岩石物理1—2

常用地岩土和岩石物理力学全参数

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

砂岩 15.7 9.6 0.28 0.21 5.2 石灰石 39.8 36.0 0.18 0.25 14.5 页岩 66.8 49.5 0.17 0.21 25.3 大理石 68.6 50.2 0.06 0.22 26.6 花岗岩 10.7 5.2 0.20 0.41 1.2 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时 间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长, tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

岩石物理性质

岩石物理性质 地球物理勘探中所涉及的各类岩石和矿物的物理性质。岩石的密度、弹性波传播速度、磁化率、电阻率、热导率、放射性等,是形成各种地球物理场的基础(表1)。 磁性常用的岩石磁性参数是磁化率、磁化强度、剩余磁化强度矢量,以及剩余磁化强度同感应磁化强度的比值Q。 矿物按其磁性的不同可分为3类: ①反磁性矿物,如石英、磷灰石、闪锌矿、方铅矿等。磁化率为恒量,负值,且较小。 ②顺磁性矿物,大多数纯净矿物都属于此类。磁化率为恒量,正值,也比较小。 ③铁磁性矿物,如磁铁矿等含铁、钴、镍元素的矿物。磁化率不是恒量,为正值,且相当大。也可认为这是顺磁性矿物中的一种特殊类型。 岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。 ①岩浆岩的磁性取决于岩石中铁磁性矿物的含量。结构构造相同的岩石,铁磁性矿物含量愈高,磁化率值愈大。铁磁性侵入岩的天然剩余磁化强度,按酸性、中性、基性、超基性的顺序逐渐变大。铁磁性侵入岩的特点是Q值一般小于1。由接触交代作用而形成的岩石,Q值可达1~3,甚至更大。 ②沉积岩的磁性主要也是由铁磁性矿物的含量决定的。分布最广的沉积岩造岩矿物,如石英、方解石、长石、石膏等,为反磁性或弱 1顺磁性矿物。菱铁矿、钛铁矿、黑云母等矿物之纯净者是顺磁性矿物;含铁磁性矿物杂质者具有强顺磁性。沉积岩的磁化率和天然剩余磁化强度值都比较小。

③变质岩的磁性是由其原始成分和变质过程决定的。原岩为沉积岩的变质岩,磁性一般比较弱;原岩为岩浆岩的变质岩在变质作用相同时,其磁性一般比原岩为沉积岩的变质岩强。大理岩和结晶灰岩为反磁性变质岩。岩石变质后,磁性也发生变化。蛇纹石化的岩石磁性比原岩强;云英岩化、粘土化、绢云母化和绿泥石化的岩石,磁性比原岩减弱。 岩石磁性的各向异性是岩石的层状结构造成的。磁化率高,变质程度深的岩石,磁各向异性很明显。褶皱区沉积岩的磁各向异性一般要比地台区的大。 岩石的天然剩余磁化强度矢量是在岩石形成过程中,按当时当地的地磁场方向“冻结”下来的。这个矢量的指极性与现代地磁场方向一致的称为正极性。岩石的年代愈古老,它的剩余磁化强度矢量的成分愈复杂。岩石剩余磁性由各种天然磁化过程形成。岩石在磁场中从居里点以上温度冷却时获得的剩余磁性称为热剩余磁性;岩石中的铁磁性物质在磁场中由于磁粘滞性而获得的剩余磁性称粘滞剩余磁性;沉积岩中的微小磁性颗粒在沉积过程中受磁场作用采取定向排列因而获得的剩余磁性称为沉积剩余磁性;沉积物中的铁矿物沉积后,在磁场中经化学变化而获得的剩余磁性称化学剩余磁性;还有等温剩余磁性是常温下磁性物质在磁场中获得的剩余磁性(见岩石磁性)。岩石的剩余磁性是古地磁学赖以建立的基础。 岩石和矿物的磁性与温度、压力有关系。顺磁性矿物的磁化率与温度的关系遵循居里定律。铁磁性矿物的居里温度一般为300~ 2700℃,其磁化率一般随温度升高而增大(可达50%),至居里温度附近则迅速下降。铁磁性矿物的磁化率与温度的关系有两种类型:一为可逆型,即在矿物加热和冷却过程中温度相同时磁化率值相同,如纯磁铁矿、钛铁矿。另一种为不可逆型,即矿物加热和冷却过程中温度相同时磁化率值不同,如对升温不稳定的铁磁性矿物。岩石加热时,磁化率也逐步升高,至200~400℃迅速下降。岩石的磁化率和磁化强度值都随压力的增大而减小。 密度和孔隙度矿物的密度是由构成该矿物各元素的原子量和矿物的分子结构决定的。大多数造岩矿物如长石、石英、辉石等具有 3

常用的岩土和岩石物理力学参数

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7、2) 当ν值接近0、5的时候不能盲目的使用公式3、5,因为计算的K 值将会非常的高,偏离实际值很多。最好就是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 与ν来计算G 值。 表7、1与7、2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7、1 土的弹性特性值(实验室值)(Das,1980) 表7、2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13与G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13与G 23。这些常量的定义见理论篇。 均质的节理或就是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度与空间参数来表示的弹性常数的公式。表3、7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7、3

K f ,如果土粒就是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值就是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或就是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这就是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7、3) 对于可变形流体(多数课本中都就是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7、4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位与速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式瞧瞧其产生的误差。 流动体积模量还会影响无流动但就是有空隙压力产生的模型的收敛速率(见1、7节流动与力学的相互作用)。如果K f 就是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但就是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱与体积模量为: n K K K f u + = (7、5) 不排水的泊松比为: ) G 3K (22G 3K u u u +-= ν (7、6) 这些值应该与排水常量k 与ν作比较,来估计压缩的效果。重要的就是,在FLAC 3D 中,

岩石物理方程解释

Reuss 模型:此模型为Reuss 在应力均匀恒定的情况下,相当于各个岩石模块的并联组 合,容易得出∑==N i i i R M M 11 φ. 模型如右所示: 推导过程:因为有i dV dV =∑,由dV V P M = ,则可得 到()i i R i P V PV M M ?=∑又因为假设岩石内应力各向相同,则容易得出∑==N i i i R M M 11φ,即可 得出岩石体积模量的最小值。 Voigt 模型:此模型为Voigt 在岩石中各矿物的应变均匀情况下,相当于岩石模块的串联组合,容易得出V i i M M φ=∑. 模型图如右所示: 推导过程:因为有i i P P φ= ∑,同理dV P M V =,即有i V i i dV dV M M V V φ=∑,又因为假设岩石中各矿物的应变均匀相同即i i dV dV φ=,即可得∑=i i V M M φ,即可得出岩石体积模量的最大值。 Wyllie 模型:此模型为Wyllie 在沉积岩中发现孔隙度和速度之间的简单单调关系,即完全理想情况,岩石各向同性即可得出岩石速度f f i Mi W νφνφ ν+= ∑,则可得出岩石 的平均速度,然后根据体积模量和速度的关系即可得出岩石的集体模量W M . 模型图如右: Hill 模型:Hill 模型为Hill 提出用上下边界求平均值的方法来对岩石有效弹性模量进行切合实际的评价即可得出 2 R V H M M M += .

Reuss、Voit和Hill模型所得体积模量对比 Reuss、Voit和Hill模型所得剪切模量对比

孔隙流体为水,泥质和石英各为占一半的岩石体积模量界限值对比 孔隙流体为水,泥质和石英占骨架比7:3和1:1的岩石体积模量界限值对比 Qua:Cla=1:1 Qua:Cla=7:3

岩石物理学复习提纲2017

岩石物理学复习提纲 2017 一、试卷题型 ?基本概念以填充和名词解释形式考查 一、填充题: 例: 1、岩石物理学主要从()和()上研究岩石特性与其() 性质间相互关系。 2、矿物一般是由无机作用形成的,()和()都是有机作用的 产物,故均非矿物。 二、名词解释: 例: 1、岩石物理学: 2、离子导电岩石:

一、试卷题型 ?简述题与综合题: 三、简述题,主要考查对岩石物理中一些问题的理解 例: 1、简述岩石物理学研究中存在的问题 2、用定性或定量方式列举三个主要岩石特性因素是怎样影响岩石地震 特性的 3、岩石物理模型中公式的定义,物理量的含义,公式等 一、试卷题型 ?简述题与综合题: 四、综合题,与简述题的差别为,一般在综合题中会加入简单的计算, 同时考查对知识的综合应用。 例: 1、阿尔奇公式的基本形式和物理意义,写出各个参量的含意;已知一 些参数后求岩石的电阻率孔隙度和饱和度; 2、 Gassmann方程中需要哪些参数,与空间平均方式建立岩石物理 模型有什么关系,基质体积模量,孔隙内混合流体的体积模量用什么模型计算,已知体积模量怎样计算速度,反之。

一、试卷题型 ?图示说明题和公式推导或证明 五、图示说明题,用图示的方式说明弹性波在固液介质中的传播规律并用文字回答基本规律; 例1:在一个液-固介质的分界面上,上层液体介质的波阻抗为Z 1=Vp 1ρ1,下层固体介质的波阻抗为Z 2=Vp 2ρ2,且V 2>V 1。当一个波以α角入射到界面时,在界面上会发生什么现象?用射线、箭头和角度方式图示,并回答问题。 一、试卷题型 ?图示说明题和公式推导或证明 例2:图示岩石基本特性与速度的关系(定性关系)。

岩石物理学及岩石性质

岩石物理学及岩石性质 一、矿物 1.1矿物 矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。 1.2矿物的主要物理特性 1.2.1光学特性 (1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。一般来说矿物的颜色是矿物对入射光吸收色的补色。 (2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。 (3)光泽:光泽是矿物表面对入射光所射的总光量。根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。 (4)透明度:透明度与矿物对矿物透射光的多少有关。 1.2.2力学性质 (1)硬度: 矿物的硬度是指矿物的坚硬程度。一般采用摩氏硬度法鉴别矿物硬度。即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。 (2)解理与断口: 矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。因此,断口具有了非晶质体的基本含义。解理与晶质体内质点间距有明显的关系,

解理常出现在质点密度较大的方向上。 (3)延展性: 矿物的延展性,也可以称为矿物的韧性。其特征是表现为矿物能被拉成长丝和辗成薄片的特性。这是自然金属元素具有的基本特性。 1.3重要矿物 (1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。 图1金刚石 (2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。 方铅矿PbS。闪锌矿ZnS。黄铁矿FeS2(见图2) 图2黄铁矿 (3)氧化物及氢氧化物类矿物:本类矿物分布相当广泛,共约180多种,包括重要的造盐矿物如石英及Fe、Al、Mn、Cr、Ti、Sn、U、Th等的氧化物或氢

关于常用的岩土和岩石物理力学参数

(E , ν) 与(K , G )的转换关系如下: ) 1(2ν+= E G () 当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表和分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表 土的弹性特性值(实验室值)(Das,1980) 表 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν () 其中 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = () 不排水的泊松比为: ) G 3K (22G 3K u u u +-= ν () 这些值应该和排水常量k 和ν作比较,来估计压缩的效果。重要的是,在FLAC 3D 中,排水特性是用在机械连接的流变计算中的。对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。 固有的强度特性 在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面: s 13N f φσσ=-+ () 其中 )sin 1/()sin 1(N φφφ-+=

常用的岩土和岩石物理力学参数

(E, v与(K, G)的转换关系如下: 3(1 2 ) (7.2) 当v值接近0.5的时候不能盲目的使用公式 3.5,因为计算的K值将会非常的高,偏离 实际值很多。最好是确定好K值(利用压缩试验或者P波速度试验估计),然后再用K和v 来计算G值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 各向异性弹性特性一一作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要 中弹性常量:E1, E3, V2, V3和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3, V2, V3 , V3 ,G12,G 13和G23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用 各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表 3.7给出了各向异性岩石的一些典型的特性值。

流体弹性特性一一用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量 K f ,如果土粒是可压缩的,则要用到比奥模量 M 。纯净水在室温情况下的 K f 值是2 Gpa 。 其取值依赖于分析的目的。 分析稳态流动或是求初始孔隙压力的分布状态 (见理论篇第三章 流体-固体相互作用分析),则尽量要用比较低的 K f ,不用折减。这是由于对于大的 K f 流动 时间步长很小,并且,力学收敛性也较差。在 FLAC 3D 中用到的流动时间步长,tf 与孔隙度 n ,渗透系数k 以及K f 有如下关系: 丄 n t f ' (7.3) K f k 对于可变形流体(多数课本中都是将流体设定为不可压缩的) 我们可以通过获得的固结 系数C 来决定改变K f 的结果。 (7.4) 其中 1 m K 4G/3 k k f 其中,k '—— FLAC 3D 使用的渗透系数 k —渗透系数,单位和速度单位一样(如米 /秒) f ――水的单位重量 9 考虑到固结时间常量与 C 成比例,我么可以将K f 的值从其实际值(2 10 Pa )减少, 利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率 (见1.7节流动与 力学的相互作用)。如果K f 是一个通过比较机械模型得到的值, 则由于机械变形将会产生孔 隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能 K f 对其影响很小。例如在土 体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: (7.5) 不排水的泊松比为: n K f K f

岩石物理学重点归纳

第一章绪论 一、岩石物理学 1、定义:是专门研究岩石的各种物理性质及其产生机制的一门学科。 2、研究方法:观察、实验、归纳、总结 3、主要困难:岩石是混合物; 多尺度系统; 观测条件偏离实际条件 二、研究尺度 1、有关岩石研究的尺度问题: 矿物的组成、性质、含量; 矿物的分布、胶结情况; 矿物间的孔隙度及孔隙流体等。 推论:岩石的物理性质与测量的尺度有关 2、分类: 矿物尺度:研究各个矿物的性质、矿物与矿物之间相互的接触几何等 岩石尺度:研究由多个矿物组成的岩石,在此尺度下,矿物的性质被平均掉了,取而代之的是岩石的性质 岩体尺度:研究不仅包括了完整的岩石,而其还包括了岩石的组合,包括岩石的节理等间断面 地质尺度:为各级尺度性质的高度且复杂的综合。而地质现象是由矿物、岩石、岩体和构造运动的总体所决定的。 第二章基础知识和基础概念 第一节矿物学和岩石学基础 1、矿物:在地质作用下形成的天然单质或化合物,具有相对固定的化学成分、物理性质和结晶构造,是岩石和矿石的基本组成部分。 2、矿物的特点:天然产出、无机作用形成、均匀的固体(具有确定的或在一定范围内变化的化学成分和分子结构,其均匀性表现在不能用物理的方法把其分成在化学上互不相同的物质,这是矿物与岩石的根本区别。) 3、粘土:是一种颗粒非常细的天然沉积物或软岩石,由直径小于0.05mm的颗粒组成。 4、骨架:泛指岩石中除泥质之外的固体部分 第二节多空介质及其描述 一、比面 1、定义:单位体积的岩石内,骨架(或叫颗粒)的总表面积; 或单位体积的岩石内,总孔隙的内表面积。 S=A/Vb 2、实质:反映了单位外表体积岩石中所饱和的流体与岩石骨架接触面积的大小。 反映了岩石骨架的分散程度,比面越大,骨架分散程度越大,颗粒也 越细,渗流阻力越大。 3、影响因素:颗粒大小、形状、排列方式、胶结物含量

常用土层和岩石物理力学性质

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用

各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

2012-2013岩石物理学试卷A(地物10级)

2012 ─2013 学年 第 2 学期 《岩石物理学》课程考试试卷( A 卷) 专业:地球物理学 年级:2010考试方式:闭卷 学分:3 考试时间:110分钟 一、选择题 (每小题 2 分,共 30 分) 1. 以中性水分子H2O 的形式被吸附于矿物颗粒表面或颗粒之间的水称为( )。 A . 吸附水 B. 层间水 C. 自由水 2. 岩石单位体积,孔隙空间占总体积的百分数称为( )。 A. 饱和度 B. 孔隙度 C. 渗透率 3. 质点运动方向与波传播方向平行的波称为( )。 A. 瑞利波 B. 横波(S 波) C. 纵波(P 波) 4. 岩石的密度越大,声波传播速度( )。 A. 越快 B. 越慢 C. 与密度无关 5. 岩石的孔隙度越大,声波传播速度( )。 A. 越快 B. 越慢 C. 与孔隙度无关 6. 声波能量在岩石中的衰减随频率的增加( )。 A. 减小 B. 不变 C. 增加 7. 描述各向同性介质的弹性参数中,独立弹性参数有( )个。 A. 3 B. 4 C. 2 8. 孔隙度高的岩石,孔隙往往是等维球形或近于球形的,它的纵横比为( )。 A. 小于1 B. 大于1 C. 等于1 9. 应力是岩石( )的作用力 A. 单位面积上 B. 单位体积上 C. 岩石. 10. 物体在外力作用下发生形变,外力消失后,物体恢复原状,这种性质称为( )。 A. 破裂 B. 塑性 C. 弹性 11. 地壳深部融化的物质、熔融的岩浆在地下或喷出地表,发生结晶和固化的过程, 称为( ) A. 沉积过程 B. 变质过程 C. 火成过程 12. 岩石中由孔隙彼此之间连通并与岩石表面连通的孔隙称为( )。 A. 裂缝孔隙 B. 开孔隙 C. 封闭孔隙

岩石物理复习题

岩石物理学复习题 第一章绪论 1、什么叫岩石物理学? 2、岩石物理学研究的基本目的? 3、岩石物理学在油气勘探中的桥梁作用是什么? 4、为什么岩石物理学的许多研究在实验室进行(实验室的研究意义)? 第二章岩石的基本特性 1、沉积岩中有那些常见的岩石和矿物,至少列出三种。 2、岩石结构是指什么? 3、什么是岩石的尺度,有那几种?地球物理勘探主要研究哪几种尺度? 4、为什么岩石的物理性质与尺度有关? 5、粘土矿物中较有代表性有那几种? 6、压力、地应力、孔隙压力等力的国际单位是什么?列出几个还有常用的单位? 7、什么是有效压力 8、什么是岩石的骨架、基质和岩石的结构? 9、从岩石构造上一般怎样区分泥岩和砂岩? 10、最常用的测量砂岩颗粒的方法是什么?怎样表示砂岩颗粒的分布? 11、岩石的比面是什么,为什么要研究岩石的比面? 12、砂岩中胶接物的胶接方式有几种类型? 13、粘土矿物中的水按其存在状态有几种,特点是什么?

14、岩石的孔隙结构是指什么?有那几个孔隙结构参数? 15、当砂岩颗粒是等径简单立方堆积时,用简单的作图法计算这种结构的孔隙度。 16、描述岩石孔隙结构主要有那几个参数, 17、孔隙度有几概念,它们的大小分别? 18、描述岩石密度时,会用到几种密度概念? 19、设岩石孔隙中含有水和油,其中水的饱和度为35%,油的密度是 0.92g/cm3,水的密度 1.04 g/cm3,求孔隙中流体的密度。 20、实验室最简单测试岩石孔隙的方法用什么?写出相应的计算公式,并说明公式中每个量的含意。 21、什么是地层水、矿物水?地层水中分几种状态,它们的特点是什么? 第三章岩石的电磁学性质 1、为什么要进行岩石导电性的研究? 2、岩石的导电特性与储层的那些特性有关? 3、岩石导电性由那两个因素决定(岩石的电性主要由谁决定),可分成那两类? 4、简述岩石的电阻率及其影响因素(岩石电阻率主要取决于那些因素)? 5、一般认为砂岩的骨架不导电,为什么在含泥或饱和砂岩中电阻率较低。 6、为什么说电阻率测井方法评价地层含油饱和度的物理基础。 7、什么是岩石的地层因子和电阻率指数,写出表示式和各参数的含义。 8、简述xx公式的优缺点

岩石物理学

岩石物理学 讲义 贺振华编 成都理工大学 2009年

目录1 岩石物理学概论 (4学时) 1.1 岩石物理学的内容与特点 1.2 岩石物理学的研究方法 2 岩石与岩石的变形 (6学时) 2.1 地球上的岩石和矿物 2.2 应力与应变 2.3 岩石的本构关系 2.4 岩石物理实验 3 岩石中波的传播与衰减(10学时) 3.1 岩石中的波 3.2 岩石中波速的测量与应用 3.3 岩石中波的衰减 3.4 岩石模型 4 岩石的弹性 (12学时) 4.1 二相体的弹性 4.2 流体静压力下岩石裂纹对弹性的影响4.3 流体静压力下岩石孔洞对弹性的影响4.4 岩石中孔隙流体对弹性的影响 4.5 弹性波在双相体岩石中的传播 5 岩石的输运特性 (2学时) 5.1 达西(Darcy)定律和岩石的渗透率5.2 渗透率的测量 5.3 岩石的输运模型 6 岩石物理应用 (4学时) 6.1 Biot-Gassmann方程与流体替换 6.2 裂缝储层岩石物理 复习与考试(2学时)

1 岩石物理学概论 1.1 岩石物理的内容与特点 岩石物理学是以研究岩石物理性质的相互关系及应用为主的学科。重点研究: ·在地球内部特殊环境下岩石的行为及其物理性质。 ·研究那些与地球内部构造运动、能源和资源勘察与开发、地质灾害的成因与减灾,环境保护与监测等密切相关的问题。 对油气勘探、资源、环境等问题,R. E. Sheriff 对岩石物理学的定义为[1] 岩石物理学研究岩石物理性质之间的相互关系,具体地说,研究孔隙度,渗透率等是如何同地震波速度、电阻率、温度等参数相关联的。 岩石物理学与地质学、地球物理学、地球化学、力学、流体力学、材料力学、地热学、环境科学、工程学等众多学科密切相关,是一个高度的交叉、边缘学科。基础性,应用性都很强。一般情况下,人们把岩石物理学归属于地学学科。对油气资源的勘探开发而言,岩石物理是联系地质、地球物理、石油工程三个学科领域的共同基础和桥梁,见图1.1。 图1.1 岩石物理是地质、地球物理、石油工程的共同基础和桥梁 地球物理 地质结构 岩石物理

岩石物理及其应用

陈华201272231 地质工程S122 岩石物理及其应用 地震波除受激发和接收条件直接影响外,还与岩石的速度、密度等弹性参数和吸收特性有关,而这些特性又与岩石成分、孔隙度、埋深、孔隙流体性质、压力、岩层的不均匀性以及其它地质特性密切相关。地震岩石物理研究主要是试图建立地球物理勘探所获得的物理量与地下岩石参数的定量对应关系,并快速理解储层流体变化所引起的地震响应变化,增强和减小解释的风险。地震岩石物理研究是连接地震和油藏工程的纽带,也是地震资料预测油气的物理基础。 在岩石物理研究中,速度是岩石物理研究乃至整个地球物理勘探领域的关键参数,理论模型则是其研究的基础。这两个关键贯穿于岩石物理研究的整个过程。 首先对于特定的地质研究目标,必须要找出影响速度的主要因素,并寻求这些影响因素的共同表征参数。岩性对速度的影响为致密岩石一般比非致密岩石的高。孔隙对速度的影响为孔隙的存在导致速度值下降。密度对速度的影响一般而言,岩石速度随密度增加而增加。孔隙流体对速度影响通过理论和大量的岩心测试研究表明,岩石样品饱和水时的速度大于饱和油时的速度,饱和气时的速度最低。另外也与温度、压力,成岩作用等有关。 在合理的资料统计分析基础上,需要通过岩石物理模型建立起地球物理量与地下储层参数之间对应关系。典型的模型有Gassmann 模型、Biot 模型、BISQ模型、Xu- White 模型等。 在低频条件下,Gassmann 推导出了饱和流体状态条件下岩石体积模量的理论方程。Gassmann 方程是岩石物理研究的最基本方程,用来描述从干岩石状态到饱和流体孔隙状态下的模量变化。该方程的一个重要的适用条件是低频条件,也即只有在足够低频条件下,该方程是有效的,此时孔隙所受的压力在整个孔隙空间达到平衡(即对于孔隙流体,有足够的时间消除压力梯度,达到平衡)。Biot采用连续介质力学的方法导出了流体饱和多孔隙介质中的声波方程,建立了多孔介质中声速、衰减与频率和多孔介质参数之间的关系。该模型反映

岩石物理学报告

一、地震波 地震波是指从震源产生向四周辐射的弹性波。按传播方式可分为纵波(P波)、横波(S波)(纵波和横波均属于体波)和面波(L波)三种类型。地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。 地震波按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。 现象介绍 像声、光或水波一样,地震波也可在一边界上反射或折射,但和其他波不同的特点是,当地震波入射到地球内的一反射面时,例如一P波以一角度射向边界面时,它不但分成一反射的P波和一折射的P波,还要产生一反射S波和折射S波,其原因是,在入射点边界上的岩石不仅受挤压,还受剪切。换句话说,一入射P波产生4种转换波。由一种波型到另一种波型的波型增殖也发生于SV波斜入射于内部边界时,会产生反射和折射的P波和SV波。在这种情况下反射和折射的S波总是SV型,这是因为当入射的SV波到达时岩石质点在一与地面垂直的入射面里横向运动。相反,如果入射的S波是水平偏振的SH型,则质点在垂直于入射平面且平行于边界面的方向上前后运动,在不连续界面上没有挤压或铅垂方向的变形,这样不会产生相应的新的P波和SV波,只有SH型的一个反射波和一折射波。从物理图像形象地分析,垂直入射的P波在反射界面上没有剪切分量,只有反射的P波,根本没有反射的SV波或SH 波。以上讨论的波型转换的种种限制,在全面理解地面运动的复杂性和解释地震图中的地震波各种图像时是至关重要的。建筑在较厚土壤上的,诸如在沿河流冲积河谷中的沉积物上的建筑物,地震时易于遭受严重破坏,其原因也是波的放大和增强作用。当我们振动连在一起的两个弹簧时,弱的弹簧将具有较大的振动幅度。类似地,当S波从地下深处传上来时,穿过刚性较大的深部岩石到刚性较小的冲积物时,冲积河谷刚性小的软弱岩石和土壤将使振幅增强4倍或更大,取决于波的频率和冲积层的厚度。在1989年加利福尼亚的洛马普瑞特地震时,建在砂上和冲填物上的旧金山滨海区的房屋比附近不远建在坚固地基上相似的房屋破坏更大。 二、地震波衰减的主要因素

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理 力学参数 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

(E , ν) 与(K , G )的转换关系如下: ) 1(2ν+= E G () 当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表和分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表 土的弹性特性值(实验室值)(Das,1980) 表

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长, tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? ()

常用地岩土和岩石物理力学全参数

常用地岩土和岩石物理 力学全参数 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收 敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,'k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒)

相关文档
最新文档