大型变压器绕组短路损坏故障原因分析与防范

大型变压器绕组短路损坏故障原因分析与防范
大型变压器绕组短路损坏故障原因分析与防范

大型变压器绕组短路损坏故障原因分析与防范

一. 引起绕组短路损坏故障发生的原因分析

(1)短路事故中变压器损坏的主要原因是变压器本身的抗短路能力不足,尤其是变压器承受短路动稳定能力不足。随着电网不断扩大,系统容量和短路电流不断变化,当变压器发生外部短路时,电流值超过临界值也就是变压器绕组实际所能承受的最大短路电流值时,绕组发生变形造成变压器损坏的概率就会明显增大。这主要表现在变压器的制造工艺和质量上,这与目前国内变压器厂家的工艺水平和管理水平、特别是中小制造厂工艺及管理水平有关,目前中小变压器厂接受技术转让的过程快,消化时间短,电压等级上得快,试制产品未经过短路试验等情况是这些厂家的变压器难以保证变压器抗短路冲击的客观原因。这就需要变压器厂家从设计、工艺等方面采取有效措施,提高电力变压器的抗短路能力。

(2)变压器生产厂家在设计过程中对绕组抗短路能力重视不足。在历年的国家电网公司变压器类设备专业总结报告中均指出,变压器抗短路能力不足是造成变压器损坏事故的主要原因。据分析,20世纪国内厂家生产的变压器,大部分抗短路能力设计不足,而且给出的抗短路能力多是计算值,这也是投运11~15年的变压器易发生线圈短路损坏故障的重要原因。

(3)变压器正常运行时负载率较高,当变压器承受外部短路冲击时,形成的电动力与理论计算值存在偏差,同时运行中的部分变压器由于制造质量和维护不到位等原因,耐受动、热稳定的能力下降,当受到外部短路冲击时,变压器线圈失稳发生变形等缺陷甚至导致绝缘损坏、内部放电等事故。

(4)运行维护过程中,预防措施系统性差,硬件措施和管理手段不匹配,存在“短板效应”,导致变压器发生外部短路冲击损坏事故的概率较高,短路冲击电流较大、时间长。例如变电站内设备存在绝缘防护水平低、线路防护不到位、保护动作时间长等问题。

(5)累积效应导致线圈损坏。电力变压器发生出口短路时,在电动力和机

械力的作用下,绕组的尺寸或形状发生不可逆的变化,产生绕组变形。绕组变形包括轴向和径向尺寸的变化,器身位移,绕组扭曲、鼓包和匝间短路等,这是电力系统安全运行的一大隐患。变压器绕组变形后,有的会立即发生损坏事故,更多的则是仍能继续运行一段时间。当运行中的变压器一旦产生绕组变形,会降低变压器绕组整体的机械强度,进而导致短路的累积效应,出现恶性循环,如不及时发现,则变压器发生损坏。累积效应一直是变压器损坏的重要原因,根据近些年国家电网公司故障发生案例的统计,累积效应损坏占线圈短路损坏故障总数的10.81%。由于变压器在长期运行过程中,可能遭受到不同程度的短路冲击,操作、雷电等过电压冲击,可能引起绝缘局部受损。线圈累积变形、局部受损缺乏有效的检测手段,再加上历史短路冲击情况、过电压情况等方面的历史数据有限,难以采取有效的针对性措施。

(6)非自粘性换位导线对于降低负载损耗具有良好的效果,因为用这样的线绕制成线圈时,每一股导线所经受的电磁环境是最均匀的,可以达到最佳的效果。降低负载损耗的作用主要归结于子导线尺寸,子导线根数越多,截面积越小,降低损耗的效果就越好。但是,这与短路时的动稳定性是相矛盾的。导线截面的减小使绕组的机械强度下降了,甚至于承受不了外部的短路。由于该类导线多采用退火的软铜线,机械性能很差,由此导致了采用这种导线的变压器抗短路能力很差,在承受短路机械力时容易出现变形、散股、露铜等现象。原国家电力公司在2002年12月曾经下发了《预防110kV~500kV变压器(电抗器)事故措施》,其中明确提出“宜采用半硬铜、自粘性换位导线以及用硬绝缘筒绕制线圈等措施提高变压器抗短路能力。对于制造厂在变压器内采用高机械强度的环氧等材料,应以不增大绕组绝缘的介损值和局部放电量为前提,防止因提高抗短路强度而降低绝缘性能。加密线圈的内外撑条也应以不影响变压器散热性能为前提条件。”由此可知,变压器采用非自粘性换位导线存在抗短路能力不足的隐患。

(7)在制造或检修时,局部绝缘受到损害,遗留下缺陷;在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化;制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏;绕组受潮,绝缘膨胀堵塞油道,引起局部过热;绝缘油内混入水分而劣化,或与空气接触面积过大,

使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。由于以上这些原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。

二. 防范措施

(1)在变压器设计阶段,运行单位应取得所订购变压器的抗短路能力计算报告及抗短路能力计算所需详细参数,并自行进行校核工作。220kV及以上电压等级的变压器都应进行抗震计算。

(2)在实际运行中发生短路后,不论电流是否达到变压器可以耐受的短路电流的60%,都应立即进行油色谱分析,并根据色谱数据决定是否要立即停电进行绕组变形试验,判断绕组的变形情况。结合每次停电检修,采用绕组电容量、低电压阻抗和频响法进行绕组变形试验,判断绕组的变形情况。

(3)应开展变压器抗短路能力的校核工作,根据设备的实际情况有选择性地采取加装中性点小电抗、限流电抗器等措施,对不满足要求的变压器进行改造或更换。

(4)为提高变压器低压绕组抗短路能力,在变压器技术合同中应明确写明对低压绕组的要求,应采用半硬铜自粘性换位导线。在绕组“S”弯换位处加换位纸板与纸槽、包绝缘纸加强绝缘,并在所有与换位处相邻的线饼之间应增加扇形垫块;合理提高导线厚度;适当降低电流密度;低压内侧加硬纸筒,硬纸筒与铁芯间加木撑条,使内绕组形成硬支撑;低压绕组不宜采用螺旋式结构;采用整体压板和整体套装、恒压干燥等工艺,对垫块进行密化处理,调整绕组安匝平衡,提高轴向稳定性。

(5)改善变压器外部运行环境的主要措施是:在变压器的低压侧各主母线和分支母线、裸露导线加装绝缘热缩套;电缆出线故障多为永久性的,因此不宜采用重合闸,对于电缆或短架空出线多,且发生短路事故次数多的(2次以上)变电站,可考虑临时停用线路自动重合闸,防止变压器连续遭受短路冲击;容性电流超过10A的10kV或超过30A的35kV不接地系统,应装设有自动跟踪补偿功能的消弧线圈,防止单相接地发展成相间短路。加强防污工作,防止相关变电设备外绝缘污闪,特别是变压器的低压侧出线套管,应有足够的爬距和外绝缘空气间隙,防止变压器套管端头间闪络造成出口短路,对变压器中、低压侧的支柱瓷瓶,包括高压开关柜可更换爬距较大的防污瓷瓶,或者涂刷常温固化硅胶防污闪涂料(RTV),防止绝缘击穿造成的变压器出口短路;变压器各侧在任何方式下都不应该失去避雷器的保护。

(6)加强变压器的全过程管理,特别要加强变压器的监造工作,从源头上控制变压器的质量。变压器在制造阶段的质量抽检工作,应进行电磁线抽检;根据供应商生产批量情况,应抽样进行突发短路试验验证。

(7)应开展变压器抗短路能力的校核工作,根据设备的实际情况有选择性地采取加装中性点小电抗、限流电抗器等措施,对不满足要求的变压器进行改造或更换。

(8)加强避雷线运行维护工作,定期打开部分线夹检查,保证避雷线与杆塔接地点可靠连接。对于具有绝缘架空地线的线路,要加强放电间隙的检查与维护,确保动作可靠。

(9)加强变压器选型、定货、验收及投运的全过程管理。应选择具有良好运行业绩和成熟制造经验生产厂家的产品。240MVA及以下容量变压器应选用通过突发短路试验验证的产品;500kV变压器和240MVA以上容量变压器,制造厂应提供同类产品突发短路试验报告或抗短路能力计算报告,计算报告应有相关理论和模型试验的技术支持。

变压器绕组匝间短路的简单判断

变压器绕组匝间短路的简单判断 张绍峰 摘要:针对电力生产中使用的变压器几多竟是用的电炉变等运行中出现的变压器绕组匝间短路,介绍一个简易的判断方法。 关键词:变压器、匝间短路、空升; 变压器是发送变企业和各行各业生产中最常用的设备之一,由于它体积大、价格高且长时间带电运行,流过高低压绕组的电流通常都很大,加上检修工质量不到位、环境污染、各类过电压等原因,容易产生各种缺陷,如果得不到准确的判断和及时的处理,将会造成很大的经济损失。一般的常规试验对于检查变压器的接触不良、绕组断股、绝缘(整体、局部)受潮、绝缘(整体、局部)老化等灵敏度很高。但这些试验项目对检查变压器绕组匝间短路可以说是个盲区,只用变压器的特性(空载、短路)试验才能对其作出准确判断。但进行变压器的特性(空载、短路)试验所需试验设备多且各种试验设备体积容量大,试验电源容量要求也很大,因此做起来也很不方便。下面将介绍一种既简单又行之有效的方法。具体情况作一下分析: 首先简单介绍一下变压器的绝缘结构:变压器的绝缘分为主绝缘和纵绝缘两部分。主绝缘分是指绕组对地和绕组之间的绝缘;纵绝缘是指线饼间、层间和匝间的绝缘。 接下来针对变压器常规检测绝缘的试验能够鉴定的各种缺陷的具体情况进行一下对比:

由以上对比结果可以看出,前四种试验根本无法测出纵绝缘中出现的各种缺陷;第五、六种试验仅能够对绕组的严重金属性匝间短路缺陷做出判断,但有些绕组的匝间短路缺陷是非金属性匝间短路,它们对此则无能为力了。后两种试验能够准确的检测出所有的绕组的匝间短路缺陷,但要进行这些大型试验对于一些大型变压器来说是有价值的,可是对较小型变压器来说则费时费力所需成本也太高了。下面就根据现场的实际经验介绍一个简单有效的方法来判断变压器绕组的非金属性匝间短路。 2009年09月24日武电多经碳素公司#3电炉变故障过流速断跳闸,变压器本体有烧焦气味放出。拆线后对本体进行试验。进行的试验项目有:1、绝缘电阻;2、所有档的直流电阻;3、所有档的电压比;4、交流耐压;以上所有试验

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

转子绕组匝间短路产生的原因和危害(正式版)

文件编号:TP-AR-L1649 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 转子绕组匝间短路产生的原因和危害(正式版)

转子绕组匝间短路产生的原因和危 害(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)产生原因 ①制造工艺不良。例如:在下线、整形等工艺过 程中损伤匝间绝缘;铜线有硬块、毛刺,也会造成匝 间绝缘损伤。 ②运行中,在电、热和机械等综合应力的作用 下,绕组产生变形、位移,造成匝间绝缘断裂、磨 损、脱落;另外,由于脏污等,也可能造成匝间(尤 其是转子绕组的端部匝间)短路。

③运行年久、绝缘老化,也会造成匝间短路。 (2)危害 转子绕组匝间短路故障是发电机常见性缺陷;轻微的匝间短路,机组仍可继续运行,但应注意加强监视和试验;当匝间短路严重时,将使转子电流显著增大,转子绕组温度升高,限制了发电机无功功率的输出,或者使机组振功加剧,甚至被迫停机。因此,当转子绕组发生匝间短路故障时,必须通过试验找出匝间短路点,予以消除,使发电机恢复正常运行。 (3)匝间短路的分类

大型汽轮发电机转子绕组匝间短路的故障处理与分析(2010)

第23卷 第2期2010年6月江西电力职业技术学院学报 Journal o f Jiangx iV ocati ona l and T echnical Co ll ege o f E lectr i c ity V o.l 23N o .2J un .2010 大型汽轮发电机转子绕组匝间短路的故障处理与分析 张亮杰 (广东粤电靖海发电有限公司,广东 揭阳 515223) 摘 要:某公司一台国产600MW 汽轮发电机组,在开机过程中出现发电机轴振偏大,并且随励磁电流增大而增大,经 过振动分析、电气试验等一系列检测程序,快速对故障进行了准确判断和较精确的定位,为机组尽快消缺争取了宝贵时间,为同类大型发电机组积累了相关经验和提供了相应参考。 关键词:大型汽轮发电机;转子绕组;匝间短路;试验;诊断 中图分类号:TM 311;TM 307+.1 文献标识码:B 文章编号:1673-0097(2010)02-0033-02 收稿日期:2010-03-17 作者简介:张亮杰(1982- ),男,河南淮滨人,助理工程师. 0 引言 随着我国电力工业的发展,目前汽轮发电机的功率越来越大,特别是新建核电机组和超临界燃煤发电机组,基本上都是600MW 及以上,其汽轮发电机往往转速高,电压等级高,电流负荷大。比如某国产发电机的额定输出电压为22k V ,额定输出电流为17495A,额定励磁电流为4387A,额定转速为3000r/m i n 。由于发电机容量大,转速高,如果在设计和制造上存在不足,或者运行检修工艺不当,则转子出现问题几率就比较大。转子绕组出现的问题主要有接地、开路和匝间短路等故障,其中转子绕组的匝间短路故障占有非常大比例。轻微的转子匝间短路故障在开始阶段对发电机运行影响不大,但如果发展成严重的匝间短路后,会使励磁电流增大,线棒过热会导致变形,限制发电机无功功率,电压波形畸变,有时还会增加机组的振动幅值,甚至被迫停机,故障的进一步发展会造成短路点局部过热会使绝缘烧毁接地、护环烧坏、大轴磁化,甚至造成转子烧损事故 [1] 。 因此完善优化设计、改进制造和检修工艺尽可能避免在非正常工况下长期运行,就成为保障大型发电机组安全可靠运行的前提。本文就某600MW 燃煤发电机组发生的一次转子绕组匝间短路故障,进行分析和探讨。 1 设备概况 该机组为国产600MW 超临界燃煤发电机组,于 2007年6月投产发电,进入商业运行,期间进行过一次C 级检修和一次A 级检修。 发电机性能如下:型号为QFSN 600 2 22A;定子电压为22000V;转速为3000r/m i n ;转子电压为400V;接线方式为YY ;功率因数为0.9(滞后);功率为600MW;定子电流为17495A;容量为667M VA;转子电流为4387A 。 2 故障情况及诊断 2.1 故障情况 2010年2月,发电机在调峰消缺结束后并网发 电,在并网后带负荷过程中发现汽轮机轴振较大,并且随励磁电流的增大而增大,其中7Y 振动达到143u m,8Y 振动达到168u m (#7、#8瓦为发电机轴瓦),于是录取振动信号进行检测查找原因,对振动波形分析后发现其中除工频振动成分外,还包含了较多的高频振动成分,因此判断发电机转子可能存在问题。 2.2 诊断过程 为进一步确认故障原因,进行转子绕组的交流阻 抗测试、绝缘电阻测试和直流电阻测试,转子交流阻抗试验数据见表1。测试结果显示,在转速达3000r/m i n 时加220V 电压情况下,交流阻抗(3.658 )比2009年A 级检修后(4.27 )小0.61 (小14.3%);在盘车状态下,交流阻抗(4.23 )比2009年A 级检修后(4.72 )小0.5 (小10.6%),表明转子可能存在匝间短路故障。

变压器的空载试验和短路试验主要注意问题

变压器的空载试验和短路试验主要注意哪些问题? 一、变压器空载试验和负载试验的目的和意义 变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示,即: 进行空载试验的目的是:测量变压器的空载损耗和空载电流;验证变压器铁心的设计计算、工艺制造是否满足技术条件和标准的要求;检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。 变压器的短路试验就是将变压器的一组线圈短路,在另一线圈加上额定频率的交流电压使变压器线圈内的电流为额定值,此时所测得的损耗为短路损耗,所加的电压为短路电压,短路电压是以被加电压线圈的额定电压百分数表示的: 此时求得的阻抗为短路阻抗,同样以被加压线圈的额定阻抗百分数表示: 变压器的短路电压百分数和短路阻抗百分数是相等的,并且其有功分量和无功分量也对应相等。 进行负载试验的目的是:计算和确定变压器有无可能与其它变压器并联运行;计算和试验变压器短路时的热稳定和动稳定;计算变压器的效率;计算变压器二次侧电压由于负载改变而产生的变化。 二、变压器空载和负载试验的接线和试验方法 对于单相变压器,可采用图1所示的接线进行空载试验。对于三相变压器,可采用图2和图3所示的两瓦特表法进行空载试验。图2为直接测量法,适用于额定电压和电流较小,用电压表和电流表即可直接进行测量的变压器。当变压器额定电压和电流较大时,必须借助电压互感器和电流互感器进行间接测量,此时采用图3接线方式。

发电机匝间短路故障诊断

目录 1 引言 (1) 1.1 研究目的与意义 (1) 1.2 发电机故障诊断技术的发展状况 (1) 1.3 发电机转子绕组匝间短路故障检测的研究现状 (2) 1.4 本文的内容和主要工作 (4) 2 汽轮发电机转子绕组匝间短路的理论分析 (6) 2.1 汽轮发电机的转子结构 (6) 2.2 转子绕组发生匝间短路的原因 (6) 2.3 匝间短路的磁场分析 (7) 2.3.1 发电机发生匝间短路的磁场分析 (9) 3 发电机转子绕组匝间短路故障的探测线圈法 (12) 3.1 探测线圈法的测试原理 (12) 3.2 探测线圈的结构及置放 (14) 3.2.1 诊断系统及其功能组成 (15) 3.2.2 基本参数 (16) 3.2.3 传感器安装和定位 (16) 3.3.3 故障判断 (16) 3.3 大亚湾核电站发电机组的探测线圈法实例分析 (17) 参考文献 (20)

1引言 1.1研究目的与意义 随着我国国民经济的快速发展,电力工业正处于大电机和大电网的发展阶段。人们的生活和生产水平迅速提高,使得电能需求量日益增长,进而对电力系统的供电质量、可靠性及经济性等指标的要求也不断提高。发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个系统崩溃。 发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈、线圈引线以及阻尼绕组等部分组成。发电机运行时,由于转子处于高速旋转状态,这些部件将承受很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。转子绕组是发电机经常出现故障的部位,除本体故障外,主要是转子绕组的短路故障,如匝间短路、一点接地短路、两点接地短路等。发电机正常运行时,转子绕组对地之间会有一定的分布电容和绝缘电阻,绝缘甩阻的阻值通大于1兆欧。但是因某种原因导致对地绝缘损坏或绝缘电阻严重下降时,就会发生转子绕组接地事故。当发电机转子发生一点接地故障时,因为励磁电源的泄漏电阻很大,一般不会造成多大的伤害,限制了接地泄露电流的数值。但是,发电机转子两点接地故障将会产生很大的电流,经故障点处流过的故障电流会烧坏转子本体。而部分转子绕组的短接,励磁绕组中增加的电流可能会导致转子因过热而烧坏,气隙磁通也会失去平衡,从而引起发电机的振动,还可能使转子大轴磁化,甚至会导致灾难性的后果,因此两点接地故障的后果是很严重的。 目前,在国内运行的大型发电机组中,发电机匝间短路故障占故障总数的比重较大,大多数发电机都发生过或已经存在转子绕组匝间短路的故障。由于转子绕组绝缘的损坏,转子绕组匝间短路后会形成短路电流,从而导致局部过热。发电机长期在这种环境下运行,会进一步引起绝缘的损坏,导致更为严重的匝间短路,最终形成恶性循环。据统计资料表明,发电机转子匝间短路故障并不会影响机组的正常运行,所以常常被忽略,但是如果任其发展,转子电流将会显著增加,绕组温升过高,无功输出降低,电压波形畸变,机组振动加剧,并且还会引起其它的机械故障,严重时还会影响发电机的无功出力。如果发生的是不对称的匝间短路故障,发电机组的振动将会加剧,转子绕组的绝缘也有可能进一步的损坏,进而发展成为接地故障,对发电机组的安全稳定运行构成了严重的威胁。因此,对发电机绕组匝间短路故障的诊断与识别是十分必要的。 1.2 发电机故障诊断技术的发展状况 早期的故障诊断主要依靠人工经验,如:看、听、触、摸等方法进行诊断,

变压器几种常见故障产生的原因及其处理方法

自爱迪生发明了电灯以后,电在人们生产、生活中的作用越来越重要。为满足人们各种用电需要,作为发电厂和变电站主要设备之一的变压器,不但能把电压降低为各级标准,而且能把电压升高为各级标准,进而将电能输送到各个不同的用电地区,这样有助于减少送电损失。 变压器几种常见故障产生的原因及其处理方法 袁世豪 (湛江中粤能源有限公司 广东 湛江 524099) 力运行人员应具备的基本技能,同时亦是其重点关注、研究的问题。 二、变压器故障产生的原因 1、自身原因 变压器在制造时,由于工艺不佳或者人为因素影响,而使得设备本身就存在着诸如焊接不良、端头松动、垫块松动、抗短路强度不足、铁心绝缘不良等问题。 2、运行原因 首先,变压器的超常负荷。变压器的长期超负荷工作,必然会使其内部零部件及连接件有着过高的温度,进而导致冷却装置不能正常运行,零部件受损。其次,变压器的使用不当。工作人员使用方式、方法不当,或者当设备出现问题时没有进行及时、正确维护,这必然加快变压器绝缘老化的速度。 3、线路干扰 线路干扰在致使变压器产生故障的所有因素中,它是最为重要的,其所引起的故障在所有故障中占有很大的比例。主要包括:在低负荷阶段出现的电压峰值、线路故障,合闸时产生的过电压,以及其他方面的异常现象 一、加强变压器故障及时、准确检修的必要性 在电力系统中占有至关重要地位的变压器,是电网传输电能的枢纽,它由油箱、油枕、铁心、线圈、绝缘导管、分接开关、散热器、防暴管、瓦斯继电器,以及热虹吸、温度计等附件组成,变压器运行、检修,及维护质量的高低,将直接影响电力生产安全和经济效益。 虽然变压器较于其他电力设备的故障率低,但据运行经验表明、相关数据显示,近几年电力系统变压器故障呈现出不断上升的趋势。按照故障发生的程度不同,故障有轻有重,当故障较轻时,虽然变压器能够继续运行,但若不及时处理,将会进一步损害其内部零部件或者外部辅助设备;当故障较重时,则直接影响变压器的正常运行,若不及时处理,将会损害设备的使用寿命,甚至发生安全事故。总之,变压器一旦发生故障,轻则影响电力系统的正常运作,并直接或间接地影响人民群众正常的生产、生活;重则带来较大的安全隐患及经济损失。因此,对变压器运行或停运后异常、故障问题的检修、确认与维护,是电 DOI :10.3969/j.issn.1001-8972.2011.03.032

转子绕组匝间短路产生的原因和危害

安全管理编号:LX-FS-A53839 转子绕组匝间短路产生的原因和危 害 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

转子绕组匝间短路产生的原因和危 害 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (1)产生原因 ①制造工艺不良。例如:在下线、整形等工艺过程中损伤匝间绝缘;铜线有硬块、毛刺,也会造成匝间绝缘损伤。 ②运行中,在电、热和机械等综合应力的作用下,绕组产生变形、位移,造成匝间绝缘断裂、磨损、脱落;另外,由于脏污等,也可能造成匝间(尤其是转子绕组的端部匝间)短路。

③运行年久、绝缘老化,也会造成匝间短路。 (2)危害 转子绕组匝间短路故障是发电机常见性缺陷;轻微的匝间短路,机组仍可继续运行,但应注意加强监视和试验;当匝间短路严重时,将使转子电流显著增大,转子绕组温度升高,限制了发电机无功功率的输出,或者使机组振功加剧,甚至被迫停机。因此,当转子绕组发生匝间短路故障时,必须通过试验找出匝间短路点,予以消除,使发电机恢复正常运行。 (3)匝间短路的分类

变压器绕组匝间短路简单判断周

变压器绕组匝间短路的简单判断 评审工种:电气试验 评审等级:技师 姓名:周晓勇 单位:青铜峡铝业发电有限公司 日期:2013年04月

摘要:通过对电力变压器预防性试验,如绝缘、直流电阻测量、介质损耗因数、直流泄露、交流耐压、局部放电试验、线圈变形、油中溶解气体分析、油中含水量等等,探讨电力变压器预防性试验的检测方法。在进行变压器的故障检查试验时,怀疑存在匝间短路在进行直流电阻和变比测量不能判断时可用此方法进行简单判断,首先应在怀疑的电压等级侧进行加压试验。根据变压器的相数选择相应的单相或三相调压器进行变压器的空载接线试验,缓慢增压的同时观察电流变化,若电流变化很大远远超出额定空载电流则为存在非金属性匝间短路。如果选用单相或三相调压器不方便时也可直接用220V或380V电源直接合闸冲击监看电流进行判断,其效果相同。(注意:选用的合闸电源电压必须低于加压侧的额定电压。)这种方法的优点是:试验方法简单试验仪器少,效果明显同时花费时间少。 关键词:电力变压器预防性试验分析匝间短路空升 电力变压器是电力系统的重要设备,它承担着电压变换、电能分配和传输,并提供电力服务。它的安全运行具有极其重要意义,预防性试验是保证其安全运行的重要措施,对变压器故障诊断具有确定性影响,通过各种试验项目,获取准确可靠的试验结果是正确诊断变压器故障的基本前提。电力设备预防性试验规程规定的试验项目,主要包括绕组绝缘电阻的测量、绕组直流电阻的测量、油中溶解气体分析、介质损耗因数tgδ检测、直流泄露、交流耐压试验、线圈变形检测、局部放电测量等。一般的常规试验对于检查变压器的接触不良、绕组断股、绝缘(整体、局部)受潮、绝缘(整体、局部)老化等灵敏度很高。但这些试验项目对检查变压器绕组匝间短路(非金属性)可以说是个盲区,只用变压器的特性(空载、短路)试验才能对其作出准确判断。但进行变压器的特性(空载、短路)试验所需试验设备多且各种试验设备体积容量大,试验电源容量要求也很大,因此做起来也很不方便。下面将介绍一种既简单又行之有效的方法。具体情况作一下分析: 首先简单介绍一下变压器的绝缘结构:变压器的绝缘分为主绝缘和纵绝缘两部分。主绝缘分是指绕组对地和绕组之间的绝缘;纵绝缘是指线饼间、层间和匝间的绝缘。

同步发电机突然三相短路中的几问题

第2章作业参考答案 2-1 为何要对同步发电机的基本电压方程组及磁链方程组进行派克变换答:由于同步发电机的定子、转子之间存在相对运动,定转子各个绕组的磁路会发生周期性的变化,故其电感系数(自感和互感)或为1倍或为2倍转子角θ的周期函数(θ本身是时间的三角周期函数),故磁链电压方程是一组变系数的微分方程,求解非常困难。因此,通过对同步发电机基本的电压及磁链方程组进行派克变换,可把变系数微分方程变换为常系数微分方程。 2-2 无阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减试用磁链守恒原理说明它们是如何产生的 答:无阻尼绕组同步发电机突然三相短路时,定子电流中出现的分量包含:a)基频交流分量(含强制分量和自由分量),基频自由分量的衰减时间常数’。 为T d 。 b)直流分量(自由分量),其衰减时间常数为T a 。 c)倍频交流分量(若d、q磁阻相等,无此量),其衰减时间常数为T a 转子电流中出现的分量包含: ’。 a)直流分量(含强制分量和自由分量),自由分量的衰减时间常数为T d b)基频分量(自由分量),其衰减时间常数为T 。 a 产生原因简要说明: 1)三相短路瞬间,由于定子回路阻抗减小,定子电流突然增大,电枢反应 使得转子f绕组中磁链突然增大,f绕组为保持磁链守恒,将增加一个自 由直流分量,并在定子回路中感应基频交流,最后定子基频分量与转子 直流分量达到相对平衡(其中的自由分量要衰减为0). 2)同样,定子绕组为保持磁链守恒,将产生一脉动直流分量(脉动是由于d、 q不对称),该脉动直流可分解为恒定直流以及倍频交流,并在转子中感 应出基频交流分量。这些量均为自由分量,最后衰减为0。 2-3 有阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

发电机转子绕组匝间短路故障的诊断分析

发电机转子绕组匝间短路故障的诊断分析 摘要:本文通过对车间24MW汽轮发电机1#发电机内部转子绕组匝间运作时出 现的短路故障进行分析和讨论,并结合积累的运行经验,对其故障诊断技术所存 在的问题及其特点进行深入性的探讨。并据此提出转子绕匝组间发生短路故障的 几种常见形态,同时对各种状态模式下所选用的检测方法其自身的适用性进行有 效评价,对未来一段时间内进一步提高匝间短路故障的检测以及诊断水平提供了 一些建议。 关键词:短路故障;汽轮发电机;转子绕组;诊断 前言:2012年11月2日,车间按照检修工作计划对1#汽轮发电机组进行同 轴度调整时,检修人员揭开4#瓦上轴承盖后,发现轴承座底部有大量金属铁削,于是立即对4#瓦进行检查,结果发现4#瓦处发电机转子轴颈磨损严重,下瓦口 与轴颈接触面处挤有数块金属脱落物,上瓦有较严重的划痕,下瓦磨损严重,磨 蚀区已失去金属光泽,表面巴氏合金磨损严重,于是发电机转入大修,委托济南 宏宝高压电机大修厂进行维修。维修后试运行,发电机组振动值偏高,对发电机 做转子交流阻抗试验,根据试验数值,怀疑发电机存在匝间短路故障。 当前发电机转子绕组在实际运行过程中,其出现匝间短路的主要表现有:发 电机组本身无功率不断下降;轴系振动逐渐加大;轴电压不断升高等等。上述所 讲的几种现象都是转子出现匝间短路的典型特征。因此我们在实际的检测以及诊 断过程中,可以根据这些特征来做出正确的判断以及评价。 为了以后更好的点检发电机组运行状态,及时发现并处理匝间故障现象,定 时对发电机轴电压进行检测,增加轴振监测点,并对匝间短路故障进行检测和诊 断的方法作以下研究。 一、对匝间短路故障进行检测和诊断的方法 应该说,现阶段发电机转子绕组在运行过程中出现匝间短路问题,依据机组 运行时转速与温度等内容,可以将其划分成为非稳定性短路以及稳定性短路。按 照机组本身的停运状态,检测方法可以将其分为静态检测以及动态检测。 在对匝间短路进行诊断和检测时,会涉及到两个重要点,一个就是对于出现 匝间短路转子机组的早期发现;另一个就是对于匝间短路故障的正确定位。而在 真正诊断过程中,能够及早发现转子匝间短路的诊断方法主要有RSO重复脉冲法 以及相应的探测线圈波形测量法。 1、RSO重复脉冲检测法 该检测方法能够实现对转子绕组运行中出现的匝间短路以及断线还有绕组接 地故障进行有效检测,并能确定出故障的准确位置。这种检测技术所遵循的工作 机理就是通过使用专业的双脉冲信号设备对运行中的发电转子两级,同步施以一 段高频率的冲击脉冲波,并利用双线示波器将两组发生响应的特性曲线记录下来,借以实现对其波形响应时间的有效测定,然后通过专业的计算分析或者是将所得 到的检测结果同设备出厂时所自带的标准波形进行认真比对,就能够准确的判断 出转子绕组匝间在运行过程中有没有出现短路状况,以及出现短路状况的具体位 置等等。图1所示即为一台发电机组在检修时所记录的RSO波形。记录中两条响 应曲线相同时,所得出的差值为一条直线,这就说明匝间在运行中没有出现短路 现象。相反,则说明在发电机组运行中出现匝间短路现象。 2、气隙探测线圈波形法 (1)发电机内部气隙探测线圈的具体设置

变压器短路的原因是什么

因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。 (1)目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。 (2)抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,最热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,最高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。 (3)采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。 (4)采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。 (5)绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。 (6)绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。 (7)绕组的预紧力控制不当造成普通换位导线的导线相互错位。 (8)套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。 (9)作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电

变压器短路损坏的常见部位(正式版)

文件编号:TP-AR-L9930 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 变压器短路损坏的常见 部位(正式版)

变压器短路损坏的常见部位(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其绕组损坏部位主要有以下几种。 1.对应铁轭下的部位 该部位发生变形原因有: (1)短路电流所产生的磁场是通过油和箱壁或铁心闭合,由于铁轭的磁阻相对较小,故大多通过油路和铁轭间闭合,磁场相对集中,作用在线饼的电磁力也相对较大; (2)内绕组套装间隙过大或铁心绑扎不够紧实,导致铁心片二侧收缩变形,致使铁轭侧绕组曲翘变

形; (3)在结构上,轭部对应绕组部分的轴向压紧是最不可靠的,该部位的线饼往往难以达到应有的预紧力,因而该部位的线饼最易变形。 2.调压分接区域及对应其他绕组的部位 该区域由于: (1)安匝不平衡使漏磁分布不均衡,其幅向额外产生的漏磁场在线圈中产生额外轴向外力,这些力的方向总是使产生这些力的不对称性增大。轴向外力和正常幅向漏磁所产生的轴向内力一样,使线饼向竖直方向弯曲,并压缩线饼件的垫块,除此之外,这些力还部分地或全部地传到铁轭上,力求使其离开心柱,出现线饼向绕组中部变形或翻转现象; (2)该部位的线饼为力求安匝平衡或分接区间的应有绝缘距离,往往要增加较多的垫块,较厚的垫块

测量发电机转子绕组短路故障的方法(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 测量发电机转子绕组短路故障的 方法(新编版)

测量发电机转子绕组短路故障的方法(新编 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 (1)有效性的原因 这一试验是在转子绕组上施加工频交流电压,测量交流阻抗和功率损耗、若绕组中存在匝间短路,当交流电压作用时,在短路线匝中产生的短路电流,约是正常线匝电流的n倍(n为一个槽内绕组总匝数),它有着强烈的去磁作用,从而导致绕组的交流阻抗大大下降,电流大大增大,因功率损耗与电流的平方成正比,所以功率损耗也显落增大,通过测量转子绕组的交流阻抗和功率损耗,与原始(或以前)数据比较,即可灵敏地判断出转子绕组是否存在匝间短路缺陷。 (2)试验方法 ①试验接线:测量发电机转子绕组的交流阻抗和功率损耗试验接线如图8—14所示。图中仪表的量限应按具体机组而定,准确度不得低于0.5级。 ③注意事项:

a.要求试验电压为正弦波,为了减小高次谐波,最好试验电源取自线电压。 b.试验电压的峰值不得超过转子额定励磁电压。 c.试验时,先升至最高电压,然后下降分段测量,目的是为了减小剩磁对阻抗的影响。 d.交流阻抗和功率损耗与许多因素有关,试验时必须注意在相同的状态(指静态、动态,定子膛内、膛外,护环和槽楔与本体的结合状态)和相同参数(指转速、电压)下进行测量比较。 e.当转子绕组存在一点接地时,试验电源不能采用具有地线的电源,否则,试验电路中应另加隔离变压器,以免造成绕组和铁芯烧损事故。 f.对隐极式转子应在定子膛内或膛外测量。在膛内测量时,定子回路必须断开,以免因定子绕组中产生的感应电动势引起环流,影响测量结果,另外应注意安全。在膛外测量时,转子最好与周围的铁磁物质相距0.5m以上,距离有钢筋的地面0.3m以上。 e.对于显极式转子一般仅要求在膛外测量,除测量整个转子绕组的交流阻抗和功率损耗外,还应在相同的电流条件下测量各磁极绕组的电压,试验电路如图8—15所示。

发电机转子匝间短路的原因与分类

发电机转子匝间短路的原因与分类 核心提示:现场运行经验表明,发电机转子绕组匝间短路故障多发生在绕组端部,尤其是在有过桥连线的一端居多。造成发电机转子绕组匝间短路故障的原因很多,总体上可分为制造和运行两大方面。 1.匝间短路产生的原因 (1)设计制 现场运行经验表明,发电机转子绕组匝间短路故障多发生在绕组端部,尤其是在有过桥连线的一端居多。造成发电机转子绕组匝间短路故障的原因很多,总体上可分为制造和运行两大方面。 1.匝间短路产生的原因 (1)设计制造方面 1)设计不够合理有的转于结构设计不够合理,如端部弧线转弯处的曲率半径偏小,致使外弧翘起,运行中在离心力的作用下,匝间绝缘被压断,造成了匝间短路。 2)制造质量不良 ①转子端部绕组固定不牢,垫块松动。发电机运行中由于铜铁温差引起的绕组相对位移,设计上未采取相应的有效措施。 ②有的转子绕组在制造时所应用的匝同绝缘材料材质不良,含有金属性硬刺,绕组铜导线加工成形后不严格的倒角与去毛刺,运行中在离心力的作用下刺穿了匝间绝缘,造戒匝间短路。 ③端部拐角整形不好和局部遗留褶皱或凸凹不平;匝间绝缘垫片垫偏、漏垫或堵孔(直接冷却的绕组通风孔);绕组导线的焊接头和相邻两套绕组间的连接线焊口整形不良;制造工艺粗糙留下的工艺性损伤;转子护环内残存加工后的金属切屑等异物。

④有的转子线匝局部未铣风孔扎或风量不合格造成严重过热,从而引起匝间短路。 2.转子绕组匝间短路的分类 转子绕组匝间短路按照短路是否随着转子的转动状态和运行工况发生变化,可以分为稳定性匝间短路和不稳定性匝间短路(或称为动态匝间短路).其中动态匝间短路又占多数。 就故障发展的过程来分,可以分为三个阶段:萌芽期、发展期和故障期。在萌芽期,转子绕组匝间出现初始异常征兆,机组运行还未受到影响,发电机组振动、励磁电流、机组无功及轴电压等均符合正常运行工况。故障表现为局部过热、匝间以稳定的高阻短路或匝间绝缘间存在油污、漆片等污染物。在发展期,机组运行已经出现异常,匝间短路基本或已经具备稳定特征。发电机在运行状态下振动增大、机组励磁和无功受到影响,但运行工况限制尚未突破。在故障期,绕组匝间绝缘已经出现明显的严重短路征兆,发电机组振动超标、无功严重降低(励磁电流超过额定要求)、转于温度高等异常运行工况,已危及发电机组的安全运行,甚至包括已经促发转子接地等故障的发生。因此,在这种状态下要求机组立即停机,进行故障处理和全面检修。 发电机转子绕组匝间短路故障诊断的目的是尽可能在故障的萌芽期和发展期准确地诊断出稳定性匝间短路和动态匝问短路,分析故障发生的原因,并确定故障发生的部位和严重程度。

变压器绕组变形原因及危害

变压器绕组变形原因及危害 1.什么是绕组变形? 电力行业标准DL/T911-2004《电力变压器绕组变形的频率响应分析法》对绕组变形的定义是:电力变压器绕组在机械力或电动力作用下发生的轴向或径向尺寸变化,通常表现为绕组局部扭曲、鼓包或移位等特征。变压器在遭受短路电流冲击或运输过程中遭受冲撞时,均有可能发生绕组变形现象,它将直接影响变压器的安全运行。 2.绕组变形的原因 造成绕组变形的主要原因有: 2.1短路故障电流冲击 电力变压器在运行过程中,不可避免地要遭受各种短路电流的冲击,特别是变压器出口或近区短路故障,巨大的短路冲击电流将使变压器绕组受到很大的电动力(是正常运行时的数十倍至数百倍),并使绕组急剧发热。在较高的温度下,导线的机械强度变小,电动力更容易使绕组破坏或变形。 短路故障电流冲击是变压器绕最主要外因。 众所周知,电力变压器线圈是以绝缘垫块隔开的铜或铝线段所构成的。这种系统的动特性在发生突发短路时是变化的。因为绝缘热的弹性与其压紧程度有关,即与作用力有关。电动力本身也不是恒定不变的,而是按照复杂的规律变化。虽然对短路时作用在变压器线圈上的电动力的研

究始于四十年代,但是由于动态过程分析的复杂性,到目前为止尚不能用理论计算结果正确反映出变压器随突发短路电流冲击的能力。 a)扩张径向力b)压缩径向力 理论分析表明,作用在变压器上的电动力可分为轴向(纵向)和径向(横向)力两种。径向力的作用方向取决于线圈相互位置及其电流的方向,对双线圈变压器而方,径向力拉伸外部线圈,奔窜内部线圈,为了提高内部线圈对径向力的刚度。通常是将线圈绕制在由绝缘筒支撑的条上。此时,该线圈不但要随到压缩力作用,还会同时受到撑条所产生的弯曲力作用,如果所受到的合应力超过线圈刚度的屈服点,必将导致线圈发生永久变形,出现经常见到的梅花状或鼓包状绕组变形现象。 变压器线圈遭受到的轴向力可使线段和线匝在竖直方向弯曲,压缩线段间的垫展示会,并部分地传递到铁轭,力求使其离开心柱。通常,最大的弯曲力产生在位于线圈端部的线段中,而最大的压缩力则出现在位于线圈高度中心的垫块上。当线圈不等高时(主要由于高压分接头所致)或磁势颁布不均匀时,轴向力较之径向力更能引起变压器事故。 由此可见,当变压器在运行过程中遭受突发性短路故障电流冲击时,每个线圈都将宏观世界到强大的径向力和轴向力的共同作用。变压器绕组寝故障的表现形式大多表现为内绕组出现变形(尤其是对自耦变压器),发知鼓包、扭曲、移位等不可恢复的变形现象,其发展的典型形式是绝缘破坏,随后出现饼间击穿、匝间短路、主绝缘放电或完全击穿。 2.2在运输、安装或者吊罩过程中,可能会受到意外的冲撞、颠簸和振动等,导致绕组变形。

转子绕组匝间短路产生的原因和危害简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 转子绕组匝间短路产生的原因和危害简易版

转子绕组匝间短路产生的原因和危 害简易版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 (1)产生原因 ①制造工艺不良。例如:在下线、整形等 工艺过程中损伤匝间绝缘;铜线有硬块、毛 刺,也会造成匝间绝缘损伤。 ②运行中,在电、热和机械等综合应力的 作用下,绕组产生变形、位移,造成匝间绝缘 断裂、磨损、脱落;另外,由于脏污等,也可 能造成匝间(尤其是转子绕组的端部匝间)短 路。

③运行年久、绝缘老化,也会造成匝间短路。 (2)危害 转子绕组匝间短路故障是发电机常见性缺陷;轻微的匝间短路,机组仍可继续运行,但应注意加强监视和试验;当匝间短路严重时,将使转子电流显著增大,转子绕组温度升高,限制了发电机无功功率的输出,或者使机组振功加剧,甚至被迫停机。因此,当转子绕组发生匝间短路故障时,必须通过试验找出匝间短路点,予以消除,使发电机恢复正常运行。

相关文档
最新文档