实验报告 实验二 二叉树的建立和遍历

实验报告 实验二 二叉树的建立和遍历
实验报告 实验二 二叉树的建立和遍历

实验二二叉树的建立和遍历

一、实验目的

1.掌握二叉树的建立算法

2.掌握二叉树的前序、中序和后序遍历算法。

二、实验环境

操作系统和C语言系统

三、预习要求

复习二叉树的生成及遍历算法,编写完整的程序。

四、实验内容

要求采用二叉链表作为存储结构,完成二叉树的建立,前序、中序和后序遍历的操作,求所有叶子及结点总数的操作等。具体实现要求:分别利用前序遍历、中序遍历、后序遍历所建二叉树。

五、参考算法

二叉树的建立算法思路:主要利用二叉树的性质:在编号的完全二叉树中,编号为i 的结点如果存在左孩子,则其编号为2i;若其存在右孩子,则其编号为2i+1;若存在父结点,则其编号为i/2取整。对任意二叉树,先按满二叉树对其进行编号,算法中使用一个辅助向量s来存放指向树结点的指针。如s[i]中存放编号为i的结点的指针,即为该结点的地址。当结点编号i=1时,所产生的结点为根结点,同时将指向该结点的指针存入s[1]。当结点编号i>1时,产生一个新的结点后,也要将指向该结点的指针存入s[i],由上述性质可知:j=i/2为它的双亲结点编号。如果i为偶数,则它是双亲结点的左孩子,即让s[j]->lch=s[i];若i为奇数,则它是双亲结点的右孩子,即让s[j]->rch=s[i]。这样就将新输入的结点逐一与其双亲结点相连,生成二叉树。二叉树的建立也可使用递归算法实现。

A

B

C D

E

F

G

可以按如下次序依次输入给定二叉树及左右子树中的各结点值:

(1)输入根结点值。

(2)若左子树不空,则输入左子树,否则输入一个空格(或其它特殊字符)。

(3)若右子树不空,则输入右子树,否则输入一个空格(或其它特殊字符)。

如图所示二叉树,按先序遍历次序输入:

A B C ΦΦ D E Φ G ΦΦ F ΦΦΦ (/n)

二叉树的遍历算法可以使用递归算法实现,也可采用非递归算法实现,可参考教材上算法实现。

参考算法:

#include

#include

#include

#include

#define NULL 0

typedef char DataType;

typedef struct BinTNode

{

DataType data;

struct BinTNode *rchild,*lchild;

}BinTNode,*BinTree;

//创建二叉树

void Create(BinTree *T)

{

char ch;

if((ch = getchar())=='*') //输入'*'时该节点为空

*T= NULL;

else

{

*T=(BinTree)malloc(sizeof(BinTNode));

(*T)->data=ch;

Create(&(*T)->lchild);

Create(&(*T)->rchild);

}

}

//先序遍历二叉树

void PreOrder(BinTree T)

{

if(T)

{

printf("%c",T->data);

PreOrder(T->lchild);

PreOrder(T->rchild);

}

}

//中序遍历二叉树

void InOrder(BinTree T)

{

if(T)

{

InOrder(T->lchild);

printf("%c",T->data);

InOrder(T->rchild);

}

}

//后序遍历二叉树

void PostOrder(BinTree T) {

if(T)

{

PostOrder(T->lchild);

PostOrder(T->rchild);

printf("%c",T->data);

}

}

void main()

{

BinTree T;

printf("输入先序序列:");

Create(&T);

printf("输出先序遍历:");

PreOrder(T);

printf("\n");

printf("输出中序遍历:");

InOrder(T);

printf("\n");

printf("输出后序遍历:");

PostOrder(T);

printf("\n");

}

六、实验中出现的问题及对问题的解决方案

有语法错误和打程序时的拼写错误,主要就是根据出错的地方进行单方面的调试。

在算法实现上,从算法的效率看,非递归方法具有较好的时间效率,递归方法书写形式较为简捷,更为直观,一般具有较好的空间效率。在按要求访问树中某些结点的数据元素时,选择一种合适的访问顺序是有必要的。利用树对不同数据元素进行组合,在排序和某些特殊应用情景下是一种不错的选择。

七、实验总结

通过这个实验加深了我对单链表的认识,学会了简单单链表的建立,查找,插入和删除等基本运算,并对运用C语言上机调试单链表的基本方法有了初步了解。通过这个实验也使我认识到自己编程能力较差,在以后的学习中,应该加强编程方面的学习。

二叉树遍历方法技巧

二叉树遍历方法 1.中序遍历的投影法 如果给定一棵二叉树的图形形态,是否能根据此图快速地得出其中序遍历的序列?回答是肯定的。具体做法是:首先按照二叉树的标准绘制二叉树形态,即将所有左子树都严格绘于根结点的左边;将所有右子树都严格绘于根结点的右边。然后假设现在有一个光源从该二叉树的顶部投射下来,那么所有结点在地平线上一定会有相应的投影,从左至右顺序读出投影结点的数据即为该二叉树的中序遍历序列。如图11.10所示。 图示的中序遍历序列: D J G B H E A F I C 2.先序遍历的填空法 如果给定一棵二叉树的图形形态,可在图形基础上,采用填空法迅速写出该二叉树的先序遍历序列。具体做法是:我们知道,对于每个结点都由三个要素组成,即根结点,左子树、右子树;又已知先序遍历顺序是先访问根结点、然后访问左子树、访问右子树。那么,我们按层分别展开,逐层填空即可得到该二叉树的先序遍历序列。 图11.10 中序遍历投影法示意图 如图11.10 中的二叉树采用填空法的步骤如下: (1)根结点左子树右子树 A( )( ) (2)A (根结点(左子树)(右子树))(根结点(左子树)(右子树)) A B C (3)A(B(根结点(左)(右))(根结点(左)(右)))(C(……)(……)) A B D 无 G E H 无 C F 无 (4)A B D G J E H C F I 此即为该二叉树的先序遍历序列。 注:后序遍历的序列亦可以此方法类推,请读者自己尝试。

3.利用遍历序列构造二叉树 如果已知一棵二叉树的先序遍历序列和中序遍历序列,则可以用这两个遍历序列构造一棵唯一的二叉树形态。我们知道任意一棵二叉树的先序遍历序列和中序遍历序列是唯一的,那么首先从给定的先序遍历序列入手,该先序序列的第一个元素一定是该二叉树的根;再分析这个根结点在中序遍历序列中的位置,中序遍历序列中根结点的左边即为左子树的全部元素,而根结点的右边即为右子树的全部元素;然后据此再将先序遍历序列除根结点以外的其余部分分为左、右子树两部分,并在这两部分中分别找出左、右子树的根结点。依此类推,即可得到完整的二叉树。例11.1 已知一棵二叉树的先序遍历和中序遍历序列分别为: 先序: A B C I D E F H G 中序: C I B E D A H F G 请构造这棵二叉树。 按前述分析,这棵二叉树的构造过程如图11.11所示 图11.11 二叉树的构造过程 树、森林与二叉树的转换(flash演示) 如前所述,树(或森林)的存储结构及其操作算法的实现,由于其“度”的不确定性而导致其存储结构不是较为复杂就是浪费空间,因而,定义在其存储结构上的算法也相应地较难兼顾全面。如果我们设定一定的规则,用二叉树来表示树和森林的话,就可以方便地解决树、森林的存储结构及其相关算法问题。 1.树、森林转换为二叉树 我们知道,一棵树中每个结点的孩子是无序的,而二叉树中各结点的孩子必须有左右之分。在此,为避免概念混淆,首先约定树中每个结点的孩子按从左至右的顺序升序编号,即将树中同一层上的兄弟分出大小。那么将一棵树转换成二叉树的方法是: (1)在树中同层兄弟间加一连线; (2)对树中每个结点仅保留其与长兄(左边第一个孩子)的连线,擦去其与其它孩子的连线; (3)以树(或子树)的根作为轴心,将所有的水平连线顺时针旋转45度,即可得到与该树完全等价的一棵二叉树。

实验三 二叉树的基本操作实现及其应用

二叉树的基本操作实现及其应用 一、实验目的 1.熟悉二叉树结点的结构和对二叉树的基本操作。 2.掌握对二叉树每一种操作的具体实现。 3.学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。 4.会用二叉树解决简单的实际问题。 二、实验内容 设计程序实现二叉树结点的类型定义和对二叉树的基本操作。该程序包括二叉树结构类型以及每一种操作的具体的函数定义和主函数。 1 按先序次序建立一个二叉树, 2按(A:先序 B:中序 C:后序)遍历输出二叉树的所有结点 以上比做,以下选做 3求二叉树中所有结点数 4求二叉树的深度 三、实验步骤 ㈠、数据结构与核心算法的设计描述 /* 定义DataType为char类型 */ typedef char DataType; /* 二叉树的结点类型 */ typedef struct BitNode { DataType data; struct BitNode *lchild,*rchild; }*BitTree; 相关函数声明: 1、/* 初始化二叉树,即把树根指针置空 */ void BinTreeInit(BitTree *BT) { BT=(BitTree)malloc(sizeof(BitNode)); BT->data=NULL; cout<<"二叉树初始化成功!"<>ch; if(ch=='#') BT=NULL; else { if(!(BT=(BitTree)malloc(sizeof(BitNode)))) exit(0);

二叉树遍历所有代码

#include #include #include #include #include #define SIZE 100 using namespace std; typedef struct BiTNode //定义二叉树节点结构 { char data; //数据域 struct BiTNode *lchild,*rchild; //左右孩子指针域 }BiTNode,*BiTree; int visit(BiTree t); void CreateBiTree(BiTree &T); //生成一个二叉树 void PreOrder(BiTree); //递归先序遍历二叉树 void InOrder(BiTree); //递归中序遍历二叉树 void PostOrder(BiTree); //递归后序遍历二叉树 void InOrderTraverse(BiTree T); //非递归中序遍历二叉树 void PreOrder_Nonrecursive(BiTree T);//非递归先序遍历二叉树 void LeverTraverse(BiTree T);//非递归层序遍历二叉树 //主函数 void main() { BiTree T; char j; int flag=1; //---------------------程序解说----------------------- printf("本程序实现二叉树的操作。\n"); printf("叶子结点以空格表示。\n"); printf("可以进行建立二叉树,递归先序、中序、后序遍历,非递归先序、中序遍历及非递归层序遍历等操作。\n"); //---------------------------------------------------- printf("\n"); printf("请建立二叉树。\n"); printf("建树将以三个空格后回车结束。\n"); printf("例如:1 2 3 4 5 6 (回车)\n"); CreateBiTree(T); //初始化队列 getchar(); while(flag) {

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

二叉树实验报告

实验题目:实验九——二叉树实验 算法设计(3) 问题分析: 1、题目要求:编写算法交换二叉树中所有结点的左右子树 2、设计思路:首先定义一个二叉树的数据类型,使用先序遍历建立该二叉树,遍历二叉树,设计左右子树交换的函数,再次遍历交换之后的二叉树,与先前二叉树进行比较。遍历算法与交换算法使用递归设计更加简洁。 3、测试数据: A、输入:1 2 4 0 0 5 0 0 3 0 0 交换前中序遍历:4 2 5 1 3 交换后中序遍历:3 1 5 2 4 交换前:交换后: B、输入:3 7 11 0 0 18 17 0 0 19 0 0 6 13 0 0 16 0 0 交换前中序遍历:11 7 17 18 19 3 13 6 16 交换后中序遍历:16 6 13 3 19 18 17 7 11 概要设计: 1、为了实现上述功能:①构造一个空的二叉树;②应用先序遍历输入,建立二叉树;③中序遍历二叉树;④调用左右子树交换函数;⑤中序遍历交换过后的二叉树。 2、本程序包括4个函数: ①主函数main() ②先序遍历二叉树建立函数creat_bt() ③中序遍历二叉树函数inorder() ④左右子树交换函数 exchange()

各函数间关系如下: 详细设计: 1、结点类型 typedef struct binode //定义二叉树 { int data; //数据域 struct binode *lchild,*rchild; //左孩子、右孩子 }binode,*bitree; 2、各函数操作 ① 先序遍历建二叉树函数 bitree creat_bt() { 输入结点数据; 判断是否为0{ 若是,为空; 不是,递归;} 返回二叉树; } ② 左右子树交换函数 void exchange(bitree t) { 判断结点是否为空{ 否,交换左右子树; 递归;} } ③ 中序遍历函数 void inorder(bitree bt) { 判断是否为空{ 递归左子树; 输出; 递归右子树;} } main () creat_bt () inorder () exchange ()

二叉树遍历课程设计】汇编

数据结构程序设计报告 学院: 班级: 学号: 姓名:

实验名称:二叉树的建立与遍历 一、实验目的: 1.掌握二叉树的二叉链表存储结构; 2.掌握二叉树创建方法; 3.掌握二叉树的先序、中序、后序的递归实现方法。 二、实验内容和要求: 创建二叉树,分别对该二叉树进行先序、中序、后序遍历,并输出遍历结果。 三、叉树的建立与遍历代码如下: #include #include struct tnode//结点结构体 { char data; struct tnode *lchild,*rchild; }; typedef struct tnode TNODE; TNODE *creat(void) { TNODE *root,*p; TNODE *queue[50];

int front=0,rear=-1,counter=0;//初始队列中需要的变量front、rear和计数器counter char ch; printf("建立二叉树,请输入结点:(#表示虚节点,!表示结束)\n"); ch=getchar(); while(ch!='!') { if(ch!='#') { p=(TNODE *)malloc(sizeof(TNODE)); p->data=ch; p->lchild=NULL; p->rchild=NULL; rear++; queue[rear]=p;//把非#的元素入队 if(rear==0)//如果是第一个元素,则作为根节点 { root=p; counter++; } else { if(counter%2==1)//奇数时与其双亲的左子树连接 { queue[front]->lchild=p; } if(counter%2==0)//偶数时与其双亲的右子树连接 { queue[front]->rchild=p;

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

二叉树及其应用(实验五)

实验五二叉树及其应用 1.目的要求: (1)通过实验掌握二叉树的两种基本的存储结构,及二叉树的建立、遍历,并加以应用。 (2)Huffman树建立、编码。 2.实验内容: (1)按先序次序输入二叉树中结点的值,建立一棵以二叉链表作存储结构的二叉树,然后按先序、中序、后序顺序分别遍历这棵二叉树,并完成二叉树的相应信息 的统计(如各种结点数目、二叉树的高度等); (2)建立一棵二叉排序树,并对其进行先序、中序、后序遍历。 (3)应用队列结构实现二叉树的层次遍历。 (4)设计一个完整的编码系统:针对一篇文档,统计各个字符的出现次数,并为其设计Huffman编码。 注:(1)~(2)必做,(3)~(4)选做。 三.实验主要流程、基本操作或核心代码、算法片段(该部分如不够填写,请另加附页) (1)按先序次序输入二叉树中结点的值,建立一棵以二叉链表作存储结构的二叉树,然后按先序、中序、后序顺序分别遍历这棵二叉树,并完成二叉树的相应信息 的统计(如各种结点数目、二叉树的高度等); 程序代码: 头文件: #ifndef _H_ #define _H_ #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType e; struct BiTNode *LChild,*RChild; }BiTNode,*BiTree; Status Create(BiTree &T);

Status PrintElemType(TElemType e); Status PreOrderTraver(BiTree T,Status (* visit)(TElemType e)); Status InOrderTraver(BiTree T,Status (* visit)(TElemType e)); Status PostOrderTraver(BiTree T,Status (* visit)(TElemType e)); Status Count(BiTree T); Status Countleaf(BiTree T); Status Counttwo(int n); Status Countone(int n,int n0,int n2); Status Depth(BiTree T); #endif 主函数: #include #include #include"1.h" int main() { BiTree T; printf("请按照先序输入树值:\n"); if(!Create(T)) printf("存储空间分配失败\n"); printf("先序遍历该树为:\n"); if(!PreOrderTraver(T,PrintElemType)) printf("打印函数出错\n"); printf("\n"); printf("中序遍历该树为:\n"); if(!InOrderTraver(T,PrintElemType)) printf("打印函数出错\n"); printf("\n"); printf("后序遍历该树为:\n"); if(!PostOrderTraver(T,PrintElemType)) printf("打印函数出错\n"); printf("\n"); printf("总结点数有:%d\n",Count(T)); printf("其中叶子结点数有:%d\n",Countleaf(T)); printf("其中一度结点数有:%d\n",Countone(Count(T),Countleaf(T),Counttwo(Countleaf(T)))); printf("其中二度结点数有:%d\n",Counttwo(Countleaf(T))); printf("该二叉树的深度为:%d\n",Depth(T)); return 0; } 功能函数: #include #include #include"1.h"

二叉树的遍历算法实验报告

二叉树实验报告 09信管石旭琳 20091004418 一、实验目的: 1、理解二叉树的遍历算法及应用 2、理解哈夫曼树及其应用。 3、掌握哈夫曼编码思想。 二、实验内容: 1、建立二叉树二叉链表 2、实现二叉树递归遍历算法(中序、前序、后序) 3、求二叉树高度 4、求二叉树结点个数 5、求二叉树叶子个数 6、将序号为偶数的值赋给左子树 三、主要程序: #include #include typedef int ElemType; struct BiTNode { ElemType data; struct BiTNode *lch,*rch; }BiTNode,*BiTree; struct BiTNode *creat_bt1(); struct BiTNode *creat_bt2(); void preorder (struct BiTNode *t); void inorder (struct BiTNode *t); void postorder (struct BiTNode *t); void numbt (struct BiTNode *t); int n,n0,n1,n2; void main() { int k; printf("\n\n\n"); printf("\n\n 1.建立二叉树方法1(借助一维数组建立)"); printf("\n\n 2.建立二叉树方法2(先序递归遍历建立)"); printf("\n\n 3.先序递归遍历二叉树"); printf("\n\n 4.中序递归遍历二叉树"); printf("\n\n 5.后序递归遍历二叉树"); printf("\n\n 6.计算二叉树结点个数"); printf("\n\n 7.结束程序运行");

实验5 二叉树建立及应用

实验五二叉树建立及应用 一、实验目的 1.熟悉二叉树的存贮结构及遍历方式,掌握有关算法的实现。 2.能够利用二叉树解决具体问题。 二、实验环境 ⒈硬件:每个学生需配备计算机一台。操作系统:DOS或Windows; ⒉软件:DOS或Windows操作系统+Turbo C; 三、实验要求 ⒈要求采用二叉链表作为存贮结构,完成二叉树的建立、先序、中序、和后序遍历的 操作。 ⒉输入数据:树中每个结点的数据类型设定为字符型。 3.设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针),如ABD###CE##F##,建立二叉树,求出先序、中序和后序遍历,求该二叉树所有叶子结点总数。 四、实验内容 附:参考程序为类C语言程序,非标准C语言程序,需要进行相应的修改。 二叉链表结构如下:P134 typedef struct lnode {char data; struct lnode *lchild,*rchild; }lnode,*tree;

1.建树子函数P137 status creat(tree &t) {//按先序次序输入二叉树中结点的值,’.’字符表示空树 scanf(&ch); if(ch=='.') t=null; else {t=(tree)malloc(sizeof(lnode)); t->data=ch; creat(t->lchild); creat(t->rchild);} return ok; } 2.先序遍历子函数P136 preorder(tree t) { if(t!=null) {printf(t->data); preorder(t->lchild); preorder(t->rchild); } } 3.后序遍历子函数P136 postorder(tree t) {if(t!=null) {postorder(t->lchild); postorder(t->rchild); printf(t->data); } } 五、思考题 1. 已知二叉树先序和中序序列,唯一地构造一棵二叉树并且验证其正确性。 2. 建立一个二叉树,并且按层次遍历操作。 六、报告要求 1.报告要求用专门的实验报告纸书写,字迹清晰,格式规范。 2.报告中应写清姓名、学号、实验日期、实验题目、实验目的、实验要求。

基于二叉树遍历系统设计与实现

长春建筑学院《数据结构》课程设计(论文) 基于二叉树遍历系统设计与实现Binary tree traversal System Design and Implementation 年级: 学号: 姓名: 专业: 指导老师: 二零一三年十二月

摘要 针对现实世界中许多关系复杂的数据,如人类社会的家谱,各种社会组织机构,博弈交通等复杂事物或过程以及客观世界中广泛存在的具有分支关系或层次特性的对象.如操作系统的文件构成、人工智能和算法分析的模型表示以及数据库系统的信息组织形式等,用线性结构难以把其中的逻辑关系表达出来,必须借助于数和图这样的非线性结构,因此在以模拟客观世界问题,解决客观世界问题为主要任务的计算机领域中树型结构是信息的一种重要组织形式,树有着广泛应用。在树型结构的应用中又以二叉树最为常用。 二叉树是一种非常重要的非线性结构,所描述的数据有明显的层次关系,其中的每个元素只有一个前驱,二叉树是最为常用的数据结构,它的实际应用非常广泛,二叉树的遍历方式有三种,前序遍历,中序遍历,后序遍历,先序遍历的顺序为:NLR 先根结点,然后左子树,右子树;中序遍历顺序为;LNR先左子树,然后根结点,右子树;后序遍历顺序为:LRN先左子树,然后右子树,根结点。由前序和中序遍历,有中序和后序遍历序列可以唯一确定一棵二叉树。 对于给几个数据的排序或在已知的几个数据中进行查找,二叉树均能提供一种十分有效的方法,比如在查找问题上,任何借助于比较法查找长度为Ⅳ的一个序表的算法,都可以表示成一株二叉树。反之,任何二叉树都对应一个查找有序表的有效方法根据树的数学理论,对于算法分析的某些最有启发性的应用,是与给出用于计算各种类型中不同树的数目的公式有关的。 本文对二叉树以及二叉树的各种功能做介绍以及写出一些基本的程序,让读者对二叉树的理解有更好的效果。 关键词:二叉树;左子树;右子树

二叉树的遍历实验报告

二叉树的遍历实验报告 一、需求分析 在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。 对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。 二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。本次实验要实现先序、中序、后序三种遍历。 基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。 二、系统总框图

三、各模块设计分析 (1)建立二叉树结构 建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。本实验用的是先序遍历的规则进行建树。 二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。因此要先定义一个结构体。此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。最后,还需要一个链表的头指针指向根结点。 要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。当它遇到该标志时,就指向为空。 建立左右子树时,仍然是调用create ()函数,依此递归进行下去,

直到遇到结束标志时停止操作。 (2)输入二叉树元素 输入二叉树时,是按上面所确定的遍历规则输入的。最后,用一个返回值来表示所需要的结果。 (3)先序遍历二叉树 当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (4)中序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (5)后序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (6)主程序 需列出各个函数,然后进行函数调用。 四、各函数定义及说明 因为此二叉树是用链式存储结构存储的,所以定义一个结构体用以存储。 typedef struct BiTNode { char data; struct BiTNode *Lchild; struct BiTNode *Rchild;

实验五--二叉树的存储结构和基本操作

实验五二叉树的存储表示和基本操作 实验内容 1. 二叉树的二叉链表的存储结构 —————二叉树的二叉链表存储表示———————— typedef struct node { ElemType data; /*数据元素*/ struct node *lchild; /*指向左孩子*/ struct node *rchild; /*指向右孩子*/ } BTNode; 2. 二叉树的基本操作 (1)创建操作:创建一棵二叉树。 (2)查找操作:查找二叉树中值为x的结点。 (3)查找左孩子操作:查找二叉树中值为x的结点的左孩子。 (4)查找右孩子操作:查找二叉树中值为x的结点的右孩子。 (5)求深度操作:求二叉树的深度。 (6)求宽度操作:求二叉树的宽度。 (7)求结点个数操作:求二叉树的结点个数。 (8)求叶子结点个数操作:求二叉树的叶子结点个数。 (9)输出操作:以括号表示法输出二叉树。 3. 链式队列操作实现的步骤 (1)实现将链式队列的存储结构和基本操作程序代码。 (2)实现main主函数。 4.程序代码完整清单 #include #include #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; /*数据元素*/ struct node *lchild; /*指向左孩子*/ struct node *rchild; /*指向右孩子*/ } BTNode; //基本操作函数声明 void CreateBTNode(BTNode *&b,char *str); /*创建一棵二叉树*/ BTNode *FindNode(BTNode *b,ElemType x); /*查找二叉树的结点*/ BTNode *LchildNode(BTNode *p); /*查找二叉树结点的左孩子*/ BTNode *RchildNode(BTNode *p); /*查找二叉树结点的右孩子*/ int BTNodeDepth(BTNode *b); /*求二叉树的深度*/

二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告 篇一:二叉树遍历实验报告 数据结构实验报告 报告题目:二叉树的基本操作学生班级: 学生姓名:学号: 一.实验目的 1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。 2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。二.实验学时: 课内实验学时:3学时课外实验学时:6学时三.实验题目 1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序

遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTree structnode*lchild,*rchild; }binTnode;元素类型: intcreatebinTree(binTree voidpreorder(binTreevoidInorder(binTree voidpostorder(binTreevoidInordern(binTreeintleaf(bi nTree intpostTreeDepth(binTree 2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构 3)实现过程: 1、实现非递归中序遍历代码: voidcbiTree::Inordern(binTreeinttop=0;p=T;do{ while(p!=nuLL){ stack[top]=p;;top=top+1;p=p->lchild;}; if(top>0){ top=top-1;p=stack[top];

数据结构-实验五讲义(1)-二叉树的基本操作

实验5:二叉树的基本操作(6学时) 一、实验目的 1.理解二叉树的基本概念和特点 2.掌握二叉树的链式存储结构 3.掌握二叉树的基本操作 4.掌握二叉树遍历操作 5.掌握哈夫曼树的构造算法和基本操作 二、实验内容 1. 实现二叉树的如下操作,二叉树如下图所示。(采用二叉链存储结构实现) (1)输出二叉树b; (2)输出C节点的左、右孩子节点值; (3)输出二叉树的深度; (4)输出二叉树b的节点个数; (5)输出二叉树b的叶子节点个数。 A B C D G E F b 具体效果如下:

三、实验要求 1.独立完成实验程序的编写与调试; 2.实验完成后填写实验报告,学习委员按学号从小到大的顺序提交。 四、思考题 1.思考二叉树先序遍历、中序遍历、后序遍历的递归和非递归算法的实现方法。 方法说明: (1)CreateBTNode(*b,*str):根据二叉树括号表示法字符串str生成对应的二叉链存储结 构,后者的根节点为*b。 (2)FindNode(BTNode *b,ElemType x):在二叉树b中寻找data域值为x的节点,并返回指 向该节点的指针。 (3)LchildNode(BTNode *p):求二叉树中节点*p的左孩子节点。 (4)RchildNode(BTNode *p):求二叉树中节点*p的右孩子节点。 (5)BTNodeDepth(BTNode *b):求二叉树b的高度,若二叉树为空,则其高度为0;否则, 其高度等于左子树与右子树的高度中的最大高度加1。 (6)DispBTNode(BTNode *b):以括号表示法输出一棵二叉树。 (7)Nodes(BTNode *b):求二叉树b的节点个数 (8)LeafNodes(BTNode *b):求二叉树b的叶子节点个数 (9)DestroyBTNode(BTNode *&b):销毁二叉树b

数据结构二叉树遍历实验报告

问题一:二叉树遍历 1.问题描述 设输入该二叉树的前序序列为: ABC##DE#G##F##HI##J#K##(#代表空子树) 请编程完成下列任务: ⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列; ⑵按层次遍历的方法来输出该二叉树按层次遍历的序列; ⑶求该二叉树的高度。 2.设计描述 (1)二叉树是一种树形结构,遍历就是要让树中的所有节点被且仅被访问一次,即按一定规律排列成一个线性队列。二叉(子)树是一种递归定义的结构,包含三个部分:根结点(N)、左子树(L)、右子树(R)。根据这三个部分的访问次序对二叉树的遍历进行分类,总共有6种遍历方案:NLR、LNR、LRN、NRL、RNL和LNR。研究二叉树的遍历就是研究这6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即NLR与NRL、LNR与RNL、LRN 与RLN,分别相类似,因而只需研究NLR、LNR和LRN三种即可,分别称为“先序遍历”、“中序遍历”和“后序遍历”。采用递归方式就可以容易的实现二叉树的遍历,算法简单且直观。 (2)此外,二叉树的层次遍历即按照二叉树的层次结构进行遍历,按照从上到下,同一层从左到右的次序访问各节点。遍历算法可以利用队列来实现,开始时将整个树的根节点入队,然后每从队列中删除一个节点并输出该节点的值时,都将它的非空的左右子树入队,当队列结束时算法结束。

(3)计算二叉树高度也是利用递归来实现:若一颗二叉树为空,则它的深度为0,否则深度等于左右子树的最大深度加一。 3.源程序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #include #include #include #define ElemType char struct BTreeNode { ElemType data; struct BTreeNode* left; struct BTreeNode* right; }; void CreateBTree(struct BTreeNode** T) { char ch; scanf_s("\n%c", &ch); if (ch == '#') *T = NULL;

二叉树的建立和遍历实验报告

实验四二叉树的建立和遍历 学院专业班 学号姓名 一.实习目的 1.掌握二叉链表的存储结构; 2.掌握二叉链表的建立; 3.掌握二叉树的先序遍历、中序遍历、后序遍历的递归算法; 4. 掌握二叉树遍历算法的应用; 二.实习内容 1.按先序序列建立二叉树的二叉链表(算法6.4)(空树用#表示) 2.对生成的二叉树分别进行先序遍历、中序遍历、后序遍历,输出结果。 3.统计二叉树中结点个数; 4. 求二叉树的高度; 三.实验步骤 1.定义二叉链表的存储结构 #include "stdio.h" #include "stdlib.h" typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; // 左右孩子指针 }BiTNode,*BiTree; 2.编写函数CreateBiTree,按先序序列建立二叉树的二叉链表; 测试的字符序列为abdg###e##c#f##; 程序代码为: void CreateBiTree(BiTree &T) { // 算法6.4:按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义),构造二叉链表表示的二叉树T。以#表示空树 TElemType ch; scanf("%c",&ch); if(ch=='#') // 空 T=NULL; else { T=(BiTree )malloc(sizeof(BiTNode)); // 生成根结点 if(!T)

exit(-1); T->data=ch; CreateBiTree(T->lchild);// 递归构造左子树 CreateBiTree(T->rchild);// 构造右子树 } } 2. 编写二叉树的先序遍历、中序遍历、后序遍历的递归算法 int preOrderTraverse(BiTree T) { // 初始条件:二叉树T存在,先序递归遍历T; if(T==NULL) return 1; if(T!=NULL) // T不空 {printf("%5c",T->data); // 访问根结点preOrderTraverse(T->lchild);// 先序遍历左子树 preOrderTraverse(T->rchild);// 先序遍历右子树 } } int inOrderTraverse(BiTree T) { // 初始条件:二叉树T存在,中序递归遍历T; if(T==NULL) return 1; if(T!=NULL) // T不空 { inOrderTraverse(T->lchild);// 中序遍历左子树 printf("%5c",T->data); // 访问根结点inOrderTraverse(T->rchild);// 中序遍历右子树 } } int postOrderTraverse(BiTree T) { // 初始条件:二叉树T存在, // 操作结果:后序递归遍历T; if(T==NULL) return 1; if(T!=NULL) // T不空 { postOrderTraverse(T->lchild);// 后序遍历左子树 postOrderTraverse(T->rchild);// 后序遍历右子树 printf("%5c",T->data); // 访问根结点

相关文档
最新文档