二次剩余

二次剩余
二次剩余

初三数学二次函数单元测试题及答案

远航教育初三寒假第一次诊断试题 (测试时间:120分钟,满分:150分) 姓名: 成绩: 一、选择题(每题5分,共50分) 1. sin30°值为( ) A.1/3 B.1/2 C.1 D. 0 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是() A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的 横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()

9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线 x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1

九年级数学二次函数测试题及答案

二次函数 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 =x D. 直线 2. 二次函数c bx ax y ++=2的图象如右图,则点) ,(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数 c bx ax y ++=2,且0+-c b a , 则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是 532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 已知反比例函数x k y = 的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( ) x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( )

D 7.抛物线3 2 2+ - =x x y的对称轴是直线() A. 2- = x B. 2 = x C. 1- = x D. 1 = x 8.二次函数2 )1 (2+ - =x y的最小值是() A. 2- B. 2 C. 1- D. 1 9.二次函数c bx ax y+ + =2的图象如图所示,若 c b a M+ + =2 4c b a N+ - =,b a P- =4,则 () A. 0 > M,0 > N,0 > P B. 0 < M,0 > N,0 > P C. 0 > M,0 < N,0 > P D. 0 < M,0 > N,0 < P 二、填空题: 10.将二次函数3 2 2+ - =x x y配方成 k h x y+ - =2) (的形式,则y=______________________. 11.已知抛物线c bx ax y+ + =2与x轴有两个交点,那么一元二次方程0 2= + +c bx ax的根的情况是______________________. 12.已知抛物线c x ax y+ + =2与x轴交点的横坐标为1 -,则c a+=_________. 13.请你写出函数2)1 (+ =x y与1 2+ =x y具有的一个共同性质:_______________. 14.有一个二次函数的图象,三位同学分别说出它的一些特点: 甲:对称轴是直线4 = x; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式:

初等数论(十)——平方剩余

初等数论(十) ——二次剩余 一、知识要点 (一)、基本定义与定理 1、定义1:设奇质数p ,d 是整数,d p |/.若同余方程)(mod 2p d x ≡有解,则称 d 是模p 的二次剩余(亦称平方剩余);若无解,则称d 是模p 的二次非剩余(亦称平方非 剩余). 注:当讨论二次(非)剩余时,一般都约定p 是奇质数. 2、定理1:在模p 的一个简化剩余系..... 中,恰有21-p 个模p 的二次剩余,2 1 -p 个模p 的二次非剩余.并且,若d 是模p 的二次剩余,则同余方程)(mod 2p d x ≡的解数是2. 推论:模p 的二次剩余包含在2 2 122) (,,2,1-p 的剩余类中. 3、几个常见模的二次剩余与二次非剩余 4、定理2(Euler 判别法):设奇质数p ,d 是整数,d p |/ . (1) d 是模p 的二次剩余的充要条件是)(mod 12 1 p d p ≡-; (2)d 是模p 的二次非剩余的充要条件是)(mod 11p d p -≡-. 5、定义2(Legendre 符号):设奇质数p ,定义整数d 的函数: ? ?? ??-=. |, 0;, 1;, 1)(d p p d p d p d 的二次非剩余是模的二次剩余是模 注:)(p d 读作d 对p 的勒让得符号. 6、Legendr e 符号的几个性质 ① )( )(p d p p d +=; ②)(mod )(2 1p d p d p -≡;③21 )1()1(,1)1(--=-=p p p ;

④ )())(()(2121p a p a p a p a a a n n =,特别地c p p d p dc |),()(2/=. 7、定理3:(1)12) 1()2 (--=p p ;(2)奇质数q p ,满足,1),(=p q 则∑-=-=2 11][)1()(p k p qk p q . 推论:当18±=m p 时,2是二次剩余;当38±=m p 时,2是二次非剩余. 注:①奇质数112±=k p ,则1)3(=p ;奇质数512±=k p ,则1)3(-=p . ②奇质数18+=k p 或38+=k p 时,则1)2 (=-p . 8、定理4(Gauss 二次互反律) 设q p ,均为奇质数,且1),(=q p ,则)()1()(1 1q p p q q p --? -=. 9、定理5(Lagrange ):每一正整数都能表示成四个整数的平方和. 二、典型问题分析 例1、(1)设质数5≥p .证明:模p 的全部二次剩余的和是p 的倍数. (2)设p 是奇质数.证明:在1,,2,1-p 中全体模p 的二次剩余 的和][24) 1(1 21 2 ∑-=--=p j p j p p p S . 例2、设奇质数p ,21,d d 是整数,1|d p /,2|d p /. (1)若21,d d 均为模p 的二次剩余,则21d d 是模p 的二次剩余; (2)若21,d d 均为模p 的二次非剩余,则21d d 是模p 的二次剩余; (3)若21,d d 分别是模p 的二次剩余和二次非剩余,则21d d 是模p 的二次非剩余.

《数论算法》教案4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α ααΛ2121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论以下同余方程 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

《数论算法》教案5章(二次同余方程与平方剩余)

第5章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 5.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m ))(1) (二) 化简 设m =k k p p p αααΛ2 121,则方程(1)等价于同余方程组 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ ?2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp ) 变量代换, y =2ax +b (3) 有

2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论方程2x ≡a (mod αp ) (5) 【例5.1.1】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9)) (四) 平方剩余 【定义5.1.1】设m 是正整数,a 是整数,m a 。若同余方程 2x ≡a (mod m ) (6) 有解,则称a 是模m 的平方剩余(或二次剩余);若无解,则称a 是模m 的平方非剩余(或二次非剩余)。

二次互反律

高斯二次互反律 主讲:李宗儒 在正式介绍高斯二次互反律之前,我们先简单的介绍一下同余方程式 同余方程式 给定正整数m 及n 次整系数多项式 1 110 ()...n n n n f x a x a x a x a --=++++ 我们讨论这样的问题:求出所有的整数x ,使同余式 ()0f x ≡ (mod m ) (1) 成立,这就是所谓的解同余方程式。而上式称为模m 的同余方程式。若(1)式在x=c 时同余式成立,称c 是(1)式的解。显然,这时剩余类 c (mod m ) 中的任意整数也都是解,我们把这些解看作是相同的,并说剩余类 c (mod m ) 是(1)中的一个解,我们把它记为 x c ≡ (mod m ) 当12,c c 均为(1)式的解,且模m 不同余,我们就称它是同余方程式(1)的不同解,所有模m 两两不同余的解的个数,称为是同余方程式(1)的解数。 模为质数的二次同余方程 在此节,由于2p =的情形是显然的,所以下面我们假定p 是奇质数。假设p 不整除a ,二次同余方程的一般形式是 2 0a x b x c ++≡ (mo d p ) (2) 但是因为p 不整除a ,所以p 不整除4a ,所以(2)的解跟 ()240a ax bx c ++≡ (mod p ) (3) 的解相同,上式可以改为 ()2 2 24ax b b ac +≡- (mod p) (4) 透过变量变换,我们可以得到下列式子 224y b ac ≡- (mod p ) (5) (4)与(5)是等价的,也就是说,两者同时无解或有解。若有解,对于(5)的每个解 0y y ≡ (mod p ),通过变数变换2y ax b =+(因为这是x 的一次同余方程, (,2)1p a =,所以解数为1),我们可以解出一个0x x ≡ (mod p ),由以上的讨论可

人教版九年级数学下二次函数最全的中考二次函数知识点总结

人教版九年级数学二次函数在中考中知识点总结 一、相关概念及定义 1 二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2 二次函数2y ax bx c =++的结构特征: (1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数各种形式之间的变换 1二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2 的形式,其中 a b a c k a b h 4422 -=-=,. 2 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2; ③()2 h x a y -=;④()k h x a y +-=2 ;⑤c bx ax y ++=2. 三、二次函数解析式的表示方法 1 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 4 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 四、二次函数2y ax bx c =++图象的画法 1 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c , 、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 2 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2ax y =的性质 六、二次函数2y ax c =+的性质

10三维空间中二次方程与二次曲面概要.

三维空间中二次方程与二次曲面 张晓青(2010073060029) 指导教师:李厚彪 【摘要】 利用正交变换可以将二次型化为标准型,在三维空间中一个二次方程对应着一种 二次曲面.在研究二次方程的几何意义时,先将二次方程进行正交变换进而研究所得到的标准型对应的几何图形,可以证明所得的几何图形是一个与原几何图形相同但位于特殊位置的图形,具有一定的对称性,为研究带来方便.这种正交变换法适用于一般情况具有探究价值,本文基于教材,进一步讨论正交变换后不同的标准型与几何图形的关系,并附有图解. 【关键词】正交表换 二次方程 二次曲面 1 引 言 教材第六章二次型与二次曲面的几何应用中告诉我们不同的标准型的参数对应17种不同的几何图形,那么它们究竟是什么样的曲面图形呢?接下来我们一一讨论. 2.正 文 如果线性变换=X CY 中的系数举矩阵C 是正交矩阵,则称这个线性变换为正交变换 对n 维实向量T 12(,,,)n a a a =α,T 12(,,,)n b b b =β,设A 为n 阶正交矩阵,作正交变 换 =X A α,=Y A β, 则 T T T T (,)(,)()()( ,).= ====X Y A αA βA αA βαΑA βαβ αβ 即,正交变换保持向量内积不变,因为也就保持向量的长度与夹角不变.于是在正交变换下, 几何图形的形状不会发生改变. 设 222 12311122233312121313 2323112233(,,)222? f x x x a x a x a x a x x a x x a x x b x b x b x c =+++++++++ (1.1) 则方程123(,,)0f x x x =在几何空间中表示一个二次曲面. 令11 121321 222331 32 33a a a a a a a a a ?? ? = ? ???A ,123x x x ?? ?= ? ???X ,123b b b ?? ?= ? ??? b 则(1.1)式可记为 T T ()f c =++X X AX b X (1.2) 下面,令T ()g =X X AX 1. 作正交变换=X CY ,其中T 123(,,)y y y =Y ,则 223''' 112233112233()f y y y b y b y b y c λλλ=++++++X (1.3)

数论02二次同余式与平方剩余4.3勒让德符号

■ 一勒让德符号定义 ■二欧拉判别法则 ■三高斯引理 ■四定理3及其证明 2013-4 10 一勒让彳惠符号定以 思考题(一):.O o (r ) 求模17的平方剩余和平方非剩余 第 章 二次同余式与平方剩余 4. 3勒让彳惠苻号 ate

勒iJL徳号定义 思考题(二):?。。辽] 判断5是不是模17的平方剩余? 52 = 25 = 8(mod 17) , 51 =82三—l(mod 17) 5s = (-4) =16 = -1 (mod 17) 所以5是模17的平方非剩余 2013-4 10ate 1717丿 9) 17> 侧朗;卅)需)需) 1 -1 —r勒庁上德符号 定义1设p是素数,定义勒让德符号如下: 卜若。是模"的平方剩余 (a)= < -L若d是模#的平方非剩余 P 0,若 p'a 2013-4 10 ate

Sodp)有解或杖有解. 2013-4 10 定土甲.1(欧扌立判 另IJ 法贝IJ) 设 P 是奇-素数,贝驭寸 任意執数a, (自三a 乎(mod p) 例2证明2是模17平方剩余;3是17 平方非剩余. 解:因为(17-1 )/2=2',且有 2 = 4,2’ = 4 = —1,2、= (— I)2 = l(mod 1 7) 由定义駅 政协同余式*劭 敦论 ~r 勒德符号 瓠P 冋财■仔卜1,翻? 二欧拉判别法

根据欧拉判断法则,并注意到a 二1 时, = 1以及a=?l 时,<<=(一1)丁,且P 是 奇数. 推论1,设p 是奇素数,则 例1若质数9=如+1,期一1是p 的平方剩余;若P0 4匕一I..则一1是P 的平方非剩余. (D (2) — =(—1尸 I P 丿 二欧拉判别法 2013-4-10 敷陀 7 二欧拉判另!J 法

九年级上册数学《二次根式》知识点整理

二次根式 一、本节学习指导 学习二次根式时,我们把平方根的知识顺带巩固一下。这就是系统性学习,这样学习的好处是把零碎的知识可以系统起来。本节中我们要对二次根式有意义的条件要掌握。 二、知识要点 1、二次根式的概念a≥0)的式子叫做二次根式。 注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必 须注意:因为负数没有平方根,所以a≥0, 2、取值范围 (1)、二次根式有意义的条件:由二次根式的意义可知,当a≧0时, 根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。 (2)、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0 3、二次根式a≥0)的非负性 a≥0)表示a a≥00(a ≥0)。 注意:a≥0)表示a的算术平方根,而正数的算术平方根是正数,0的 算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即2(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用 b=,则 b=,则a=0,b=020 +=,则a=0,b=020 a=0,b=0。 4、二次根式2的性质:2a =(a≥0) 描述为:一个非负数的算术平方根的平方等于这个非负数。 注意:二次根式的性质公式2a =(a≥0)是逆用平方根的定义得出的结论。上面的公

式也可以反过来应用:若a ≥0,则2a =,如:22=,2 12 =。 5、二次根式的性质 (0) (0)a a a a a ≥?==? -

2016.9.20 初三数学二次函数知识点总结及经典习题含答案

第二章 二次函数 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随 x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随 x 的增大而增大;0x =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随 x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随 x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随 x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随 x 的增大而增大;x h =时,y 有最大值0.

二次同余式与平方剩余

本章的目的是较深入地讨论 1.一般二次 了解一般二次及: 教学过程: 本节主要讨论 2.单质数的 了解单质数的: 教学过程: 这节我们讨论单质数p 的)(mod 12 1p a p ≡-:而)(mod 12 1p a p -≡- 单质数p 的使的)(mod ),(mod 22 212 1p a r p a r ≡≡于是有)(mod )(212 21p a a r r ≡ 这说明 一般二次同余式 在第四章中,我们讨论了高次同余式的解的一般理论,但在实际中,要解一个高次同余式一般比较困难。在本章我们重点讨论二次同余式的解法。思路是先把一般二次同余式化为特殊的二次同余式,再引入平方剩余与平方非剩余,并利用勒让得符号来判断特殊二次同余式是否有解。 二次同余式的一般形式 二次同余式的一般形式是 , 0 ( ) (1) 化一般二次同余式为特殊二次同余式 由高次同余式的理论知,若 的标准分解式为 , 则(1)有解的充要条件是下面同余式组中每个同余式有解。 于是要判别(1)是否有解及如何解(1),我们可重点讨论 为质数。 (2) 下面对(2)分情况进行讨论。找到(2)有解的判别法。 由于(2)为二次同余式,故可假定 ,若有 但 (,,), 则(2)化为。

而。故还可假定(,,)。 1) |,|。则 。因而同余式无解。故(2)设有解。 2) |, 。则 无解,故(2)有解的充要条件是 有解,即 有解。 但( , )=1。故有解,从而(2)有解,且(2)的解可由 的解求出。 3) , >2。则 。用4乘(2)后再配方,即得 (3) 易证(2)和(3)等价。用代2 +得 (4) 则(2)有解的充要条件是(4)有解,于是将(2)化为(4)讨论。 4) , =2。这时为奇。 (i )若2 ,则 无解。故(2)有解的充要条件是 有解。 因对任何整数 恒有 。所以(2)有解的充要条件是 有解,即2|。 (ii ) 若2|,令 。由 知 (2)有解的充要条件是 有解。即 (5) 有解。 作代换 = +,则(2)有解的充要条件是 有解。 由上面讨论,可将(2)的问题化为二次同余式 或一般情况即 (6) 平方剩余和非平方剩余 定义 若同余式(6)有解,则叫模的平方剩余,若同余式(6)无解,则叫模的平方非剩余。 由这一定义,要判断(6)是否有解,就是判断是否为模的平方剩余,下面几节

《数论算法》教案 4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α αα 2 121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

(完整版)初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 二次函数的基本形式()2 y a x h k =-+的性质: a 的绝对值越大,抛物线的开口越小。 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成

m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.a 决定了抛物线开口的大小和方向,a

二次曲面上课教案

第六章 二次曲面的一般理论 教学目的: 本章讨论了一般二次曲面的渐近方向、中心、切线、切平面、径面奇向、主径面与主方向等重要概念,从不同角度对二次曲面进行了分类. 研究了二次曲面的几何性质,并通过坐标变换和不变量、半不变量两种形式,化二次曲面的一般方程为规范方程,对二次曲面进行了分类和判定,是二次曲面理论的推广和扩充. 教学重难点: 通过坐标变换和运用不变量、半不变量化二次曲面的一般方程为规范方程,既是重点又是难点. 基本概念 二次曲面: 在空间,由三元二次方程 022222244342414231312233222211=+++++++++a z a y a x a yz a xz a xy a z a y a x a (1) 所表示的曲面. 虚元素:空间中,有序三复数组),,(z y x 叫做空间复点的坐标,如果三坐标全是实数,那么它对应的点是实点,否则叫做虚点 二次曲面的一些记号 ≡ ),,(z y x F 44 342414231312233222211222222a z a y a x a yz a xz a xy a z a y a x a +++++++++ 141312111),,(a z a y a x a z y x F +++≡ 242323122),,(a z a y a x a z y x F +++≡ 343323133),,(a z a y a x a z y x F +++≡ 443424144),,(a z a y a x a z y x F +++≡ yz a xz a xy a z a y a x a z y x 231312233222211222),,(+++++≡Φ z a y a x a z y x 1312111),,(++≡Φ z a y a x a z y x 2322122),,(++≡Φ

解 二 元 一 次 方 程 — — — 拓 展 欧 几 里 得 算 法

二次同余方程的解 今天要讨论的问题是解方程,其中是奇质数。 证明:由费马小定理, 引理:方程有解当且仅当 定理:设满足不是模的二次剩余,即无解,那么是二次 ?剩余方程的解。 证明:由,前面的等号用二项式定理和,后面的等 ? 号用了费马小定理和是模的二次非剩余。然后 在算法实现的时候,对的选择可以随机,因为大约有一半数是模的二次非剩余,然后快速幂即可。 题目:http:--acm.timus.ru-problem.aspx?space=1num=1132 题意:求二次同余方程的解。 #include stdio.h #include stdlib.h #include string.h #include algorithm #include iostream #include math.h using namespace std; typedef long long LL; LL quick_mod(LL a, LL b, LL m)

LL ans = 1; while(b) ans = ans * a % m; a = a * a % m; return ans; --二次域乘法 T multi_er(T a, T b, LL m) ans.p = (a.p * b.p % m + a.d * b.d % m * w % m) % m; ans.d = (a.p * b.d % m + a.d * b.p % m) % m; return ans; --二次域上快速幂 T power(T a, LL b, LL m) ans.p = 1; ans.d = 0; while(b) ans = multi_er(ans, a, m); a = multi_er(a, a, m); return ans; --求勒让德符号 LL Legendre(LL a, LL p) return quick_mod(a, (p-1)1, p); LL mod(LL a, LL m)

九年级数学二次函数综合练习题及答案

九年级数学《二次函数》综合练习题及答案 一、基础练习 1.把抛物线y=2x 2 向上平移1个单位,得到抛物线_______,把抛物线y=-2x 2 ?向下平移3 个单位,得到抛物线________. 2.抛物线y=3x 2 -1的对称轴是_____,顶点坐标为________,它是由抛物线y=3x 2 ?向_______平移______个单位得到的. 3.把抛物线2 向左平移1个单位,得到抛物线_________,把抛物线2 ?向右平移3个单位,得到抛物线________. 4.抛物线y=x-1)2 的开口向________,对称轴是______,顶点坐标是_________, ?它是由抛物线x 2向______平移______个单位得到的. 5.把抛物线y=-13(x+ 12 )2向_____平移______个单位,就得到抛物线y=- 13 x 2. 6.把抛物线y=4(x-2)2向______平移_______个单位,就得到函数y=4(x+2)2的图象. 7.函数y=-(x-13 )2 的最大值为________,函数y=-x 2 -13 的最大值为________. 8.若抛物线y=a (x+m )2的对称轴为x=-3,且它与抛物线y=-2x 2的形状相同,?开口方向相同,则点(a ,m )关于原点的对称点为________. 9.已知抛物线y=a (x-3)2过点(2,-5),则该函数y=a (x-3)2当x=________?的时候,?有最____值______. 10.若二次函数y=ax 2+b ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则x 取x 1+x 2时,函数的值为________. 11.一台机器原价50万元.如果每年的折旧率是x ,两年后这台机器的价格为y?万元,则y 与x 的函数关系式为( ) A .y=50(1-x )2 B .y=50(1-x )2 C .y=50-x 2 D .y=50(1+x )2 12.下列命题中,错误的是( ) A .抛物线2x 2-1不与x 轴相交; B .抛物线2x 2-1与2 (x-1)2形状相同,位置不同; C .抛物线y=12(x-12)2的顶点坐标为( 12 ,0); D .抛物线y= 12 (x+ 12 )2 的对称轴是直线x= 12

相关文档
最新文档