控制电源管导通的插针,就是 USB 接口的正极。

六、 USB 接口的供电方法

1 、采用+ 5VSB 或+ 5V 供电

一些低端主板生产厂家出于生产成本的考虑,有的是直接使用开关电源送出的+ 5VSB 或+ 5V 供电,其间有一个或根本没有保险电源或限流电阻。这样做的话会导致如是 USB 接口或 USB 外设出现故障时会造成主机不能加电或无法启动。如果是主机正在工作时插入了问题 USB 外设就会导致主板立即重启。

中档主板的生产厂家多数都在 USB 供电回路中设计了电源滤波和可恢复保险电阻以保护主板稳定工作,避免受到热插拔 USB 外设时出现死机或重启现

象。如下图因为生产厂家采用简单供电,导致供电回路中的滤波电感比较严重的烧毁。

因为后置 USB 接口与键盘接口相近,所以大部分主板在设计时都采用了后置 USB 接口和键鼠一起供电的做法,在键盘接口附近一般会有一个 JB1 跳线,用户可以选择是使用+ 5VSB( 可以提供键鼠开机功能,网络唤醒功能,但电流较小,无法满足移动硬盘供电 ) 供电;或者是使用+ 5V 电源供电 ( 提供电流较大,但无法键鼠开机 ) 。不过一些主板在设计时就取消了跳线,所以当电脑关机时键鼠灯常亮,这种情况只能在电脑关机后拔下主机的电源插头才能彻底断电。

像映泰 KBNHAG 主板为了使用主板后置 USB 接口的供电更稳定,把键鼠和USB 供电进行了分离。

2 、采用+ 5V 电源通过限流 IC 供电或使用电源管可控供电

这种设计一般见于中高档主板,在 USB 供电回路中有电容滤波,保险电阻,限流 IC 或功率电源管,这种设计可以保证主板的每个 USB 接口向外设提供最大 500MA 的供电电流,同时当外设短路时,限流 IC 会自动切断 USB 接口的供

电,保证主机正常稳定的工作。不过,因为最大供电电流只有 500MA ,所以当我们使用移动硬盘时,往往就会出现无法认盘,认盘后文件读取不易,只能拷贝小文件不能拷贝大文件,拷贝文件容易死机等情况。

七、注意事项

六针的 USB 接口,其中的电源正和电源地是共用的。九针和十针的 USB 接口,第九针为空,是为了定位,防止 USB 接口反接,造成烧主板的情况。如果我们在判断时有疑问,我们还可以通过万用表辅助判断,以确定连接准确无误。

八、与其他接口的区别

1 、九针的 COM 接口

现在因为 USB 接口和 1394 接口的迅速普及,二者的连接安装方便,可以带电拔插,所以原来经常使用的 COM 端口现在已经较少出现在主板上了。生产厂家为了兼顾不同的客户群,只是在主板保留 COM 口的插针,供有需要的用户单独外接使用。

由于 COM 使用的也是九针接口,一些用户在连接前置 USB 接口时经常会出现错误。注意二者的区别, COM 口的第十针是空的,同时外围一般会有一个图形框,再就是有明显的“COM” 字母标注。

2 、九针的前置音频接口

虽然前置音频接口 (J_AUDIO) 也是九针,但空针一般为第七针,同时该接口通常在声卡或后置耳麦接口附近。

10 针前置音频接口 ( 隽星 845PEML) ,该音频接口与普通常见的九针前置音频接口有所不同, 1,9 是右声道, 2,10 是左声道, 3,4 , 7 为地, 5 为 VCC ,6 为 MIC IN , 8 为空脚。

3 、九针的前置面板接口

前置面板接口就是通常的电源开关,复位键,硬盘灯,电源灯。这几根线通常组合在一起,也正好是九根针,如果没有图示说明,那和前置 USB 接口非常相似。不过,我们可以注意到空针的为置也是第 10 针,特别是新的主板该接口都用明显的颜色加以区别,因此不容易出现错误。

4 、九针 INFOLINK 接口

见于技嘉 GA-IG1000-G 主板。

5 、九针的 SPDIF 接口

见于技嘉和微星主板,不过该接口空针的位置为第五针。

6 、 9 针 JDB 接口

见于微星 MS-6566 , 6580 等主板上,要注意该接口与前置 USB 接口非常相似,也是空缺第九针。

7 、单排五针接口

红外接口

:红外接口的针脚定义和 USB 相似,也有 VCC , GND 两脚,再就是发送和接收两脚,不过红外接口用的单排五针空的是第四针,而非第五针。

网络唤醒接口:

该接口虽然也是单排五针,但它的五针齐全。

8 、五针接口

主板上的五针接口也有好几种,如红外, SPDIF 接口, SUB_CEN 接口,这几种接口虽然使用的双排六针,但只有五根针,一般不会当成 USB 接口使用。

9 、十五针接口

主板集成 VGA 接口:

该接口的使用在 810 之前的主板较常见,目前的主板一般都是直接使用板载VGA 接口替代 COM2 接口的位置。

软猫接口:

如精英 P6SET-ML ,这种猫在 370 接口的主板上较常见,需要占用一定的 CPU 资源来完成数据的调制和解调功能,属专用接口,只能与厂家自己生产的软猫配套使用。类似的还有网卡接口等。

GAME 接口:

因为游戏手柄也越来越多的使用了即插即用的 USB 接口,所以声卡附带的 15 针 GAME 接口使用的机会也越来越少,所以部分生产厂家就在主板后置接口中省去了该接口,但在主板提供了扩展可能。

14 针接置音频接口:

该前置音频接口见于技嘉 U8668 - D( 七喜快乐 2004) ,在其他主板上没有多见,最右边多余的四根针可以用来直接使用跳线帽来短接,使前后置音频接口同时起作用。否则后置接口将受前置接口的控制,当前置耳麦接口中插入话筒或耳机时,会自动切断后置接口的输入。

全面讲解电脑主板构造及原理(图解)

全面讲解电脑主板构造及原理(图解)(一) 2007-09-04 20:44 全面讲解电脑主板构造及原理(图解)(一) 2007-09-04 20:44 虽然此文较老,但不失为一骗不可多得的经典帖。希望能对大家有帮助。 大家知道,主板是所有电脑配件的总平台,其重要性不言而喻。而下面我们就以图解的形式带你来全面了解主板。 一、主板图解一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻

孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术, Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。

电脑主板各个部位介绍

全程详细图解电脑主板各个部位 大家知道,主板是所有电脑配件的总平台,其重要性不言而喻。而下面我们就以图解的形式带你来全面了解主板。 一、主板图解一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转

印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PT H)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe) 来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。

教程:华硕主板Bios详细图解

一.Main(标准设定) 此菜单可对基本的系统配置进行设定。如时间,日期等 其中Primary/Secondary IDE Master/Slave 是从主IDE装置如果你的主板支持SATA接口就会有Third/Fourth IDE Mastert或者更多,他们分别管理例电脑里面各个IDE驱动装置的,如硬盘,光驱等等!因为各个主板的设置不同,所以在此就不详细解说这里的设置了,但是这些一般不用用户自己去设置,一般用默认的就可以,如果有特殊要求,建议用户自己对照说明书的说明进行设置,或者在论坛里单独提问! System Information 这是显示系统基本硬件信息的,没有什么好讲(如图)

二.Advanced(进阶设置)如图:

这里就是Bios的核心设置了,新手一定要小心的设置,因为其直接关系系统的稳定和硬件的安全,千万不可以盲目乱设! 1.大家先看到的是“JumperFree Configuration”(不同品牌的主板有可能不同,也可能没有)再这里可以设置CPU的一些参数,对于喜欢超频的朋友来说这里就 是主攻地!(如图)

其中又以“Manual”为关键,选择后会看到如下图:

对于CPU超频爱好者这些东西应该了如指掌,CPU的外频设置(CPU External Frequency)是超频的关键之一,CPU的主频(即我们平时所说的P4 3.0G等等之内的频率)是由外频和倍频相乘所得的值,比如一颗3.0G的CPU在外频为200的时候他的倍频就是15,(200MHz*15=3000MHz)。外频一般可以设定的范围为100MHz到400MHz,但是能真正上300的CPU都不多,所以不要盲目的设置高外频,一般设定的范围约为100-250左右,用户在设定中要有耐心的一点点加高,最好是以1MHz为步进,一点点加,以防一次性加到过高而导致系统无法正常使用甚至CPU损坏! 内存频率设定(DRAM Frequency)使用此项设定所安装内存的时钟,设定选项为:200MHz, 266MHz,333MHz, 400MHz, Auto。 AGP/PCI设备频率设定(AGP/PCI Frequency),本项目可以修改AGP/PCI设备的运行频率频率,以获得更快的系统性能或者超频性能,设定值有:[Auto],[66.66/33.33],[72.73/36.36]。但是请用户适当设置,如果设置不当可能导致AGP/PCI设备不能正常使用! 电压设置就不用多讲呢,就是设置设备的工作电压,建议一般用户不要轻易修改,

台式电脑主板接口说明附详细图解

电脑主板接口 1.前言 主板作为电脑的主体部分,提供着多种接口与各部件进行连接工作,而随着科技的不断发展,主板上的各种接口与规范也在不断升级、不断更新换代。其中比较典型的就是CPU接口,Intel方面,有奔腾、酷睿2系列的LGA 775,酷睿i7的LGA 1366接口,i5、i3的LGA 1156;AMD方面也从AM2升级到了AM2+以及AM3接口。其他如内存也从DDR升级到最新的DDR3,CPU供电接口也从4PIN扩展到8PIN等。面对主板上如此多的接口,你都知道它们的用途吗? 如此繁多的接口,你全都认识吗? 在本文中,我们将对主流主板上的各种接口进行介绍,使用户能清楚、明白主板上各种接口的作用。 1、CPU接口 首先是CPU接口部分,目前PC上只有Intel和AMD两个公司生产的CPU,它们采用了不同的接口,而且同品牌CPU 也有不同的接口类型。 Intel:

Intel的LGA 775接口

IntelLGA 1366和LGA 1156接口 Intel的CPU采用的是LGA 775、LGA 1366和LGA 1156这三种接口。除了酷睿i7系列采用的是LGA 1366接口,酷睿i5和i3采用的是LGA 1156,市面上其他型号的CPU都是采用LGA 775接口,可以说LGA 775仍是主流,各种接口都不兼容。在安装CPU时,注意CPU上的一个角上有箭头,把该箭头对着图中黄色圆圈的方向装即可。 AMD: 2009年2月中,AMD发布了采用Socket AM3接口封装的Phenom II CPU和AM3接口的主板,而AM3接口相比AM2+接口最大的改进是同时提供DDR2和DDR3内存的支持。换句话说,以后推出的AM3接口CPU均兼容现有的AM2+平台,通过刷写最新主板BIOS,即可用在当前主流的AM2+主板(如AMD 770、780G、790GX/FX等)上,而用户也不必担心升级问题。

电脑主板图解知识图解新手学主板维修资料

一、主板图解一块主板主要由线路板和它上面的各种元器件组成: 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 ????主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractivetransfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂

“压合”起来就行了。接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Holetechnology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。

1电脑主板架构图文详解

电脑主板图文详解 认识主机板 「主机板」(Motherboard)不算电脑里最先进的零组件,但绝对是塞最多东西的零组件。事实上,现在新的主机板简直像怪物,上面可能有数十个长长短短、大大小小、圆的方的、各式各样的插槽。即使我已经见过不下百张的主机板,仍然会惊讶于一张板子怎么能塞这么多东西,更可怕的是,东西还一年比一年多。 平台的概念 在电脑零件组中,主机板扮演的是一个「平台」(Platform)的角色,它把所有其他零组件串连起来,变成一个整体。我们常说CPU像大脑一样,负责所有运算的工作,而主机板就有点像脊椎,连接扩充卡、硬盘、网络、音效、键盘、鼠标器、打印机等等所有的周边,让CPU可以掌控。所以玩电脑的人,常会在意「板子稳不稳」,因为主机板连接的周边太多,若稳定性不够就容易出现各种灵异现象。CPU不够快,顶多人笨一点算得慢,但脊椎出毛病就不良于行了。当然,CPU还是最重要的零件,CPU挂了,就像本草纲目所记载的:「脑残没药医」。目前全世界最大的主机板厂通通都在台湾(生产线当然在大陆),所以一定要好好认识一下台湾之光,但就像最前面说的,现在主机板上实在塞太多东西,每个插槽都是一种规格,有自己的历史和技术。这篇主要是讲一个「综观」,各插槽的技术会在对应零组件里详细说明,出现一堆英文缩写请别在意。废话不多说,我们挑一张目前最新的主机板做介绍,大家一起感谢微星提供两张P35 Platinum供小弟任意解体,幸好,在本专题中没有一张主机板死亡。

主机板外观 这是目前新的主机板的模样,看起来密密麻麻跟鬼一样。你电脑里装的可能没这么高级,花样也不一定这么多,但某些东西是每一张主机板都会有的。

电脑主板插线方法图解详解

作为一名新手,要真正从头组装好自己的并不容易,也许你知道CPI应该插哪儿, 内存应该插哪儿,但遇到一排排复杂跳线的时候,很多新手都不知道如何下手。 钥匙开机其实并不神秘 还记不记得你第一次见到装电脑的时候,JS将CPU内存、显卡等插在主板上,然后从兜里掏出自己的钥匙(或者是随便找颗螺丝)在主板边上轻轻一碰,电脑就运转起来了的情景吗?是不是感到很惊讶(笔者第一次见到的时候反正很惊讶)!面对一个全新的主板,JS总是不用看任何说明书,就能在1、2分钟之内将主板上密密麻麻的跳线连接好,是不是觉得他是高手?呵呵,看完今天的文章,你将会觉得这并不值得一提,并且只要你稍微记一下,就能完全记住,达到不看说明书搞定主板所有跳线的秘密。 这个叫做真正的跳线 首先我们来更正一个概念性的问题,实际上主板上那一排排需要连线的插针并不叫做“跳线”,因为它们根本达不”到跳线的功能。真正的跳线是两根/ 三根插针,上面 有一个小小的“跳线冒”那种才应该叫做“跳线”,它能起到硬件改变设置、频率等的作用;而与机箱连线的那些插针根本起不到这个作用,所以真正意义上它们应该叫做面板连接插针,不过由于和“跳线”从外观上区别不大,所以我们也就经常管它们叫做“跳线”。 看完本文,连接这一大把的线都会变得非常轻松 至于到底是谁第一次管面板连接插针叫做“跳线”的人,相信谁也确定不了。不过既然都这么叫了,大家也都习惯了,我们也就不追究这些,所以在本文里,我们姑且管面板连接插针叫做跳线吧。 为了更加方便理解,我们先从机箱里的连接线说起。一般来说,机箱里的连接线上都采用了文字来对每组连接线的定义进行了标注,但是怎么识别这些标注,这是我们要解决的第一个问题。实际上,这些线上的标注都是相关英文的缩写,并不难记。下面我们来一个一个的认识(每张图片下方是相关介绍)! 电源开关:POWER SW 英文全 称: Power Swicth 可能用名: POWE、RPOWER SWIT、CHON/OFF、POWER SET、U P W 功能定义:机箱前面的开机按钮 复位/重启开关:RESET SW 英文全称:Reset Swicth 可能用名:RESET Reset Swicth、Reset Setup、RST等电脑板插线方法图解详解

电脑主板基础知识图解修订

图解电脑主板 一、硬件其实不神秘 现在电脑早已不是什么稀罕物了,但你是否了解你的电脑呢?你是否知道硬件上那些密密麻麻芯片的作用呢? 如果说CPU是PC的大脑,电源是PC的心脏,那么主板就是PC的神经系统。可以说主板是所有硬件的基础,是它将各个硬件连接起来,并保证这些硬件可以按部就班的工作。 由于承担着大量复杂的工作,因此主板上元件的复杂程度也是所有硬件中数一数二的,但却很少有普通玩家了解主板上各个元件的功能,这对于一个DIY玩家是坚决不被允许的。 今天笔者就为大家介绍一下主板上各个元件的功能特点,希望通过笔者的介绍大家可以了解更多的硬件知识,成为一个真正的硬件高手。

二、主板主要元件概述 【A】 CPU插槽,目前Intel和AMD的处理器均采用这种ZIP零阻力接口设计。另外CPU接口附近通常会留出较低的空间以保证高端热管散热器的安装。 【B】内存接口,此位置专门为安装内存所使用,一般普通主板只拥有4个内存插槽,高端主板会增加至6个,而某些集成主板只有2个甚至1个。安装时需要将内存装进同一颜色插槽才能实现双通道及三通道。 【C】 PCI-E 16x接口,这款拥有三条PCI-E 16x接口,并都采用蓝色以方便识别。目前PCI-E接口主要为安装显卡使用,而3条PCI-E接口则意味着这款主板最多能同时安装3块显卡,当然只有狂热的游戏发烧友才会这么干。 【D】 PCI接口,这款主板拥有两条PCI接口,并都采用黑色涂装,PCI接口目前主要为安装网卡、声卡等设备。 【E】 PCI-E 1X接口,这块主板板载两条PCI-E 1X接口,此接口250MB/s的带宽远高于普通PCI接口的133MB/s,目前PCI-E 1X主要用于安装扩展卡,如声卡、网卡等。 【F】北桥芯片,散热片低下是主板的北桥芯片。北桥的主要功能是为CPU、内存、PCI-E接口之前提供互相通信,而在某些集成主板中,北桥内还集成了显示核心。 【G】南桥芯片,南桥芯片的主要功能是控制PCI接口、集成声卡、USB接口等设备。

电脑主板各部件详细图解

电脑主板各部件详细图解 大家知道,主板是所有电脑配件的总平台,其重要性不言而喻。而下面学习啦小编就以图解的形式带你来全面了解主板,希望对您有所帮助! 电脑主板各部件详细图解 一、主板图解 一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。

这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated- Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。

计算机基本结构(图解)

电脑主机构成:1、CPU;2、主板;3、硬盘;4、内存;5、显卡;6、声卡; 7、网卡;8、光驱;9、电源。 电脑机箱主板,又叫主机板、系统板或母板,它分为商用主板与工业主板两种。主板一般为矩形电路板,上面安装了组成计算机得主要电路系统,一般有芯片部分(BIOS芯片、CMOS 芯片等)、接口部分(COM、LPT、USB、MIDI、IDE、SATA、PS/2等)、扩展槽部分(AGP 插槽、PCI插槽、CNR插槽、内存插槽等)。 芯片 BIOS芯片:就是一块方块状得存储器,里面存有与该主板搭配得基本输入输出系统程序。能够让主板识别各种硬件,还可以设置引导系统得设备,调整CPU外频等。BIOS芯片就是可以写入得,这方便用户更新BIOS得版本,以获取更好得性能及对电脑最新硬件得支持。 CMOS芯片:就是一种低耗电随机存贮器,其主要作用就是用来存放BIOS中得设置信息以及系统时间日期。如果CMOS中数据损坏,计算机将无法正常工作,为了确保CMOS数据不被损坏,主板厂商都在主板上设置了开关跳线,一般默认为关闭。当要CMOS数据进行更新时,可将它设置为可改写。为使计算机不丢失CMOS与系统时钟信息,在CMOS芯片得附近有一个电池给她持续供电。 南北桥芯片:横跨AGP插槽左右两边得两块芯片就就是南北桥芯片。南桥多位于PCI插槽得上面;而CPU插槽旁边,被散热片盖住得就就是北桥芯片。 北桥芯片主要负责处理CPU、内存、显卡三者间得“交通”。 南桥芯片则负责硬盘等存储设备与PCI之间得数据流通。 南桥与北桥合称芯片组。芯片组以北桥芯片为核心,一般情况,主板得命名都就是以北桥得核心名称命名得。芯片组在很大程度上决定了主板得功能与性能。需要注意得就是,AMD 平台中部分芯片组因AMD CPU内置内存控制器,可采取单芯片得方式,如nⅥDIA nForce 4便采用无北桥得设计。从AMD得K58开始,主板内置了内存控制器,因此北桥便不必集成内存控制器。现在在一些高端主板上将南北桥芯片封装到一起,只有一个芯片,这样大大提高了芯片组得功能。 RAID控制芯片:相当于一块RA ID卡得作用,可支持多个硬盘组成各种RAID模式。RAID 就是一种把多块独立得物理硬盘按不同方式组合起来形成一个逻辑硬盘,从而提供比单个硬盘有着更高得性能与提供数据冗余得技术。数据冗余得功能就是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据得安全性。 扩展槽

电脑主板图解知识图解

电脑主板图解知识图解(新手学主板维修资料) 一、主板图解一块主板主要由线路板和它上面的各种元器件组成: 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。 另外,线路板要想在电脑上做主板使用,还需制成不同的板型。其中AT板型是一种最基本板型,其特点是结构简单、价格低廉,其标准尺寸为33.2cmX30.48cm,AT主板需与AT机箱电源等相搭配使用,现已被淘汰。而ATX板型则像一块横置的大AT板,这样便于ATX机箱的风扇对CPU进行散热,而且板上的很多外部端口都被集成在主板上,并不像AT板上的许多COM口、打印口都要依靠连线才能输出。另外ATX还有一种Micro

主板各组成结构介绍

主板各组成结构介绍 主板 打开机箱会看到里面有一块面积较大的电路板,这就是主板。主板以及安装在上面的插件(CPU、内存条、总线板卡等)是微型计算机的核心,也是费用最高的部分。从物理角度了解微型计算机的组成,首先应了解主板。主板一般包括以下组成部分: 1.CPU插座(或插槽) CPU插座用来安装CPU。不同类型的CPU采用的CPU插座不同。CPU从486以来先后使用了十种规格的插座和三种规格的CPU插槽。所谓CPU插座,是指CPU可以直接插在其上面。十种CPU插座分别是Socketl~Socket8、Socket370(有370个引脚)和SocketA,SocketA又称Socket462(有462个引脚)。每一种插座具有与相应CPU一致的引脚数目和引脚布局,并为CPU提供电压供给机制,如Socket8、Socket370和SocketA都具有自动VRM(Voltage Regulator Module)。所谓CPU插槽,是一种外形与总线插槽相类似的插槽。CPU插在一块专用的装有CPU插座的电路板上,或将CPU直接焊在上面,再将该板插入CPU插槽中。这种结构可减少主板的面积,也方便散热,但它的稳固性不如CPU插座。CPU插槽有三种:Slot1(又叫SC242)、Slot A和Slot 2(又叫SC330),前两种的引脚数都为242,而后一种的引脚数为330。 2.控制芯片组 前面已经看到,控制芯片组是协助CPU完成计算机各种控制功能和数据传送的一组超大规模集成电路芯片(目前多为三片或两片)。控制芯片组中集成了DRAM控制器、Cache控制器、CPU到各种总线的桥接电路、中断控制器、DMA控制器、定时器/计数器和电源管理单元等逻辑。 3.总线 总线是计算机各部件之间传送数据、地址和控制信息的公共通道。主板上有多种类型的总线。 4.总线插槽 总线插槽是内部总线的物理连接器,使总线板卡上的电路和主板上的总线相连。目前主板上的总线插槽一般有PCI、ISA和AGP等。但有一些机器不再提供ISA总线插槽。 5.内存插槽 内存插槽用来安装内存条。目前内存插槽一般为168线或184线。前者支持SDRAM DIMM,而后者支持DDR SDRAM DIMM。 6.驱动器接口 驱动器接口实际上是一些设备总线的接口(如IDE接口等),用来连接硬盘驱动器、光盘驱动器和软盘驱动器等。早期这些接口是以总线板卡形式出现的。 7.基本外设接口、USB总线接口(根集线器) 基本外设接口用来连接键盘、鼠标、打印机等传统外设,而USB总线接口用来连接USB设备。 8.BIOS 主板上的BIOS(Basic Input Output System)是操作系统基本输入/输出功能的固化部分。另一部分是以磁盘文件形式出现的,操作系统启动时被调入内存。BIOS被固化在EPROM或Flash RAM中,其中包括了一组例行程序,如基本输入/输出程序、系统信息配置程序、开机上电自检程序和系统启动自举程序,另外

电脑的主板部件接口详细图解资料

主板的对于电脑的重要性就不用多说了, 对电脑硬件的基本知识有一点了解的朋友都知道, 如果说CPU是电脑的心脏, 那主板就是电脑的骨架, 是心脏的立足根本. 电脑大部硬件都是通过主板的接口连接在一起, 下面就是电脑的主板部件接口详细图解, 一块主板主要由线路板和它上面的各种元器件组成, 电脑主板部件接口是我们主要要了解的, 通过主板图解能更好的知道各个接口的作用. 1. 认识电脑的线路板 电脑的主板一般都是PCB印制电路板, 它实际是由几层树脂材料粘合在一起的,里面采用铜箔走线。电脑主板的PCB线路板一般分有四层,其中的最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 电脑主板是如何做出来的呢? PCB的制造过程由玻璃环氧树脂(GlassEpoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractivetransfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。再通过一系统的复杂的工艺, 一块主板才能制作出来.

不过如果线路板要想在电脑上做主板使用,还需制成不同的板型。其中AT板型是一种最基本板型,其特点是结构简单、价格低廉,其标准尺寸为33.2cmX30.48cm,AT主板需与AT 机箱电源等相搭配使用,现已被淘汰。而ATX板型则像一块横置的大AT板,这样便于ATX 机箱的风扇对CPU进行散热,而且板上的很多外部端口都被集成在主板上,并不像AT板上的许多COM口、打印口都要依靠连线才能输出。另外ATX还有一种MicroATX小板型,它最多可支持4个扩充槽,减少了尺寸,降低了电耗与成本。 2.主板中的北桥芯片 芯片组(Chipset)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片,如Intel的i845GE芯片组由82845GE GMCH北桥芯片和ICH4(FW82801DB)南桥芯片组成;而VIAKT400芯片组则由KT400北桥芯片和VT8235等南桥芯片组成(也有单芯片的产品,如SIS630/730等),其中北桥芯片是主桥,其一般可以和不同的南桥芯片进行搭配使用以实现不同的功能与性能。

电脑内脏结构图解

电脑主板图解 日期:2006-7-29 17:48:38来源: 编辑:点击: 97514 主板是所有电脑配件的总平台,其重要性不言而喻。本文为电脑主板图解! 一、主板图解 一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 此主题相关图片如下: 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。

主板各种接口图解

主板各种接口图解(插槽跳线) 一、主板供电接口图解 在主板上,我们可以看到一个长方形的白色插槽,这个白色插槽就是电源为主板提供供电的插槽(如下图)。目前主板供电的接口主要有24Pin与20Pin两种,在中高端的主板上,一般都采用24 Pin,低端的产品一般为20 Pin。 主板上24Pin的供电插槽

主板上20Pin的供电插槽 电源上为主板供电的24Pin接口 为主板供电的插槽采用了防呆式的设计,只有按正确的方法才能够插入。这样设计的好处一是为防止用户反插,另一方面也可以使两个接口更加牢固的安装在一起。

二、CPU供电接口图解 为了给CPU提供更强更稳定的电压,目前主板上均提供一个给CPU单独供电的插座(有4Pin、6Pin和8Pin三种),如下图:

主板上提供给CPU单独供电的12V四pin供电插座 电源上提供给CPU供电的4Pin、6Pin与8Pin的接口 与给主板供电的插槽相同,同样采用了防呆式的设计,让我们安装起来得心应手。

三、SATA串口设备的安装图解 SATA串口由于具备更高的传输速度渐渐替代PATA并口成为当前的主流,目前大部分的硬盘都采用了串口设计。主板上的SATA接口如下图: 以上两幅图片都是主板上提供的SATA接口,但是“模样”不太相同。下面的那张图中的SATA接口四周设计了一圈保护层,这样对接口起到了很好的保护作用,现在一些大品牌的主

板上一般会采用这样的设计。 SATA接口的安装也相当的简单,接口采用防呆式的设计,方向反了根本无法插入。如下图: 另外需要说明的是,SATA硬盘的供电接口也与普通的四针梯形供电接口有所不同,下图分别是SATA供电接口与普通四针梯形供电接口对比。 SATA硬盘供电接口

电脑主板原理图

1.主板上的英文字母都代表什么 1.L----电感.电感线圈 2.C----电容. 3.BC---贴片电容 4.R----电阻 5.9231 芯片-----脉宽 6.74 门电路-----它在主板南桥旁边 7.PQ----场效应管 8.VT 、Q、V----三级管 9.VD 、D---二级管 10.RN----排阻 11. ZD----稳压二极管 12.W-----电位器 13.IC---稳压块 14.IC 、N、U----集成电路 15.X 、Y、G、Z----晶振 16.S-----开关 17.CM----频率发生器(一般在晶振14.31818 旁边) 2. 计算机开机原理 开机原理:插上ATX 电源后,有一个静态5V 电压送到南桥,为南桥里面的ATX 开机电路提 供工作条件(ATX 电源的开机电路是集成南桥里面的),南桥里面的ATX 开机电路将开始 工作,会送一个电压给晶体,晶体起振工作,产生振荡,发出波形。同时ATX 开机电路会 送出一个开机电压到主板的开机针帽的一个脚,针帽的另一个脚接地。当打开开机开关时, 开机针帽的两个脚接通,而使南桥送出开机电压对地短路,拉低南桥送出的开机电压,而使 南桥里的开机电路导通,拉低静态5V 电压,使其变为0 电位。使电源开始工作,从而达到 开机目的。(ATX 电源里还有一个稳压部分,它需要静态5V 变为0 电位才能工作)。 3. 主板时钟电路工作原理 时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一 起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700 欧之间。 在它的两脚各有1V 左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M 。 总频(OSC )在分频器出来后送到PCI 槽的B16 脚和ISA 的B30 脚。这两脚叫OSC 测试脚。 也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。

电脑电源接口详解[图解]

电脑主板电源接口图解 计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。 主板电源接口图解 20-PIN ATX主板电源接口 4-PIN“D”型电源接口

主板20针电源插口及电压:在主板上看: 编号输出电压编号输出电压 1 11 2 12 -12V 3 地13 地 4 5V 14 PS-ON 5 地15 地 6 5V 16 地 7 地17 地 8 PW+OK 18 -5V 9 5V-SB 19 5V 10 12V 20 5V 在电源上看: 编号输出电压编号输出电压

20 5V 10 12V 19 5V 9 5V-SB 18 -5V 8 PW+OK 17 地7 地 16 地 6 5V 15 地 5 地 14 PS-ON 4 5V 13 地 3 地 12 -12V 2 11 1 可用万用电表分别测量。 另附:24 PIN ATX电源电压对照表 X电源几组输出电压的用途 +:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯

片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU的电压降到了以下,为了减少主板产生热量和节省能源,现在的电源直接提供电压,经主板变换后用于驱动CPU、内存等电路。 +5V:目前用于驱动除磁盘、光盘驱动器马达以外的大部分电路,包括磁盘、光盘驱动器的控制电路。 +12V:用于驱动磁盘驱动器马达、冷却风扇,或通过主板的总线槽来驱动其它板卡。在最新的P4系统中,由于P4处理器能能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其它电路。所以P4结构的电源+12V输出较大,P4结构电源也称为ATX12V。 -12V:主要用于某些串口电路,其放大电路需要用到+12V和-12V,通常输出小于1A.。 -5V:在较早的PC中用于软驱控制器及某些ISA总线板卡电路,通常输出电流小于1A.。在许多新系统中已经不再使用-5V电压,现在的某些形式电源如SFX, FLEX ATX 一般不再提供-5V输出。在INTEL发布的最新的ATX12V 版本中,已经明确取消了-5V 的输出。 +5V Stand—By, 最早在ATX提出,在系统关闭后,保留一个+5V的等待电压,用于电源及系统的唤醒服务。以前的PSII、AT电源都是采用机械式开关来开机关机,从ATX开始(包括SFX)不再使用机械式开关来开机关机,而是通过键盘或按钮给主板一个开机关机信号,由主板通知电源关闭或打开。由于+5V Stand-by是一个单独的电源电路,只要有输入电压,+5VSB就存在,这样就使电脑能实现远程Modem唤醒或网络唤醒功能。最早的版只要求+5VSB达到,随着CPU及主板的功能提高,+5VSB 已不能满足系统的要求,所以INTEL公司在版提出+5VSB不低于。随着互联网应用的不断深入,一些系统要求+5VSB提供2A、3A,甚至更大的电流输出,以保障系统功能的实现,因此对电源提出了更高的设计要求。 ATX各线路输出电压值及对应导线的颜色电脑电源上的输出线共有九种颜色,其中在主板20针插头上的绿色(POWER-ON)和灰色线(POWER-GOOD),是主板启动的信号线,而黑色线则是地线(G),其他的各种颜色的输出线的含义如下: 红色线:+5VDC输出,用于驱动除磁盘、光盘驱动器马达以外的大部分电路,包括磁盘、光盘驱动器的控制电路,在传统上CPU、内存、板卡的供电也都由+5VDC供给,但进入PII时代后,这些设备的供电需求越来越大,导致+5VDC电流过大,所以新的电源标准将其部分功能转移到其他输出上,在最新

电脑主板结构图

电脑主板结构图 一、主板图解 一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB 印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。

然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪 (Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在 PCB上,于是一块主板就生产出来了。 另外,线路板要想在电脑上做主板使用,还需制成不同的板型。其中AT板型是一种最基本板型,其特点是结构简单、价格低廉,其标准尺寸为 33.2cmX30.48cm,AT主板需与AT机箱电源等相搭配使用,现已被淘汰。而ATX 板型则像一块横置的大AT板,这样便于ATX机箱的风扇对 CPU进行散热,而且板上的很多外部端口都被集成在主板上,并不像AT板上的许多COM口、打印口都要依*连线才能输出。另外ATX还有一种Micro ATX小板型,它最多可支持4个扩充槽,减少了尺寸,降低了电耗与成本。 2.北桥芯片 芯片组(Chipset)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片,如Intel的i845GE芯片组由82845GE GMCH北桥芯片和ICH4(FW82801DB)南桥芯片组成;而VIA KT400芯片组则由KT400北桥芯片和VT8235等南桥芯片组成(也有单芯片的产品,如SIS630/730等),其中北桥芯片是主桥,其一般可以和不同的南桥芯片进行搭配使用以实现不同的功能与性能。 北桥芯片一般提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持,通常在主板上接近CPU插槽的位置,由于此类芯片的发热量一般较高,所以在此芯片上装有散热片。

相关文档
最新文档