超高压输电技术与特高压输电技术优劣分析

超高压输电技术与特高压输电技术优劣分析
超高压输电技术与特高压输电技术优劣分析

超高压输电技术与特高压输电技术优劣分析超高压输电技术与特高压输电技术优劣分析;根据“十二五”规划,“十二五”期间中国电网五年的;超高电压是指330千伏至765千伏的电压等级,即;超高压直流输电的优点和特点;①输送容量大;特高压直流输电的特点;特高压直流输电的特点:①压高,高达±800kV;长达1500km,甚至超过2000km;特高压输电技术的优越性;建设以特高压电网为骨干网架的坚强智能电网,将

超高压输电技术与特高压输电技术优劣分析

根据“十二五”规划,“十二五”期间中国电网五年的投资规模将达到1.58万亿元,年均为3000亿元,其中交直流特高压电网预计占三分之一,110千伏的以下预计占三分之一,220至750千伏之间也将占到三分之一。由此可见,高压,超高压和特高压在电网建设中各自占据着举足轻重的地位。超高压输电技术和特高压输电技术和研究和应用都不可小视。

超高电压是指330千伏至765千伏的电压等级,即330(345)千伏、400(380)千伏、500(550)千伏、765(750)千伏等各种电压等级。特高压输电是指交流1000千伏或直流±800千伏电压等级。

超高压直流输电的优点和特点

①输送容量大。现在世界上已建成多项送电3GW的高压直流输电工程。②送电距离远。世界上已有输送距离达1700km的高压直流输电工程。我国的葛南(葛洲坝-上海南桥)直流输电工程输送距离为1052km,天广(天生桥-广东)、三常(三峡-常州)、三广(三峡-广东)、贵广(贵州-广东)等直流输电工程输送距离都接近1000km。③输送功率的大小和方向可以快速控制和调节。④直流输电的接

入不会增加原有电力系统的短路电流容量,也不受系统稳定极限的限制。⑤直流输电可以充分利用线路走廊资源,其线路走廊宽度约为交流输电线路的一半,且送电容量大,单位走廊宽度的送电功率约为交流的4倍。如直流±500kV线路走廊宽度约为30m,送电容量达3GW;而交流500kV线路走廊宽度为55m,送电容量却只有1GW。直流电缆线路不受交流电缆线路那样的电容电流困扰,没有磁感应损耗和介质损耗,基本上只有芯线电阻损耗,绝缘水平相对较低。⑥直流输电工程的一个极发生故障时,另一个极能继续运行,并通过发挥过负荷能力,可保持输送功率或减少输送功率的损失。⑦直流系统本身配有调制功能,可以根据系统的要求做出反应,对机电振荡产生阻尼,阻尼低频振荡,提高电力系统暂态稳定水平。⑧能够通过换流站配置的无功功率控制进行系统的交流电压调节。⑨能够通过换流站配置的无功功率控制进行系统的交流电压调节。⑩大电网之间通过直流输电互联(如背靠背方式),2个电网之间不会互相干扰和影响,必要时可以迅速进行功率交换。

特高压直流输电的特点

特高压直流输电的特点:①压高,高达±800kV。对与电压有关的设备,如高压端(±800kV)的换流变压器及其套管、穿墙套管、避雷器等研发提出了高要求;对承受±800kV的外绝缘,如支持瓷柱、线路绝缘子等需要进行新的研发。②送电容量大。规划的特高压直流输电工程的送电容量高达5GW和6.4GW,相应的直流额定电流将达到3125A和4000A。③送电距离长,

长达1500km,甚至超过2000km。

特高压输电技术的优越性

建设以特高压电网为骨干网架的坚强智能电网,将大大提高远距离、大容量输电的效率,减少输电损耗,降低输电成本,实现更大范围的能源资源优化配置,推动我国能源的高效开发和利用。特高压输电对于落实国家能源战略,确保能源安全,推动国民经济可持续发展意义十分重大。特高压技术及装备研发已列入《国家中长期科学和技术发展规划纲要》。

一、特高压输电技术的优越性

与500千伏输电技术相比,特高压输电技术在提高输送容量、节约土地资源、减少输电损耗和节省工程投资等方面具有明显优势。

1.输送容量大

1000千伏特高压交流输电线路的自然输送功率是500千伏超高压交流输电的4.5~5倍,在采用同种类型的杆塔设计的条件下,其单位走廊宽度的输送容量约为500千伏超高压交流输电的2.5倍。±800千伏特高压直流输电线路单位走廊宽度输送容量约为±500千伏直流输电的1.3倍。

2.节约土地资源

溪洛渡、向家坝、乌东德、白鹤滩水电站送出工程采用±800千伏级直流与采用±600千伏级直流相比,输电线路可以从10回减少到6回。总体来看,1000千伏特高压交流输电和500千伏超高压交流输电相比可节省约2/3的土地资源,±800千伏特高压直流输电和±500千伏直流输电相比可节省约1/4的土地资源。

3.输电损耗低

与500千伏输电相比,特高压输电线路损耗大大降低。1000千伏特高压交流线路损耗是500千伏交流线路的1/16~1/4;±800千伏特高压直流线路损耗是±50 0千伏直流线路的39%。

4.工程造价省

采用特高压输电技术可以节省大量导线和铁塔材料,以相对较少的投入达到同等的建设规模,从而降低建设成本。在输送容量相同的条件下,1000千伏特高压交流输电与500千伏交流输电相比,节省导线材料约一半,节省铁塔用材约2/3。1000千伏特高压交流输电方案的单位输送容量综合造价约为500千伏

交流输电的3/4。±800千伏特高压直流输电方案的单位输送容量投资约为±500

千伏直流输电的72%。

二、特高压输电技术研究

特高压输电通过采用更高的电压等级实现输电容量和距离的大幅增加,但电压的升高也给工程建设带来一系列需要解决的技术难题。控制过电压水平,抑制特快速瞬态过电压和潜供电流,研究确定合理的线路绝缘尺度和设备绝缘水平,保障线路和设备在特高压电压等级条件下的长期可靠运行,是实现特高压输电需要攻关解决的关键技术难点。

2004年底以来,国家电网公司按照“科学论证、示范先行、自主创新、扎实推进”的方针,在整体规划的基础上,充分发挥整体科研优势,广泛联合各方力量,针对特高压输电需要攻关解决的关键技术难点,经过近4年的艰苦努力,全面完成了特高压输变电技术研究和设备研制工作,取得了世界一流水平的研究成果,满足了特高压工程建设的需求。国家电网公司现已全面掌握了1000千伏特高压交流和±800千伏特高压直流输电工程关键技术和设备制造核心技术,占领

了世界特高压技术的制高点,全面提升了我国输变电工程科研、设计和设备制造水平。

三、特高压输电技术应用

晋东南—南阳—荆门1000千伏特高压交流试验示范工程自2009年1月6日投运至今保持安全稳定运行;向家坝—上海和云南—广东两个±800千伏特高压直流输电示范工程预计2010年内双极建成投运。截至2010年3月底,特高压交流试验示范工程已累计送电123.18亿千瓦时,其中,华北火电送华中电网90. 03亿千瓦时,华中水电送华北电网33.15亿千瓦时,发挥了重要的送电和水火互济、事故支援联网功能,促进了节能减排和能源资源的优化配置。

总体相比较来说,是电压等级越高,科技含量越高,输电损耗越小。目前中国是世界上第一个实现特高压输电商业运营的国家。我国第一条交流1000千伏‘晋东南—南阳—荆门’特高压建设工程中,设备的综合国产化率达到90%。在这个工程中,我们采用的所有设备,看不到一个外国商标,所有的设备都是国内生产的,没有一台整机是从国外进口。可以说,这是一条具有完全自主知识产权的高压输电线路。这些纪录标志着我国特高压输变电技术在设备国产化上取得重大突破。国家电网公司相关负责人表示,我国在特高压领域的成就引起了国际电工界的重视,特高压交流1100千伏电压已经被国际电工委员会和国际大电网组织推荐为国际标准电压。

我国特高压直流输电技术的现状及发展

我国特高压直流输电技术的现状及发展 (华北电力大学,北京市) 【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。 【关键词】特高压直流输电,特点,问题,必要性,发展前景 0.引言 特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。 特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 1.特高压直流输电的技术特点 1.1特高压直流输电系统 特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。 1.2 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。 (4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 1.3 与超高压直流输电比较 和±600千伏级及600千伏以下超高压

特高压输电工程简介

特高压输电工程简介 ABSTRACT: Transporting electrical power with ultra-high voltage has been very popular these days, but most people in the society do not know much about it. In this essay, we will have a short cover about ultra-high voltage technology and focus on the necessity and importance of ultra-high voltage for China to develop this technology, some difficulties in this process, and finally some sample projects in destruction. KEY WORDS:ultra-high voltage, electrical power 摘要:特高压输电,作为近年来国家重点发展的示范项目,已经引起了越来越多的关注和讨论,社会中的绝大部分群体对这一新兴概念并不十分了解,本文对我国特高压输电工程进行一个简单的介绍和讨论,重点介绍我国现阶段特高压输电的必要性和重要性、期间面临的一些反对意见和应对措施、我国现阶段对特高压工程的研究进展情况,以及目前已建成的或在建的特高压示范工程规划。 关键词:特高压,电力系统 目前我国常用的电压等级有:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。交流220kV及以下的称为高压(HV),330kV到750kV为超高压(EHV),交流1000kV及以上为特高压(UHV),通常把1000KV到1150kV这一级电压称为百万伏级特高压。对于直流输电,±600kV及以下的为高压直流(HVDC),±600kV以上为特高压直流(UHVDC)。 对于我国发展特高压输电的必要性和重要性,主要有以下几个方面: (1)电力快速发展的需要 改革开放30 年以来,我国用电总量快速增长。1978 年,全社会用电量为2498 亿千瓦时,到2007 年达到32565 亿千瓦时,是1978 年的13 倍,年均增长9.45%。改革开放之初,我国逐步扭转了单纯发展重化工业的思路,轻工业得以快速发展,用电增速呈现先降后升的态势,“六五”、“七五”期间年均增长分别达到6.52%、8.62%,其间,在经济体制改革的带动下,我国用电增速曾连续6 年(1982~1987 年)逐年上升,是改革开放以来最长的增速上升周期。1990 年以来,在小平南巡讲话带动下,我国经济掀起了新的一轮发展高潮。“八五”期间,全社会用电增长明显加快,年均增长10.05%。“九五”期间,受经济结构调整和亚洲金融危机影响,用电增速明显放缓,年均增长6.44%,尤其是1998 年,增速仅为2.8%,为改革开放以来的最低水平。进入“十五”以来,受积极的财政货币政策和扩大内需政策拉动,我国经济驶入快速增长轨道,经济结构出现重型化,用电需求持续高速增长,年均增长12.96%,尤其是2003 年、2004 年达到了改革开放以来用电增长高峰,增速分别为15.3%和15.46%。“十一五”前两年,我国用电继续保持快速增长势头,增速均高于14%。 由此可以看出,随着工业化和城镇化的不断推动和发展,我国用电量逐年增加,在工业化和全面建设小康社会的带动下,预计我国到2020 年全社会用电量将达到6.5~7.5 万亿千瓦时,年均增速将达到5.5%~6.6%;人均用电量达到4500~5200千瓦时,相当于日本上世纪80 年代的水平。所以,要求现有的电力系统增大发电容量,满足用电需求。 (2)我国资源和电力负荷分布不均衡 受经济增长,尤其是工业生产增长的强劲拉动,我国电力需求实现高速增长,但是,我国用电增长地区分布不均。总体来看我国东部沿海经济发达地区用电强劲增长,西部地区高耗能产业分布较多的省区用电增长幅度也较大,中部地区增长较慢,我国电力系统的负荷也呈现出结构性变化。但是,我国的资源分布却呈现出相反的情况,水能、煤炭等电力资源主要分布在中西部地区,远离东部的集中用电区域,这同

浅谈高压直流输电对交流电网继电保护影响

浅谈高压直流输电对交流电网继电保护影响 摘要:目前在交流电网的继电保护工作中尚且存在许多不足之处,需要工作人 员引起注意并且加以解决,比如直流输电的交流母线通过多条线路和多落点接入 交流电网,对含有直流馈入的电网做仿真分析,在直流馈入点附近采用受影响小 的继电保护装置等等,这些都是可取的措施。 关键词:高压直流;输电;交流电网;继电保护;分析 1导言 近年来我国尤其是沿海经济发达地区用电需求增长很大,但是我国能源丰富地 区大都在西部,这种能源和负荷分布不平衡的局面促使我国实行“西电东送”工程,因此,大力开发西南水电,采用特高压直流将电能输送到沿海经济发达地区势在必行。 2直流偏磁成因 对于特高压直流输电来讲,较之于常规高压直流输电有所区别,而且运行方 式也非常的复杂,即便是一个双极特高压直流输电系统其运行方式也可能达到二 十多种。当电极不对称以大地作为回路运行过程中,直流电流就会以大地作为一 部分构成一个回路,如此强大的电流会在接地极址位置形成相对比较恒定的电流场,进而对接地极与周围交流系统产生巨大的影响。实践中可以看到,距离接地 极址越近,则直流电场就越大,反之亦然。 2高压直流输电线路继电保护的整体情况和存在问题 2.1高压直流输电线路继电保护的整体情况 从新中国成立以来,以换流技术为基础的交流电网继电保护技术就开始有了 进步,尤其是在高压直流输电上取得了更可喜的发展成果。在当前情况下,用作 长距离高能量电能传输的更多的是依靠半控型器件晶闸管的电流源换流器高压直 流输电(CSCHVDC);而由全控型器件构成的电压源换流器高压直流输电(VSC-HVDC)则偏向于受端弱系统。与此相对应的,高压直流输电线路的电网构造从之前的两端系统拓展成多段的体系;电网的线路也发生了改变,从之前单纯的海底 电缆形式转变成架空线路和电缆共存的形式;此外,高压直流输电在运输的地域 宽度、功率大小、电压高低等方面都展现了更突出的优势。目前的直流输电电网 继电保护工作在开展时,主要依靠ABB和SIEMENS公司,分为几种不同的保护方式。 2.2高压直流输电线路继电保护的现存问题 从保护效果的形成机制看,目前的直流输电继电保护工作成效不高,主要是 因为设计理念不先进、方案可实施性不强,主保护工作不力是因为系统的灵敏性弱、故障处理不到位、整体规划不强、采样率要求太高和对干扰的抵抗程度低等等。而后备保护工作不到位,则是因为保护的时效性不强、低电压保护缺少根据 等等原因。就交流电网的保护配置方面看,直流输电的保护类型太过单调,不够 可靠,一旦发生故障不能及时处理。 3交流电网的现状 自从第一个交流发电站成立以来,交流电网凭借以下的优势迅速的发展并被 广泛的使用。一是利用建立在电磁感应原理基础上的交流发电机可以很经济方便 地把机械能(水流能、风能)、化学能等其他形式的能转化为电能;交流电源和 交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉。二是交流电 可以方便地通过变压器升压和降压,这给配送电能带来极大的方便。随着技术的 不断深入,交流电网出现了一些问题,主要有以下几方面:一是交流输电不能做

2020年经典的输电技术总结

2020年经典的输电技术总结 中国高等学校电力系统及其自动化专业学术会议于1985年10月召开了首次会议,明确了会议的宗旨是为各校师生提供一个学术讲坛,促进学术交流,促进我国电力科学技术.下面是小 输电技术总结1 2019年10月12日,由中国高等学校电力系统及其自动化专业学术年会组织委员会主办,西华大学电气与电子信息学院承办,亚洲电能质量产业联盟、内蒙古工业大学协办的中国高等学校电力系统及其自动化专业第35届学术年会在四川成都隆重开幕。《电力自动化设备》杂志社是本次会议支持单位之一。 中国高等学校电力系统及其自动化专业学术会议于1985年10月召开了首次会议,明确了会议的宗旨是为各校师生提供一个学术讲坛,促进学术交流,促进我国电力科学技术、电力工业 的原则。经过30多年的发展,该年会已成为全国高校电力系统及其自动化专业师生一年一度不可缺少的学术盛会,为培养我国

的贡献。 会上,华北电力大学赵成勇教授进行了《直流输电技术面临 输电技术总结2 特高压输电技术是中国实现能源大范围优化配置的战略途径,该技术是世界上最先进的输电技术之一。目前,在世界范围内只有我国全面掌握了这项技术,并开始了大规模的工程应用。我国从2004年底开始集中开展大规模研究论证、技术攻关以及工程实践,进行了特高压交流输电、特高压直流输电技术的研究,掌握了过电压抑制、外绝缘配置、电磁环境控制等关键技术,研制出变压器、开关、串补装置,和换流变、换流阀、平波电抗器、直流控制保护等核心设备,建立了包括研究、设计、制造在内完整的特高压输电技术体系,整个体系具有完全的自主性。 中国由于能源资源与电力需求存在远距离、逆向分布特点,以及经济快速发展带来的电力需求,需要开发和应用远距离、大容量、高效率的特高压输电技术。实践证明特高压输电在大范围内配置能源资源具有技术和经济优势。以特高压800千伏直流输电项目为例,相比较500千伏直流工程,它的输送容量提高到 2-3倍,经济输送距离提高到2-2.5倍,运行可靠性提高了8倍,

特高压输电技术知识

特高压输电技术知识 特高压直流输电技术的主要特点 (1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。 (2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。特高压直流输电系统的潮流方向和大小均能方便地进行控制。 (3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。(4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。 (5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。 特高压输电与超高压输电经济性比较 特高压输电与超高压输电经济性比较,一般用输电成本进行比较,比较2个电压等级输送同样的功率和同样的距离所用的输电成本。有2种比较方法:一种是按相同的可靠性指标,比较它们的一次投资成本;另一种是比较它们的寿命周期成本。这2种比较方法都需要的基本数据是:构成2种电压等级输电工程的统计的设备价格及建筑费用。对于特高压输电和超高压输电工程规划和设计所进行的成本比较来说,设备价格及其建筑费用可采用统计的平均价格或价格指数。2种比较方法都需要进行可靠性分析计算,通过分析计算,提出输电工程的期望的可靠性指标。利用寿命周期成本方法进行经济性比较还需要有中断输电造成的统计的经济损失数据。 一回1 100 kV特高压输电线路的输电能力可达到500 kV 常规输电线路输电能力的4 倍以上,即4-5回500 kV输电线路的输电能力相当于一回1 100 kV输电线路的输电能力。显然,在线路和变电站的运行维护方面,特高压输电所需的成本将比超高压输电少得多。线路的功率和电能损耗,在运行成本方面占有相当的比重。在输送相同功率情况下,1 100 kV线路功率损耗约为500 kV线路的1/16左右。所以,特高压输电在运行成本方面具有更强的竞争优势。 特高压知识问答(17) 问:交流特高压电网电气设备的绝缘有什么特点,其影响因素是什么? 答:现代电网应具有安全不间断的基本功能。实践表明,在全部停电事故中,输电线路和变电站电气设备的绝缘闪络或击穿是最主要的原因。因此,为了保证电网具有一个可接受的可

高压直流输电与特高压交流输电的优缺点比较

高压直流输电与特高压交流输电的优缺点比较 从经济方面考虑,直流输电有如下优点: (1) 线路造价低。对于架空输电线,交流用三根导线,而直流一般用两根采用大地或海水作回路时只要一根,能节省大量的线路建设费用。对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。 (2) 年电能损失小。直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。 所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。 直流输电在技术方面有如下优点: (1) 不存在系统稳定问题,可实现电网的非同期互联,而交流电力系统中所有的同步发电机都保持同步运行。直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。 (2) 限制短路电流。如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。然而用直流输电线路连接两个交流系统,直流系统的“定电流控制”将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。 (3) 调节快速,运行可靠。直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。 (4) 没有电容充电电流。直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。 (5) 节省线路走廊。按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。 下列因素限制了直流输电的应用范围: (1) 换流装置较昂贵。这是限制直流输电应用的最主要原因。在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。这就引起了所谓的“等价距离”问题。 (2) 消耗无功功率多。一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。 (3) 产生谐波影响。换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。 (4) 缺乏直流开关。直流无波形过零点,灭弧比较困难。目前把换流器的控制脉冲信号闭锁,能起到部分开关功能的作用,但在多端供电式,就不能单独切断事故线路,而要切断整个线路。 (5) 不能用变压器来改变电压等级。 直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500 kV输电(经济输送容量为1 000 kW、输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。

特高压直流输电的现状与展望

特高压直流输电的现状与展望 摘要:特高压直流输电大多用于长距离输电,例如海底电缆、大型发电站输电等,在我国,其是指通过1000kV级交流电网和±600kV级以上直流电网要求构成 的电网系统。放眼现在,直流输电在电力传输中的地位与日俱增,尤其在结合计 算机等技术后,特高压直流输电系统的整体调控更加可靠。本文将通过分析我国 特高压直流输电的现状,以及探究今后发展的展望,讨论特高压直流输电如何在 个别恶劣环境中进行应用的问题。 关键词:特高压;直流输电;现状;展望 1 特高压直流输电的现状 1.1 发展速度快 从上世纪六十年代开始,由于部分发达国家需要向部分地区进行远距离、大 容量输电的需求,开始了对特高压直流输电的研究。从开始阶段的不到一千公里,五十万千伏直流输电电压,输电功率六百万千瓦,到如今的上千公里,八十万千 伏直流输电电压,其中的发展速度无疑是飞快的。除此之外,由于现代科技更为 发达,再加上可以通过计算机进行实时地检测,特高压直流输电系统在调节方面 的优化,可谓是跨越了一大步。此外,相较于以往的电线,光纤的使用也使得特 高压直流输电在传输过程中的安全性得以提高,大大提高了其输电效率。并且, 特高压直流输电的应用范围也大大扩增,不再局限于几个发达国家。 1.2 效率更高 在远距离大容量输电方面,相较于交流输电,或者是超高压输电方式,特高 压直流输电通常会是更好的选择,其在经济投资、能源损耗以及工程规模方面都 要优于交流输电和超高压输电。例如,在特高压和超高压两种方式之间,面对相 同的输电工程,姑且定为10GW的输送功率,2千米的输送距离,超高压输电需 要240亿元的投资,在输电过程中有将近1.15GW的损耗,其工程规模为135米,而特高压输电只需要200亿元的投资,在输电过程中只有1GW的损耗,工程规 模也只有120米;而相等电压等级情况下的交流输电方式,需要315亿元的投资,在输电过程中更是有1.7GW的线损,工程规模也远远大于前面两种方案。所以, 在远距离大容量电力输送过程中,特高压直流输电的输电效率更好。 1.3 我国特高压直流输电现状 我国从上世纪八十年代才开始尝试建设超高压直流输电工程,即葛洲坝直流 输电工程,虽然开始较晚,但发展十分迅速。经过这些年的技术积累,我国现已 具备建设特高压直流输电工程的技术,并于2010年,完全通过我国自主研发, 成功建造了在当时而言,技术领先全球、输电能力最大的±800kV的向家坝特高压 直流输电工程。在今后3~5年中,我国还将在其他地区建设特高压直流输电工程,预计将会达到二十个左右。 2 特高压直流输电的特点 2.1 技术性能更加稳定 直流输电技术基本不存在系统稳定的问题,可以实现电网的非同期互联。简 单来说,就是指直流输电在连接连两个交流系统时,可以在非同步时期运行,在 效果方面,通过交变直,直变交,将两个直流系统隔离,使得两边能够独立运行。除此之外,在运行期间,如果线路发生短路,直流输电能够及时地进行调节,恢 复时间也很短,例如直流输电单极故障的恢复时间一般不超过0.4秒,除此之外,还可以抑制振荡阻尼和次同步振荡的影响。

特高压直流输电技术研究

特高压直流输电技术研究 发表时间:2017-07-04T11:23:41.107Z 来源:《电力设备》2017年第7期作者:杨帅 [导读] 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 (国网河北省电力公司检修分公司河北省石家庄 050000) 摘要:文章首先介绍了特高压直流输电原理,接着分析了特高压直流输电技术的特点,特高压直流输电技术的优点、交直流特高压技术的应用,未来需要解决的难点等。通过分析能够看出,当前特高压直流输电技术在中国具有广阔的应用前景。 关键词:特高压;直流输电;应用 引言 随着国民经济的持续快速发展,我国电力工业呈现加速发展态势,近几年发展更加迅猛。按照在建规模和合理开工计划,全国装机容量 2010 年达到 9.5 亿千瓦,2020 年达到 14.7 亿千瓦;用电量 2010 年达到 4.5 万亿千瓦时,2020 年达到 7.4 万亿千瓦时。电力需求和电源建设空间巨大,电网面临持续增加输送能力的艰巨任务。同时我国资源分布不均匀,全国四分之三的可开发水资源在西南地区,三分之二的煤炭资源分布在西北地区,而经济发达的东部地区集中了三分之二的用电负荷。大容量、远距离输电成为我国电网发展的必然趋势。 同时,特高压输电具有明显的经济效益。特高压输电线路可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价约 10%-15%。特高压线路输电走廊仅为同等输送能力的 500k V 线路所需走廊的四分之一,这对人口稠密、土地宝贵或走廊困难的国家和地区带来重大的经济社会效益。 1特高压直流输电原理 高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将 220k V 及以下的电压等级称为高压,330 ~ 750k V 的称为超高压 ,1000k V 及以上的称为特高压。直流输电把 ±500k V 和 ±660k V 称为超高压;±800k V 及以上电压等级称为特高压。 直流输电工程是以直流电的方式实现电能传输的工程。直流电必须经过换流(整流和逆变)实现直流电变交流电,然后与交流系统连接。 两端直流输电系统可分为单极系统(正极和负极)、双极系统(正、负两极)和背靠背直流系统(无直流输电系统)三种类型。 2特高压直流输电优点 我国目前发展的特高压输电技术包括特高压交流输电技术和特高压直流输电技术。一般特高压交流输电技术用于近距离的组网和电力输送,直流输电技术用来进行远距离、大规模的电力输送,两者在以后的电网发展中都扮演重要角色。本文对其中的特高压直流输电技术进行简要分析,其优点主要包括以下几个方面。 在直流输电的每极导线的绝缘水平和截面积与交流输电线路的每相导线相同的情况下,输电容量相同时直流输电所需的线路走廊只需交流输电所需线路走廊的2/3,在土地资源越来越紧张的今天,特高压直流输电线路可以节省线路走廊的优点显得更加突出。 在输送功率相同的情况下,直流输电的线路损耗只有交流输电的2/3,长久以往可以节约大量的能源;同时直流输电可以以大地为回路,只需要一根导线,而交流输电需要3根导线,在输电线路建设方面特高压直流输电电缆的投资要低很多。 交流输电网络互联时需要考虑两个电网之间的周期和相位,而直流输电不存在系统稳定性问题,相比交流输电网络,能简单有效地解决电网之间的联结问题。 长距离输电时,采用直流输电比交流输电更容易实现,如800kv的特高压直流输电距离最远可达2500km。 3特高压直流技术存在的不足 (1)直流输电换流站比交流变电所结构复杂、造价高、运行费用高,换流站造价比同等规模交流变电所要高出数倍。(2)为降低换流器运行时在交流侧和直流侧产生的一系列谐波,需在两侧需分别装设交流滤波器和直流滤波器,使得换电站的占地面积、造价和运行费用均大幅度提高。(3)直流断路器没有电流过零点可利用,灭弧问题难以解决。(4)由于直流电的静电吸附作用,使直流输电线路和换电站设备的污秽问题比交流输电严重,给外绝缘问题带来困难。 4特高压直流输电技术的应用分析 4.1拓扑结构 在近些年来,特高压直流输电的拓扑结构主要有多端直流和公用接地极两种,其中,多端直流是通过连接多个换流站来共同组成直流系统,在电压源换流器发展背景下,出现了混合型多端直流和极联式多端直流,前者是将合理分配同一极换流器组的位置,电源端与用户端都是分散分布。公用接地极是通过几个工程公用接地极的方式,来降低工程整体造价成本,提升接地极利用水平,提高工程经济效益、社会效益;但也存在接地电流容易过大、检修较为复杂等不足。 4.2换流技术 在特高压直流输电的换流技术方面,主要有电容换相直流输电技术和柔性直流输电技术两种,其中,电容换相直流输电技术是通过将换相电容器串接到直流换流器与换流变压器中,利用串联电容来对换流器无功消耗进行补偿,减少换流站的向设备,能够有效降低换相失

高压直流输电优缺点

浅谈特高压直流输电 将电能从大型火力、水力等发电厂输送到远方负荷中心地区时会遇到远距离输电问题。要实现远距离的大功率传输,需采用超高压或特高压输电技术。在特高压输电技术中有交流和直流两种方案,可根据技术经济条件和自身特点加以选择。特高压交流输电是目前国内外最基本的远距离输电方式,而特高压直流输电不存在同步稳定性问题,是大区域电网互联的理想方式。下面我将结合自己所学知识与查阅的资料对特高压直流输电进行概括的阐述。 直流输电是指将送端系统的正弦交流电在送端换流站升压整流后通过直流线路传输到受端换流站,受端换流站将直流逆变成正弦的工频交流电后降压和受端系统相连。而对于换流站,它的核心元件是换流器,,由1 个或数个换流单元串联而成,电路均采用三相换流桥,材料多采用可控硅阀。它的基本工作原理是,控制调节装置通过控制桥阀的触发时刻,可改变触发相位,进而调节直流电压瞬时值、电阻上的直流电流、直流输送功率。同时,相同的触发脉冲控制每个桥阀的所有可控硅元件。当三相电源为对称正弦波的情况下,线电压由负到正的过零点时,脉冲触发桥阀,同时阀两端电压变正,阀立即开通。6 个脉冲发生器分别完成对单桥换流器的6 个桥阀的触发,恰好交流正弦波电源经过1 个周期,线电压又达到下一个过零点进行第二个触发周期。一般,工程上为了获得脉波更小的直流输电电压,通常采用12脉的双桥换流器。 与交流输电相比,直流输电技术具有以下特点:输电功率大小、方向可以快速控制调节;直流输电系统的接入不会增加原有系统的短路容量;利用直流调制可以提高系统的稳定水平;直流的一个极发生故障,另一个极可以继续运行,且可以利用其过负荷能力减少单极故障下的树洞功率损失;另外直流架空线路走廊宽度约为相同电压等级交流输线路走廊宽度的一半。而对于特高压直流输电,它不但具有常规直流输电的特点,而且还能够很好的解决我国一些现存的问题: 1、我国一次能源分布很不均衡, 水利资源2/ 3分布在西南地区, 煤矿资源2/ 3 分布在陕西、山西及内蒙古西部。而电力需求又相对集中在经济发展较好较快的东部、中部和南部区域。能源产地和需求地区之间的距离为1 000~ 2 500 km。因此我国要大力发展西电东送, 实现南北互供, 全国联网。特高压直流输电在远距离输电方面较为经济, 而且控制保护灵活快速, 是实现南北互供的较好途径。 2、我国东部、中部、南部地区是我国经济发达地区, 用电需求大, 用电负荷有着较高的增长率。特高压直流输电能够实现大容量输电, 规划的特高压直流输电工程的送电容量高

国内外特高压输电技术发展情况综述

国内外特高压输电技术发展情况综述 (一) 调研题目:关于特高压输电技术国内外发展情况的调研报告 调研目的:通过认真分析和研判从检索、查询、索取等多渠道获得大量的技术文献,掌握了特高压输电技术国内外的发展情况,据此完成本调研 报告,为我省未来特高压的规划发展提出相关建议。 编写人员:何旭东、王瑗、刘斌蓉 调研时间:2005.4. ~2005.9 调研地点:成都 1.背景 自从电能作为人们生活中廉价而又清洁的能源以来,随着电网的不断发展壮大,输电电压经历高压、超高压两个发展阶段,目前又跨入了特高压输电的新的历史时期。这种发展标志着我国综合实力的不断提高,电力行业技术水平的提高。近来,由于石油价格的暴涨,1993年11月在宜昌召开的中国电机工程学会电力系统与电网技术综合学术年会上发表《关于着手开展特高压输电前期科研的建议》以来,各方面的人士对特高压输电技术给予了高度的关注。 那么何谓特高压输电呢?特高压输电系指比交流500kV输电能量更大、输电距离更远的新的输电方式。它包括两个不同的内涵:一是交流特高压(UHC),二是高压直流(HVDC)。具有输电成本经济、电网结构简化、短路电流小、输电走廊占用少以及可以提高供电质量等优点。根据国际电工委员会的定义:交流特高压是指1000kV以上的电压等级。在我国,常规性是指1000kV以上的交流,800kV以上的直流。 我们国家是在何种情形下进行特高压研究的呢?不妨从如下几个方面来看: 从能源利用上来说,看国际上常以能源人均占有量、能源构成、能源使用效率和对环境的影响,来衡量一个国家的现代化程度。目前我国人均年消耗的能源水平很低,如果在21世纪中叶赶上国际中等发达水平,能源工业将要有大的发展。据最近召开的世界能源第十七次会议预测,世界能源工业还要进一步发展,到2030年,世界的能源产量将翻一番;到21世纪末再翻一番,其中主要集中在中国、印度、印尼等发展中国家。我国电力将在未来15~20年内保持快速增长,根据我国电力发展规划,到2003年、2010年、2020

我国特高压输电技术的现状

我国特高压输电技术的现状 褚国阳 (大庆师范学院物理与电气信息工程学院,2008级物理教育黑龙江大庆163712) 摘要:2009年1月,国家电网公司科技部在北京召开特高压交直流输电工程关键技术研究课题验收会,国网电科院承担的“1000kV同塔双回线路真型塔外绝缘特性试验研究”、“特高压交流单回输电线路电晕损失研究”和“超/特高压交流架空输电线路对金属管线影响及防护研究”三项重点项目顺利通过验收评审,其研究成果对特高压交流输电工程设计具有重要指导意义。 “1000kV同塔双回线路真型塔外绝缘特性试验研究”项目,对保证该工程线路的安全运行和外绝缘设计的经济性具有重要价值。 “特高压交流单回输电线路电晕损失研究”项目,填补了国内特高压输电线路电晕损失测量的空白,为特高压输电线路导线设计提供了关键参数。 “超/特高压交流架空输电线路对金属管线的影响与防护研究”项目,可以解决我国超/特高压交流架空输电线路与长金属油气管道在并行接近时两者间的电磁兼容问题,对线路与管道工程设计有重要指导意义。 关键词:特高压;交流输电;直流输电 作者简介:褚国阳(1988--),男,黑龙江省绥化市绥棱县,大庆师范学院物电学院学生, 0引言: 2003年北美大停电,持续29个小时的大面积停电,给5000万美国人和加拿大人的生活带来极大不便,造成的经济损失达300亿美元。罪魁祸首是配电网设计不合理。由于天气炎热,用电量猛增,各电厂开足马力进行供电。一家发电厂突然出现了故障,开关自动跳闸,其他电厂马上自动增加发电量进行支援。这些电厂本来就处于饱和状态,由于一下子超负荷运转,结果电厂全部发生跳闸。在短短9秒钟之内,美国7州和加拿大1省就引发了灾难性的多米诺效应。 我国电力工业:截止2005年底,全国发电装机容量达到5亿千瓦。其中,水电占22.9%,火电占75.6%,核电占1.5%。 2005年全国发电量达到24747亿千瓦时,全社会用电量达到24689亿千瓦时,同比增长13.45%。人均用电量1800多千瓦时。居民用电量约占11%,人均218千瓦时。 全国人均用电量为世界平均水平的一半,仅为发达国家的1/6到1/10。 随着西北部煤电基地的开发以及清洁能源风能的大规模接入电网,“十二五”期间,智能电网将进入全面建设阶段,特高压作为坚强智能电网的骨干网架预计也将进入建设高峰期。投资预计达5000亿元,其中特高压交流投资3000亿元,特高压直流线路投资将达2000亿元。[1]

±800KV+特高压直流输电系统全电压启动过电压研究(已看)

±800KV特高压直流输电系统全电压启动过电压研究 黄源辉,王钢,李海锋,汪隆君 (华南理工大学电力学院,广东广州510640) 摘要:全电压启动过电压是直流输电中直流侧最严重的过电压情况。本文以PSCAD/EMTDC为工具,以正在建设的云广±800kV特高压直流输电系统参数为依据,建立全电压启动过电压仿真计算模型。对各种全电压启动情况进行了仿真计算,讨论了各种因素对全电压启动的影响,并与±500KV HVDC系统的全电压启动过电压作了比较,获得了一些具有实用价值的结论。 关键词:±800KV;特高压直流输电;全电压启动;过电压 0引言 为满足未来持续增长的电力需求,实现更大范围的资源优化配置,中国南方电网公司和国家电网公司提出了加快建设特高压电网的战略方针[1]。随着输电系统电压等级的升高,绝缘费用在整个系统建设投资中所占比重越来越大。对于±800KV特高压直流输电系统,确定直流线路和换流站设备的绝缘水平成为建设时遇到的基本问题之一。在种类繁多的直流系统内部过电压中,全电压误启动多因为的过电压是其中最严重和最重要的一种。它的幅值最大,造成的危害最大,在选择直流设备绝缘水平和制订过电压保护方案时往往以此为条件[2]。因此,对特高压直流系统的全电压启动过电压进行研究和分析具有很大的实际意义。 为降低启动过程的过电压及减小启动时对两端交流系统的冲击,直流输电的正常启动应严格按照一定的顺序进行[3]。正常情况下,在回路完好、交直流开关设备全部投入且交流滤波器投入适量等条件满足后(α≥90°),先解锁逆变器,后解锁整流器,按照逆变侧定电压调节或定息弧角调节规律的要求,由调节器逐步升高直流电压至额定值,即所谓的“软启动”。然而由于某些原因(如控制系统异常),两端解锁过程紊乱,逆变侧换流器尚未解锁而整流侧却全部解锁,此时若以较小的触发角启动,全电压突然对直流线路充电,由此直流侧会产生非常严重的过电压。 1云广直流系统简介 南方电网正在建设的云南-广东特高压直流系统双极输送功率5000MW,电压等级为±800kV,直流线路长度约1438km,导线截面为6×630mm2,两极线路同杆并架。送端楚雄换流站通过2回500kV 线路与云南主网的昆西北变电站相连,西部的小湾水电站(装机容量4200MW,计划2009年9月首台机组投产,2011年全部建成)和西北部的金安桥水电站(总装机2400MW,计划2009年12月首台机组投产,2011年全部建成)均以2回500kV线路接入楚雄换流站。受端穗东换流站位于广东省增城东部,500kV交流出线6回,分别以2回500kV线路接入增城、横沥和水乡站[4]。楚雄换流站接入系统如图1所示。 图1 楚雄换流站接入系统 云南-广东特高压直流系统交流母线额定电压为525kV,整流侧无功补偿总容量为3000MV Ar,逆变侧无功补偿总容量为3040MV Ar。平波电抗器电感值为300mH,平波电抗器按极母线和中性母线平衡布置,各为150mH。直流滤波器采用12/24双调谐方式。避雷器使用金属氧化物模型。每极换流单元采用2个12脉动换流器串联组成。 2云广直流系统模型 本文以PSCAD/EMTDC为工具,以南方电网建设中的云南-广东±800kV特高压直流系统参数为依据,建立了全电压启动过电压仿真计算模型。换流站内的单极配置如图1所示。

特高压直流输电技术现状及在我国的应用前景

特高压直流输电技术现状及在我国的应用前景 发表时间:2018-11-17T14:55:25.480Z 来源:《基层建设》2018年第28期作者:朱振伟李天轩 [导读] 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 国网江苏省电力有限公司宿迁供电分公司江苏宿迁 223800 摘要:通过总结特高压直流输电的特点和国外特高压直流输电的研究结论,在分析我国西部水电和煤炭资源集中分布以及东部沿海工业发达地区对电能需求日益增加等情况的基础上,指出在开发我国西部水电和“三西”(山西、陕西、内蒙古西部)煤电资源时采用特高压直流输电技术实现远距离大容量输电的应用前景。 关键词:特高压;直流输电;技术现状;应用前景 1 引言 特高压直流输电技术起源于20 世纪60年代,瑞典Chalmers大学1966年开始研究±750kV导线。1966年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20世纪80年代曾一度形成了特高压输电技术的研究热潮。国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV是合适的直流输电电压等级,2002 年 Cigre又重申了这一观点。随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。特高压直流输电技术恰好迎合了这一要求。 2 特高压直流输电现状 20 世纪 80 年代前苏联曾动工建设长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW。该工程将哈萨克斯坦的埃基巴斯图兹的煤炭资源转换成电力送往前苏联欧洲中部的塔姆包夫斯克,设计为双极大地回线方式,每极由两个 12 脉动桥并联组成,各由 3×320Mvar Y/Y 和 3×320Mvar Y/Δ单相双绕组换流变压器供电;但由于 80 年代末到90年代前苏联政局动荡,加上其晶闸管技术不够成熟,该工程最终没有投入运行。由巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常。 3 特高压直流输电技术的特点及适用范围 特高压直流输电无需复杂的系统设计,基本可以采用±500kV 和±600kV 直流输电系统类似的设计方法,需要考虑的关键问题是外部绝缘和套管的设计等问题。特高压直流输电的输送容量大,输电距离长,输电能力主要受导线最高允许温度的限制。交流线路的无功补偿对远距离大容量输电系统至关重要;而直流输电线路本身不需要无功补偿,在换流站利用站内的交流滤波器和并联电容器即可向换流器提供所需的无功功率。一般来讲,对于远距离大容量输电直流方案优于交流方案,特高压方案优于超高压方案。表 1 为输送功率为 10GW 输送距离为 2000km 时交、直流以及不同电压等级直流的投资及线路走廊占用情况比较。 表1 10GW 电力输送 2000km 的交、直流输电方案 由表 1 可见,特高压直流输电适用于远距离大容量的电力输送。 4 我国能源和负荷的分布特点 水能资源和煤炭作为我国发电能源供应的两大支柱,今后的开发多集中在西南、西北和晋陕蒙地区,并逐渐向西部和北部地区转移,而东部沿海地区和中南地区的国民经济的持续快速发展导致能源产地与能源消费地区之间的距离越来越大,使得我国能源配置的距离、特点和方式都发生了巨大变化,并决定了能源和电力跨区域大规模流动的必然性。 (1)水电东送规模 三峡水电站(包括地下电站)的总装机容量为22.4GW,“十二五”初期将全部建成投产。综合分析一次能源平衡、输电距离及资源使用效率等因素,可知金沙江下游水电站主送华中、华东电网是合理的。 (2)煤电基地的电力外送规模 各煤电基地的电力外送规模有望得到较大发展。现已建成和规划采用 500kV 交流和±500kV 直流跨区送电的坑口电站的电力外送规模总计15GW。2020 年煤电外送将新增 84GW,主要送往华中东部四省、华东地区和华北京津冀鲁四省市以及广东地区。 (3)东部电力市场空间 华中东部四省。按低负荷水平预测,2020 年需电量将为 600TWh,负荷将为 110GW,装机容量缺额将为 138GW。扣除本地水电和必要的气电以外,2020 年之前尚有 47GW 的市场空间,其中2010~2020 年约为 32GW。华北的京津冀鲁。按低负荷水平预测,2020年需电量将为 840TWh,负荷将为 140GW,装机容量缺额将为 168GW。扣除本地核电、蓄能电站以外,2020 年之前尚有 90GW 的市场空间,其中2010~2020 年约为 45GW。初步测算,到 2020 年水电跨区送电规模总计约 70GW,煤电外送约 84GW,而东部受电地区的市场空间约为 127GW;而能源与负荷的距离大多数超过了 1000km,采用特高压直流输电技术比较合适。 5 特高压直流输电的初步发展规划 2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要 9 条输电容量为 6GW 的±800kV 级特高压直流输电线路。根据 10 年发展规划,特高压直流输电工程的建设进度如

我国特高压输电技术的现状与前景

我国特高压输电技术的现状与前景 作者:刘蒙蒙 (陕西理工学院物理与电气工程学院物理学专业2011级2班,陕西汉中723000) 指导教师:陈德胜 [摘要]高压输电技术是指在输电过程中提高输电电压,减小输电电流,从而减少输电过程中电能损耗的技术。输电电压越高,电能损耗减少的越多,目前输电电压等级最高的是特高压输电。本文阐述了特高压输电技术的原理,分析了特高压输电的主要方式和分类,研究了我国特高压输电的现状,探讨了我国特高压输电技术的发展前景。 [关键词]特高压输电;现状;前景;高压电网;智能电网 引言 随着电力系统的不断发展,为了适应大容量远距离输电的需要,如意大利、美国、日本、俄罗斯、中国等国家都在致力于特高压输电技术的研究。所谓特高压是指交流1000kV、直流±800kV及以上的电压等级。特高压输电具有非常明显的经济性和可靠性,为当今世界输电技术的发展指明了方向。我国已经进入了大电网、大机组、高电压、高自动化的发展时期。随着经济的快速发展,电力需求也在快速增长,特高压输电逐渐进入到我国电力的建设当中。特高压输电能同时满足电能大容量、远距离、高效率、低损耗、低成本输送的基本要求,而且能有效解决目前500kV超高压电网存在的输电能力低、安全稳定性差、经济效益欠佳等方面的问题,所以,建设特高压电网已经成为我国电力发展的必然趋势。 1特高压输电技术及其原理 1.1特高压输电概述 特高压是世界上最先进的输电技术。交流输电电压一般分为高压、超高压和特高压。国际上,高压(HV)通常指35—220kV电压;超高压(EHV)通常指330kV及以上、1000kV以下的电压;特高压(UHV)定义为1000kV及以上电压。而对于直流输电而言,高压直流(HVDC)通常是指±600kV 及以下的直流输电电压,±800kV(±750kV)以上的电压则称为特高压直流(UHVDC)。表1所示为交、直流输电电压分类表。 表1 交、直流输电电压分类表 我国发展特高压输电指的是在现有500kV交流和±500kV直流之上采用更高一级的电压等级输电技术,包括1000kV级交流特高压和±800kV级直流特高压两部分,简称国家特高压骨干电网。特高压输电是在超高压输电的基础上发展的,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。为了适应我国国民经济和电力需求的快速发展,国家电网公司在2004年底明确提出了加快建设以百万伏级交流和±800千伏级直流系统特高压电网为核心的坚强国家电网的战略目标。 特高压输电具有明显的经济效益。据估计,1条1150千伏输电线路的输电能力可代替5~6条500千伏线路,或3条750千伏线路;可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价10~15%。1150千伏特高压线路走廊约仅为同等输送能力的500千伏线路所需走廊的四分之一,这对于人口稠密、土地宝贵或走廊困难的国家和地区会带来重大的经济和社会效益。1.2 特高压输电的原理

相关文档
最新文档