化工原理传热课程设计

化工原理传热课程设计
化工原理传热课程设计

列管式热交换器的设计

化工原理教研室

化工原理课程设计指导书

列管式热交换器的设计

贵州工业大学化工原理教研室孙礼运编

目录

前言 (2)

一、概述 (2)

二、热交换器设计的主要因素 (3)

三、列管式热交换器的设计步骤 (4)

(一)物料衡算及热量衡算 (4)

(二)确定两载热体的物性数据 (4)

(三)两载热体的流程安排 (5)

(四)管、壳程数的确定 (5)

(五)传热平均温度差计算 (5)

(六)估算传热面积 (6)

(七)结构设计 (7)

(八)计算阻力压降 (12)

(九)计算温差应力,确定热补偿方法 (13)

(十)设计管箱和接管 (13)

(十一)确定换热管与管板的连接方法 (14)

参考资料 (14)

附录 1、合成氨生产中一氧化碳变换工艺简介 (15)

2、常压下,0~t℃时气体的平均定压热容 (16)

3、3.5大气压(绝)下,过热蒸汽的焓 (17)

4、CO、CH4的导热系数 (17)

附图列管式热交换器结构型式图 (18)

化工原理课程设计任务书

前言

化工原理课程设计是化工原理课程的一个总结性教学环节,是培养学生工程设计能力的一次基本训练,它要求学生按照课程设计任务书的要求,完成一项化工设备的设计工作,通过设计使学生掌握化工设计的基本程序和方法,同时在以下几个方面得到训练、培养和提高:

1. 综合应用化工原理课程及有关先修课程的基本知识去分析和解决实际问题的能力。

2. 查阅技术资料、选用计算方法、计算公式和收集数据的能力。

3. 树立正确的设计思想,懂得工程设计应兼顾技术上的先进性、经济上的合理性和操作上的安全可靠性。

4. 用层次清楚的计算,辅以必要而简洁的文字说明和清析的图表来表达设计结果的能力。

5. 工程制图的能力。

课程设计结果要求编写成“设计说明书”,绘制相应的工艺流程图和主体设备图。

设计说明书的内容一般应按如下项目编写

1. 设计任务书。

2. 目录。

3. 设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。

4. 设计计算过程:

①工艺计算及主体设备的设计计算。包括工艺参数的选定、物料衡算、热量衡算、主体设备结构和工艺尺寸的设计计算等。

②辅助设备的选型计算。通过计算选定典型辅助设备的规格型号。

5. 图纸:

①工艺流程图。以单线条的形式绘制,标出主体设备与辅助设备的物料走向、物流量、能流量和主要测量点。

②主体设备工艺条件图。图面应包括设备的主要工艺尺寸、技术特性表和接管表。

6. 设计结果汇总。分表列举各流股物料量、能耗指标、主要操作参数、主体设备工艺尺寸以及辅助设备的规格、型号和数量等。

7. 设计结果评述。

8. 参考资料。

本课程设计指导书根据化工原理教学大纲的要求,对给定化工单元操作典型设备的设计计算,给学生提示了设计计算步骤,指导计算方法,并提供了部分计算公式和数据,作为对课堂教学内容的补充。

设计计算中需要用到的大部分计算公式和数据应由学生自己查阅有关资料。

一、概述

热交换器是化工厂中最常用的设备之一,按其传热的特征,可以分为三大类:直接接触式、蓄热式和间壁式。其中,又以间壁式热交换器的使用最为广泛。

间壁式热交换器的类型很多,传统的类型有列管式、套管式、蛇管式、夹套式,等等。为了提高传热效率和节约金属材料用量,近年来一些比较先进的间壁式换热设备,例如板式换热器、螺旋板式换热器、螺纹管换热器等,在我国正得到广泛应用。此外,热管换热器、平板型太阳集热器等新型换热设备的设计研究及工程应用工作也在进行。

在上述类型换热设备中,目前应用最多的仍为列管式,它与其他传统设备相比,单位体积设备所能提供的传热面积较大,传热效果较好,结构紧凑、坚固,用材可以多样,就是与一些新型设备相比,它也还具备适应性强、操作可靠等优点。

列管式换热设备已有国家系列化标准的定型产品,需要时可以通过计算选用。但是,掌握列管式换热器单体设备工艺设计计算的基本方法,亦属化工类工艺专业学生有必要接受的一项基本训练。

二、热交换器设计的主要因素

在热交换器的设计中,应当综合考虑的因素很多,流体速度是一个主要因素。

选取较大的流体速度,可以获得较大的传热系数,传递一定热量所需的传热面积就比较小,从而可以降低设备费用。但是,大的流体速度,使得流体通过热交换器的阻力压降大,能量消耗大,操作费用就高。如选取较小的流体速度,情况刚好相反,操作费用可以降低,设备费却要增加。因此,在热交换器设计中有一个最适宜流体速度的选取问题。

如要通过定量计算来解决最适宜流体速度的选取问题,是既费时而又很困难的,实际上有关的经验数据常被作为设计的依据。寻求其它设计因素的最佳条件时也往往是这样处理。表1和表2列出了工业上常用的流速范围,可供参考。

按理,最低的流体速度也应使管、壳程内流体处于湍流状态为宜,但是在某些场合也有例外,为了降低系统阻力,管、壳程内流体速度的取值可以比表1、2所列数值范围的下限还要低得多。例如,中、小型合成氨厂变换工段湿混合煤气与变换气用列管换热器管程流体速度,一般仅为2~2.5m/s。

合理的流速要由允许压降来确定,表3给出了允许压强降的参考值。

表1 列管式换热器内常用流速范围

表2 不同粘度液体流速(以普通钢壁为例)

表3 换热器的合理压降

三、列管式热交换器的设计步骤

(一) 物料衡算及热量衡算

根据工艺条件分别进行物料衡算及热量衡算,首先要选择计算基准,例如对合成氨厂的设计,可以每生产一吨氨为计算基准,确定实现换热的两载热体的质量流量(m 1和m 2),初始和最终温度(T 1、T 2和t 1、t 2),相互交换的热量即热负荷(Q )等。在确定这些量时,计算的顺序须根据已知工艺条件的具体情况而定。 (二) 确定两载热体的物性数据

设计中需要用到的物性数据,主要是比热(Cp )或潜热(r )、密度(ρ)、粘度(μ)、导热系数(λ)等,单纯流体的这些物性数据容易自有关资料中的图表查得。

一般情况,为了简化计算,可以采用载热体在换热器进、出口平均压力、温度下的物性数据值。

混合流体的物性数据一般缺乏现成的资料可供查取,需要由组成混合流体各组分的相关物性数据值,通过一些近似计算方法来确定,资料[1][3]均有介绍。

例如,对于混合气体的比热、粘度和导热系数等可以按下述简便办法估计:

]./[C kmol kcal y C C i

pi pm ?∑=

∑∑=

2

12

1i

i i i i m M y M y μμ [ Pa.s ]

∑∑=

3

13

1i

i i i i m M y M y λλ [ W/m.℃ ]

式中:C pm 、μm 、λm 混合气体的比热、粘度、导热系数;

Cpi 、、μi 、λi 混合气体中i 组分的比热、粘度、导热系数; y i 、M i 混合气体中i 组分的摩尔分率、分子量。

(三)两载热体的流程安排

根据两载热体的物理、化学性质及操作压力、温度等条件,确定两载热体哪一个走管程,哪一个走壳程。

通常根据以下原则进行综合考虑,权衡利弊,作出选择: 1、不洁净和易结垢的液体宜在管程,因管程方便清洗; 2、腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀; 3、压强高的流体宜在管程,以免壳体承受压力;

4、饱和蒸汽宜走壳程,因饱和蒸汽比较清净,对流传热系数与流速无关,而且冷凝液在壳程易于排除;

5、被冷却的流体宜走壳程,便于散热;

6、若两流体温差较大,对于刚性结构的换热器,宜将对流传热系数大的流体进入壳程,以减小热应力;

7、流量小而粘度大的流体一般宜在壳程,因在壳程R e >100即可达到湍流。但如流动阻力损失允许,将这种流体进入管程而采用多管程结构,在高流速下可能得到更高的对流传热系数。 (四)管、壳程数的确定

列管式换热器最一般的形式为单管程单壳程,但多管程多壳程的设计亦很常见。当流量一定时,管程或壳程越多,对流传热系数越大,对传热过程有利。但是,采用多管程或多壳程必然导致流动阻力增大,即造成输送流体的动力费用增加。因此,在确定换热器程数时,需权衡传热和流体输送两方面的得失。

管程数一般有1、2、4、6、8、10、12等七种,分程时应尽可能使各管程的换热管数大致相等,分程隔板槽形状简单,密封面长度较短。

壳程数的增加可在壳体内安装纵向隔板将壳程分为双程,或设计成两台以上设备串联使用。

(五)传热平均温度差计算

根据冷热流体的流程安排和所设计管、壳程数确定两流体呈逆流、并流、错

流或其他复杂流动形式,计算传热平均温度差)(m t ?。

(六)估算传热面积

首先要估计传热系数K ,可以根据有关资料推荐的K 值的经验取值范围先取一个K 值,然后由传热基本方程式Q=KA m t ?计算传热面积A ',此即传热面积估算值,待结构设计结束以后,再对K 值和传热面积进行核算。

(七)结构设计)

1、管程设计——确定换热管规格、管数和布管

初选管程流速i u ';计算对应于i u '的管程流道截面积'

i S ;

选用列管规格。换热管直径越小,换热器单位体积的传热面越大。因此,对于洁净流体的管径可以取得小些,但对于不洁净或易结垢的流体,管径应大些,以免堵塞并便于清洗。目前,我国试行的系列标准规定采用Ф25×2.5和Ф19×2的冷拔无缝钢管,对一般流体是适应的。单体设备设计时,按GB151-89规定除了这两种规格的管子外,还可采用Ф32×3、Ф38×3等其他规格管子;

计算满足'

i S 流道载面所需的列管根数n ';

确定列管在管板上的排列方法。常用的排列方法有正三角形排列,转角正三角形排列、正方形排列和转角正方形排列(图1)。正三角形排列比较紧凑,管外流体湍动程度高,对流传热系数大。正方形排列比较疏散,对流传热效果较差,但对管束清洗方便,对管程易结垢流体较适用。转角正方形排列则可在一定程度上提高对流传热系数。

表5是正三角形排列时不同层数对应可排列的管子数,当管子排列大于6层(管数超过127根),管束外缘与壳壁之间弓形区域应增排管子,这样既可以充分利用设备空间,又可以防止壳程流体短路旁流,有利于传热。

表5 正三角形排列时管板上排管数目

确定换热管中心距——管间距t 。换热管中心距t一般不小于1.25倍换热管外径d o,常用的换热管中心距见表6。

计算换热器外壳的内径D i,对固定管板式换热器可按下式计算:

D i=D L+2b3

式中D L 布管限定圆直径,mm;

b3列管束最外层换热管外壁到壳体内壁的最小距离,mm;见图2 。

b3=0.25~1d o ,且不小于10mm

对于正三角形排列,布管限定圆直径

D L=t(b-1)+ d o

式中b=2a+1 ,为管子排列正六边形对角线上的管子数;a为六角形的层数。

最初,这样计算的D i往往是一个不规范的数值,为了设计和加工制造上的方便,应按一定的规范将D i圆整。按GB151-89,卷制圆筒的公称直径以400mm

表6 换热管中心距t mm

为基数,以100mm 为进级档,必要时也可以采用50mm 为进级档。圆整D

i 值以后,要相应调整t 、b 3等数值,使之与D i 吻合。

2、设置拉杆

为固定折流板或管子支持板,必须设置带有同心定距管的拉杆(适用于换热管外径大于或等于19mm 的管束)或设置与折流板点焊相连的拉杆(适用于换热管外径小于或等于14mm 的管束),如图3。

拉杆的直径和数量一般可按表7、表8选用。 表8 拉杆数量

在保证大于或等于表8所给定的拉杆总截面积的前提下,拉杆直径和数量可以变动,但其直径不得小于10mm ,数量不少于4根。

拉杆应尽量均匀布置在管束的外边缘。对于大直径的换热器,在布管区内靠近折流板缺口处也应布置适当数量的拉杆。

一般,每一根拉杆将占据一根换热管的位置,根据管子排列层数a 所对应的管子数,扣除拉杆数,即获得实际的换热管数n 。

3、确定管程流速ui

由实际的换热管数n计算ui。

4、壳程设计

(1)确定换热管长度

由前述估算的传热面积Aˊ计算列管的参考长度Lˊ,Lˊ=Aˊ/nπd o,根据Lˊ选取标准化的和结构上方便的换热管长度L(1000、1500、2000、2500、3000、4500、6000、7500、9000、12000mm)。一般,换热器竖放时管长与外壳内径之比(L/D)应在4~6之间,卧放时允许长径比较大,以6~10最为常见。如果列管的长度超过结构上方便的尺寸,需要调整结构设计,也可以考虑把换热器做成双管程或更多管程;

计算管外传热面积的设计值A o=nπd oL。

(2)设置折流板

为加大壳程流体的湍动程度,提高传热系数,可在壳程设置折流挡板,折流板还可起到支撑管子的作用,故可代替支撑板。折流挡板通常有圆缺形和圆盘~圆环形两种。圆缺形挡板缺口部份的弓形弦高度h d一般取为外壳内径的20~45%。当列管长L确定以后,设置挡板数N B取决于板间距h。一般,取h=(0.2~1)D,按等间距布置。在允许的压力损失范围内,希望取较小的板间距。比较理想的是使缺口流通截面积和通过管束错流流动的截面积大致相等,这样可以减小压降,但是板间距不得小于壳内径的1/5或50mm。在不单独设置支撑管板时,最大间距应不大于外壳内径,且满足表9的要求。

我国系列化标准中采用的挡板间距,固定管板式有150、300、600mm三种,浮头式有150、200、300、480、600mm五种。

路形成旁流;如管程分程,隔板处不能排管子,部分流体也将由此通道短路形成穿流。旁流和穿流都不利于传热,此时应考虑设计旁流挡板和安装假管来消除或减少旁流和穿流。

5、核算抟热面积A

(1)管程对流传热膜系数αi的计算

按流体在圆管内流动时对流传热膜系数的通常计算方法计算。

(2)壳程对流传热膜系数αo的计算。

本项以无相变流体为例说明。

如果列管换热器壳程未设挡板,流体可按平行管束流动考虑,应用圆管公式

计算αo ,不过管内径要以当量直径代替。如壳程设置挡板,壳程流体湍动程度增大,一般当R e >100即可达到湍流,这时壳程流体对流传热膜系数αo 的计算,要根据壳程具体结构选用适宜的计算式。

当壳程设置有25%的圆缺形挡板,R e =2×103~106时,αo 可用下式计算:

14.03

1

55

.0)/(36.0w r e

P R Nu μμ=

14

.03

155.0)(

)(

)(

36.0w

p e e

o c u d d a μμλ

μ

μρ

λ

= 定性温度取壳程流体平均温度,仅w μ是指壁温下的流体粘度;当量直径d e

要根据管子的排列情况决定,正三角形排列时,

o

o e d d t d ππ)423(422-=

式中 t 管间距;d o 管子外径。

流速u 按流体流过的最大截面积s 计算,即

)1(t

d hD s o

i -

= 式中 h 板间距;D i 外壳内径。

管壁温度的确定:

若壳程走热流体,则T w =T o

o A a Q

-

; 若壳程走冷流体,则t w =t o

o A a Q

+

式中:T w 、t w 壳程走热流体或冷流体时的壁温;

T 、t 壳程热流体或冷流体温度(进、出口平均值); Q 传热效率;

0α 壳程对流传热膜系数; A 0 换热管外表面积

由上可见,需要采用试差法进行计算。 (3)污垢热阻R a 的确定

通常是根据经验选用污垢热阻作为计算的依据,一些资料介绍有各种污垢热阻的经验取值。

半水煤气之类气体的污垢热阻可以取为0.001~0.002 [m 2﹒h ﹒℃/kcal ]

(4)管壁热阻 R=

λ

b

[m2﹒℃/kW ] 式中 b 管壁厚度, m

λ 管壁材料的导热系数, kW/m·℃ (5)传热系数K 0的计算

以列管外表面积A O 为基准的传热系数K O 按下式计算

i

i i ai m o ao o o o o A a A R A R A R A a A K 1

11++++= 即

A A

A A R A A R R a K i

i o i o ai m o ao o o α++++=11 式中 αo 、αi 壳程和管程对流传热膜系数,kw/m 2.℃;

R ao 、R ai 管外壁和管内壁污垢热阻,m 2.℃/kw ; R 管壁热阻,m 2.℃/kw ;

A o 、A i 、A m 列管外表面积、内表面积和平均面积,m 2。

(6)核算传热面积A o

按传热基本方程式计算需要的管外传热面积A o /

=

m

o t K Q

?

比较需求值A o /和设计值A o ,应有A o >A o /

。为保证一定的富裕量,一般要求

A A A o

o o /

/

-×100%=10~15%,或再大一点。如果设计值A o 不足,应调整结构设计,

参考已得出的结果,重新进行各项有关计算。 (八)计算阻力压降

从降低能量消耗的角度出发,流体通过热交换器的阻力压降越小越好。 为选择流体输送机械,需要计算设备的阻力压降,有时设计课题事先对整个工艺流程进行平衡后再对单个设备的阻力压降提出限制值,这就更有必要对设备的阻力压降进行核算。

由于流体在列管换热器内,尤其是在壳程的流动状况比较复杂,难以准确计算阻力压降。各种资料提供的计算公式不尽相同,所得结果往往相差也较大,设计者应根据具体情况选用。

如果阻力压降过大,应调整结构设计,以降低流动阻力,在一台设备不宜解决问题的情况下,必要时可设计成两台并联设备,但这无疑要增加设备费用。(九)计算温差应力,确定热补偿方法

固定管板式列管换热器,管束与壳体的温度是有差别的,它们又是刚性连接,这样就会在管束与外壳之间产生温差应力,若温度应力过大,可能导致换热管弯曲变形,或使管子自管板上拉脱,外壳轴向应力也会增加,从而使换热器毁坏,因此有必要计算温差应力,确定热补偿方法。

一般,当管束与壳体的壁温差大于50℃时,就需要采用一定的热补偿装置。

见附图1~4,若将换热器设计成浮头式、U型管式或填料函式,这些型式的管束与壳体的热胀冷缩互不牵制,可以完全消除温差应力。但是这些型式的设备,浮头式结构复杂,造价高;U型管式管子内壁清洗困难,管板上排列的管子少;填料函式壳程密封度有限,等等,都使它们的应用受到一定限制。

用得最多的热补偿方法是在固定管板式换热器的壳体上装设波形膨胀节,利用膨胀节的弹性变形来补偿壳体与管束膨胀的不一致性,从而达到减小温差应力的目的。

波形膨胀节一般采用U型,其结构如图4(a)所示,允许采用两个半波零件焊接成的膨胀节,其结构如图4(b)所示。膨胀节的选材和计算可按GB151-89规定进行。

(十)设计管箱和接管

管箱结构应便于装拆,因为清洗、检修管子时需要折下管箱。

接管应尽量沿壳体的径向或轴向设置,接管与外部管线可采用焊接连接,但当设计温度高于或等于300℃时,则必须采用整体法兰。必要时可设置温度计接口、压力表接口及液面计接口;对于不能利用接管进行放气和排液的换热器,应在管程及壳程的最高点设置放气口,最低点设置排液口,其最小公称直径为20mm。

当管程采用轴向入口接管或换热管内流体流速大于3m/s时,应在管程设置防冲板,以减少流体的不均匀分布和对换热管端的冲蚀。

当壳程进口管流体的ρu2值(ρ—流体密度,kg/m3;u—流体流速,m/s)为下列数值时,应在壳程进口管处设置防冲板或导流筒:对非腐蚀性的单相流体,ρu2>2230kg/m.s2;其它液体,包括沸点下的液体,ρu2>740kg/m.s2;

而对有腐蚀的气体、蒸汽及汽液混合物,则一定要设置防冲板。必要时,蒸汽进口管可采用扩大管,以起缓冲作用。

(十一)确定换热管与管板连接方法

换热管与管板的连接方法通常采用的是胀接法和焊接法。只有在对密封性能有特殊要求的场合,才采取胀焊并用。

胀接是利用胀管器挤压伸入管板孔中的管子端部,使管端发生塑性变形,管板孔同时发生弹性变形,当取出胀管器后,管板孔弹性收缩,管板与管子之间就产生一定的挤紧压力,达到密封固紧连接的目的。胀接适用于设计压力小于等于40kgf/cm2,设计温度小于等于300℃及无严重应力腐蚀的场合,而且一般管板两侧的压差须小于3.5kgf/cm2,管子与外壳间的热膨胀差也应该比较小——对于钢或铜合金结构,设备中任何地方流体之间的最大温差不得超过95℃。

焊接法可用于压力在40kgf/cm2以上或温度高于300℃的系统。同时由于焊接工艺比胀管工艺简单,故有被优先采用的趋势。

参考资料

(1)国家医药管理局上海医药设计院,化工工艺设计手册,化学工业出版社,1989.

(2)国家技术监督局,GB151-89钢制管壳式换热器,学苑出版社,1989.(3)钱滨江等,简明传热手册,高等教育出版社,1983.

(4)《化学工程手册》编辑委员会,化学工程手册,第二卷,化学工业出版社,1989.

(5)[日]尾花英郎,热交换器设计手册,下册(中译本),石油工业出版社,1982.

(6)江苏化工设计研究院,小氮肥厂工艺设计手册,石油化工出版社,1977.(7)上海化工局设计室,3000吨型合成氨厂工艺和设备计算,化学工业出版社,1979.

(8)化学工业部化学工程设计技术中心站,化工单元操作设计手册(上册),化学工业部第六设计院出版.

(9)化工设备设计手册编写组,材料与零部件(上册),上海人民出版社,1973.

(10)化工设备设计手册编写组,金属设备,上海人民出版社,1975.

附录

1、合成氨生产中一氧化碳变换工艺简价

中、小型氮肥厂以焦炭、无烟煤等固体燃料生产合成氨原料气时,常用固定层间歇气化法或沸腾层气化法先生产半水煤气。

半水煤气的组成大致如下:

H 2 36~37% CH 4 0.3~0.5% N 2 21~22% CO 32~35% H 2S 0.2~0.3% CO 2 6~9% O 2 0.2%

其中,除了N 2、H 2为合成氨的有用气体外,其余的CO 、CO 2、CH 4、H 2S 、O 2等气体都是合成氨所不需要的,如不除去,不仅占据设备体积,增加输送气体的机械和动力消耗,而且会使合成氨触媒中毒。因此,必须将原料气中的这些有害成份,在进入合成系统之前分步清除。

一般,大致按如下框图程序对原料气进行净制:

净制过程中,所谓CO 的变换,是将脱除H 2S 以后的半水煤气用水蒸汽饱和,饱和水蒸汽后的半水煤气可称为湿混合煤气,在有触媒存在和一定温度的条件下,水汽可以将CO 变换为H 2和CO 2,其反应式如下:

千卡25.10222++↑=+CO H O H CO

结果,既除去了CO 又达到提高原料气中有用成份H 2的含量的目的,CO 2

则可在后续工序中用加压水洗法或热钾碱法除去。

变换反应除上述主反应外,尚有若干付反应可能发生。课程设计中作物料衡算时,付反应可只考虑下式:2H 2+O 2→2H 2O 。

变换反应常用触煤为铁~镁触媒,变换温度360~550℃,水蒸汽与半水煤气混合比例约为1~1.3:1(体),CO 的变换率(起变换反应的CO 量占湿混合煤气中CO 总量的百分率)可达90%左右。

经变换后的原料气可称为变换气,其组成大致如下(水蒸汽量未计入): H 2 51~52% CH 4 ~0.4% N 2 16~17% CO 2.5~4% H 2S ~0.1%

CO228~30% O2~0.1

为充分利用热能,变换反应炉前设置有一列管式换热器,供湿混合煤气与变换气交换热量,流程如图5所示。饱和了水蒸汽的半水煤气,即湿混合煤气温度约140~150℃,从热交换器的下部进入,被变换气予热至360~400℃,而后由变换炉的上部进入,在变换炉内经三层触煤发生变换反应,组成发生变化。变换气自变换炉内出来,温度约460~480℃左右,进入热交换器,被湿混合煤气冷却至180~200℃左右后流向后续工序。

湿混合煤气和变换气的物理、化学特性很接近,不同之处有二:其一,变换气温度高于湿混合煤气;其二、均含有少量H2S气体(<0.1%),但是湿混合煤气中水处汽于饱和状态,H2S造成的腐蚀性就较大,而变换气中水汽呈不饱和状态,故H2S造成的腐蚀性较小。综合考虑,以湿混合煤气走管程,变换气走壳程为宜,这样可以减小外壳被腐蚀的程度。

3、3.5大气压(绝)下,过热蒸汽的焓

4、CO、CH4的导热系数 [kcal/m.h.℃]

附图

列管式换热器的结构型式及零、部件名称见附表1和附图1~4

附表1 列管式换热器零、部件名称

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计水吸收氨填料吸收塔设计正式版分解

《化工原理》课程设计 水吸收氨气过程填料塔的设计学院 专业制药工程 班级 姓名 学号 指导教师 2013 年 1 月 15 日 目录 设计任务书 (4)

参考文献 (15) 对本设计的评述及心得 (15)

附表:附表附表

设计任务书 (一)、设计题目:水吸收氨气过程填料吸收塔的设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于%(体积分数)。采用清水进行吸收,吸收剂的用量为最小用量的倍。 (二)、操作条件 (1)操作压力常压 (2)操作温度 20℃. (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选。 (四)工作日 每年300天,每天24小时连续进行。 (五)厂址 厂址为衡阳地区 (六)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算;

3.填料层压降的计算; 4.液体分布器简要设计 5.吸收塔接管尺寸计算; 6.绘制吸收塔设计条件图; 7.对设计过程的评述和有关问题的讨论。 (七)操作条件 20℃氨气在水中的溶解度系数为H=(m3kPa)。 第一节前言 填料塔的有关介绍 填料塔洗涤吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。本文简述聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。 填料塔的主体结构如下图所示: 图1 填料塔结构图 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小、有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

化工原理课程设计 吸收塔汇总

《化工原理》课程设计 课题: 设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔设计者:王涛 学号:1043082002 指导老师:曹丽淑

目录 第一章设计任务????????????????????????????????????????????????????????????????????????????????????????????3 1.1设计题目????????????????????????????????????????????????????????????????????????????????????????????3 1.2设计任务及操作条件???????????????????????????????????????????????????????????????????????????3 1.3设计内容???????????????????????????????????????????????????????????????????????????????????????????????3 第二章设计方案???????????????????????????????????????????????????????????????????????????????????????????4 2.1设计流程的选择及流程图??????????????????????????????????????????????????????????????????????4 第三章填料塔的工艺设计??????????????????????????????????????????????????????????????????????????????4 3.1气液平衡关系????????????????????????????????????????????????????????????????????????????????????????4 3.2吸收剂用量???????????????????????????????????????????????????????????????????????????????????????????5 3.3计算热效应???????????????????????????????????????????????????????????????????????????????????????????5 3.4定塔径??????????????????????????????????????????????????????????????????????????????????????????????????6 3.5喷淋密度的校核?????????????????????????????????????????????????????????????????????????????????????6 3.6体积传质系数的计算??????????????????????????????????????????????????????????????????????????????7 3.7填料层高度的计算??????????????????????????????????????????????????????????????????????????????????8 3.8附属设备的选择???????????????????????????????????????????????????????????????????????????????????9第四章设计结果概要??????????????????????????????????????????????????????????????????????????????????15第五章设计评价 ?????????????????????????????????????????????????????????????????????????????????? 17

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

清水吸收二氧化硫化工原理课程设计毕业设计(论文)

摘要 在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触是发生传质,实现气液混合物的分离。在化学工业中,经常需将气体混合物中的各个组分加以分离,其目的是: ①回收或捕获气体混合物中的有用物质,以制取产品; ②除去工艺气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物,以免污染大气。根据不同性质上的差异,可以开发出不同的分离方法。吸收操作仅为其中之一,它利用混合物中各组分在液体中溶解度或化学反应活性的差异,在气液两相接触时发生传质,实现气液混合物的分离。 一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一,越来越受到青睐。二氧化硫填料吸收塔,以水为溶剂,经济合理,净化度高,污染小。此外,由于水和二氧化硫反应生成硫酸,具有很大的利用。 本次化工原理课程设计,我设计的题目是:炉气处理量为m3 4200炉气吸过程填料吸收塔设计。本次任务为用水吸收二氧化硫常压填料塔。具体设计条件如下: 1、混合物成分:空气和二氧化硫; 2、二氧化硫的含量:0.05(摩尔分率) 3、操作压强;常压操作 4、进塔炉气流量:h 4200 m3 5、二氧化硫气体回收率:95% 吸收过程视为等温吸收过程。

目录 摘要 .................................................................................................................................................. I 第一章 设计方案的确定 (1) 1.1流程方案 (1) 1.2设备方案 (1) 1.3流程布置 (1) 1.4吸收剂的选择 (1) 第二章 填料的选择 (2) 2.1对填料的要求 (2) 2.2填料的种类和特性 (2) 2.3填料尺寸 (3) 2.4填料材质的选择 (3) 第三章 工艺计算 (4) 3.1气液平衡的关系 (4) 3.2吸收剂用量及操作线的确定 (4) 3.2.1吸收剂用量的确定 (4) 3.2.2操作线的确定 (5) 3.3塔径计算 (5) 3.3.1采用Eckert 通用关联图法计算泛点速率f u : (5) 3.3.2操作气速 (7) 3.3.3塔径计算 (7) 3.3.4喷淋密度U 校核 (7) 3.3.5单位高度填料层压降(Z P )的校核 (8) 3.4填料层高度计算 (9) 3.4.1传质系数的计算 (9) 3.4.2填料高度的计算 (12) 第四章 填料塔内件的类型与设计 (13) 4.1 塔内件的类型 (13) 第五章 辅助设备的选型 (16) 5.1管径的选择 (16) 5.2泵的选取: (17) 5.3风机的选型: (17) 第六章 填料塔附属高度计算 (17) 第七章 分布器简要计算 (18) 第八章 关于填料塔设计的选材 (18) 参考文献 (19) 附录 (20) 附图 (21) 致谢 (22)

化工原理课程设计(水吸收氨填料吸收塔设计)(正式版)分解

《化工原理》课程设计水吸收氨气过程填料塔的设计 学院 专业制药工程 班级 姓名 学号 指导教师 2013 年 1 月 15 日

目录 设计任务书 (4) 第一节前言 (3) 1.1 填料塔的有关介绍 (4) 1.2 塔内填料的有关介绍............................. 错误!未定义书签。第二节填料塔主体设计方案的确定 .. (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3 填料的类型与选择 (7) 2.4 液相物性数据 (6) 2.5 气相物性数据 (8) 2.6 气液相平衡数据 (7) 2.7 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (10) 3.2.2 传质单元高度的计算 (10) 3.2.3 填料层的分段 (11) 第四节填料层压降的计算 (12) 第五节填料塔内件的类型及设计 (13) 第六节填料塔液体分布器的简要设计 (13) 参考文献 (15) 对本设计的评述及心得 (15) 附表: 附表1填料塔设计结果一览表 (15) 附表2 填料塔设计数据一览 (15) 附件一:塔设备流程图 (17)

设计任务书 (一)、设计题目:水吸收氨气过程填料吸收塔的设计 试设计一座填料吸收塔,用于脱除混于空气中的氨气。混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。 (二)、操作条件 (1)操作压力常压 (2)操作温度 20℃. (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选。 (四)工作日 每年300天,每天24小时连续进行。 (五)厂址 厂址为衡阳地区 (六)设计内容 1.吸收塔的物料衡算; 2.吸收塔的工艺尺寸计算; 3.填料层压降的计算; 4.液体分布器简要设计 5.吸收塔接管尺寸计算; 6.绘制吸收塔设计条件图; 7.对设计过程的评述和有关问题的讨论。 (七)操作条件 20℃氨气在水中的溶解度系数为H=0.725kmol/(m3?kPa)。

化工原理课程设计样本

成绩 化工原理课程设计 设计说明书 设计题目:万吨/年苯—甲苯连续精馏装置工艺设计 。 姓名陈端 班级化工07-2班 学号 006 】 完成日期 2009-10-30 指导教师梁伯行

化工原理课程设计任务书 (化工07-1,2,3,4适用) 一、设计说明书题目: — (万吨/年) 苯 - 甲苯连续精馏装置工艺设计说明书 二、设计任务及条件 (1).处理量: (3000+本班学号×300) Kg/h (每年生产时间按7200小时计); (2). 进料热状况参数:( 2班)为, (3). 进料组成: ( 2班) 含苯为25%(质量百分数), (4).塔底产品含苯不大于2%(质量百分数); (5). 塔顶产品中含苯为99%(质量百分数)。 装置加热介质为过热水蒸汽(温度及压力由常识自行指定), 装置冷却介质为25℃的清水或35℃的循环清水。 三、【 四、设计说明书目录(主要内容) 要求 1)前言(说明设计题目设计进程及自认达到的目的), 2)装置工艺流程(附图) 及工艺流程说明 3)装置物料衡算 4)精馏塔工艺操作参数确定 5)适宜回流比下理论塔板数及实际塔板数计算 6)精馏塔主要结构尺寸的确定 7)精馏塔最大负荷截面处T-1型浮阀塔板结构尺寸的确定 8)、 9)装置热衡算初算确定全凝器、再沸器型号及其他换热器型号 10)装置配管及机泵选型 11)适宜回流比经济评价验算(不少于3个回流比比较) 12)精馏塔主要工艺和主要结构尺寸参数设计结果汇总及评价 13)附图 : 装置工艺流程图、装置布置图、精馏塔结构简图(手绘图)。 五、经济指标及参考书目 1)6000元/(平方米塔壁)(塔径~乘, 塔径~乘, 塔径以上乘, 2)4500元/(平方米塔板), 3)# 4)4000元/(平方米传热面积), 5)16元/(吨新鲜水), 8元/(吨循环水), 6)250元/(吨加热水蒸汽), 设备使用年限10年, 7)装置主要固定资产年折旧率为10% , 银行借贷平均年利息%。 8)夏清陈常贵主编《化工原理》(上. 下) 册修订本【M】天津; 天津大学 出版社2005 9)贾绍文《化工原理课程设计》【M】天津; 天津大学出版社2002

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理实验—吸收

填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1.了解填料吸收塔的结构和流程; 2.了解吸收剂进口条件的变化对吸收操作结果的影响; 3.掌握吸收总传质系数K y a 的测定方法 4. 学会使用GC 二、实验原理 吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y 2是度量该吸收塔性能的重要指标,但影响y 2的因素很多,因为吸收传质速率N A 由吸收速率方程式决定。 (一). 吸收速率方程式: 吸收传质速率由吸收速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m 3.s ; A 填料的有效接触面积,m 2; Δy m 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m 3; K y a 气相总容积吸收传质系数,mol/m 2.s 。

从前所述可知,N A 的大小既与设备因素有关,又有操作因素有关。 (二).影响因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸收传质系数K y a 根据双膜理论,在一定的气温下,吸收总容积吸收传质系数K y a 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得b a y L G C a K ?=,显然K y a 与气体流量及液体流量均有密切关系。比较a 、b 大小,可讨论气膜控制或液膜控制。 b .气相平均推动力Δy m 将操作线方程为:22)(y x x G L y +-= 的吸收操作线和平衡线方程为:y =mx 的平衡线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ?

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计任务书设计题目填料吸收塔设计—15 主要内容1、设计方案简介:对给定或选定的工艺流程、主要设备进行简要 论述; 2、主要设备的工艺设计计算:物料衡算、能量衡算、工艺参数的 选定、填料塔结构设计和工艺尺寸的设计计算; 3、辅助设备的选型 4、绘流程图:以单线图的形式描绘,标出主体设备和辅助设备的 物料方向、物流量、能流量。 5、吸收塔的设备工艺条件图 6、编写设计计算说明书 设计参数用清水吸收空气中的NH 3 气体,混合气体处理量5000m3/h,其中NH 3 含量为0.14kg/m3干空气(标态),干空气温度为25℃,相对湿度为 70%,要求净化气中NH 3 含量不超过0.07%(体积分数),气体入口温 度40℃,入塔吸收剂中不含NH 3 ,水入口温度30℃。 设计计划进度布置任务,学习课程设计指导书,其它准备……………0.5天主要工艺设计计算…………………………………………2.5天辅助设备选型计算/绘制工艺流程图……………………1.0天绘制主要设备工艺条件图…………………………………1.0天编写设计计算说明书(考核)……………………………1.0天合计:(1周)………………………………………………6.0天 主要参考文献1. 《化工原理课程设计》,贾绍义等编,天津大学出版社,2002.08 2.《化工原理》(上、下册),夏清,陈常贵主编,天津大学出版社, 2005.01 3. 《化工原理课程设计》,大连理工大学编,大连理工大学出版社, 1994.07 4.《化工工艺设计手册》(第三版)(上、下册),化学工业出版社, 2003.08 5.《化学工程手册》(第二版)(上、下卷),时钧等主编,化学工 业出版社,1998.11 6.《化工设备机械基础》,董大勤编,化学工业出版社,2003.01 7.《化工数据导引》,王福安主编,化工出版社,1995.10 8.《化工工程制图》,魏崇光等主编,化学工业出版社1994.05 9.《现代填料塔技术指南》,王树楹主编,中国石化出版社,1998.08 设计文件要求1.设计说明书不得少于7000字,A4幅面; 2.工艺流程图为A2幅面; 3.设备工艺条件图为A3幅面; 备注

化工原理课程设计计算示例

化工原理壳程设计计算示例 一浮阀塔工艺设计计算示例 拟设计一生产酒精的板式精馏塔。来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。 设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。 一、塔形选择及操作条件的确定 1.塔形:选用浮阀塔 2.操作条件: 操作压力:常压;其中塔顶:1.013×105Pa 塔底:[1.013×105+N(265~530)Pa] 进料状态:饱和液体进料 加热方式:用直接水蒸气加热 热能利用:拟采用釜残液加热原料液 二、工艺流程

三、有关工艺计算 首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由 2 3971.1/H O kg m ρ=,3735/kg m ρ=乙醇 参考资料(一),查出相应泡点温度及计算平均分子量。 同理求得0.779D x = 0.0002 W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=?+-?=乙醇水 同理求得:39.81/D M kg kmol =,18.1/D M kg kmol = 1. 最小回流比及操作回流比的确定 由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此, min(1)0.7790.516 0.7690.5160.174 D q q q x y R y x --= = =-- 又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得' 0.55q x =,' 0.678q y =,

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计填料吸收塔的设计

化工原理课程设计填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师:

年5月31日 《化工原理课程设计》任务书 ~年第2学期 学生姓名:专业班级:化学工程与工艺( ) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时处理含苯煤气m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ① 吸收塔、解吸塔填料层的高度计算和设计;

② 塔径的计算; ③ 其它工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

相关文档
最新文档