辛酸沉淀_凝胶过滤法提取猪血清IgM

辛酸沉淀_凝胶过滤法提取猪血清IgM
辛酸沉淀_凝胶过滤法提取猪血清IgM

 第24卷第4期 阜阳师范学院学报(自然科学版) V o l.24,N o.4 2007年12月 Journal of Fuyang T eachers Co llege(N atural Science) D ec.2007

辛酸沉淀2凝胶过滤法提取猪血清Ig M

刘生杰1,2,周 杨1,朱茂英1,聂传鹏1,李东伟1,余为一2 (1阜阳师范学院生命科学学院,安徽阜阳 236041;2安徽农业大学生命科学学院,安徽合肥 231072)

摘 要:使用辛酸沉淀2凝胶过滤法提取猪血清中免疫球蛋白Ig M,并通过其纯度鉴定等探讨提纯效果.通过辛酸沉淀法粗提免疫球蛋白,再结合Sephadex G200凝胶过滤法纯化获得Ig M,利用SD S2PA GE电泳法和A lphaEaseFC凝胶成像分析软件测定其分子量和纯度、B radfo rd法测定提取蛋白浓度并计算其得率.结果显示辛酸粗提能够去除大部分杂蛋白,凝胶过滤获得两个洗脱峰,其中第一峰通过电泳鉴定含有Ig M,纯度63.8%,得率1.28m g m l血清.利用辛酸沉淀2凝胶过滤法能够获取纯度和得率都较高的Ig M,纯度可满足普通要求的实验和应用.

关键词:猪血清;免疫球蛋白M(Ig M);提取;纯化

中图分类号:Q81;S85 文献标识码:A 文章编号:100424329(2007)0420022204

猪血清中免疫球蛋白Ig M是猪感染免疫初期首先应答的免疫球蛋白,它的含量高低能反映猪的感染状况和免疫抗性高低,分离纯化Ig M可用于相应疾病的早期诊断和免疫学研究[1].虽然Ig M的分离和纯化方法有很多种,包括各种沉淀法和层析法,但由于猪的血清中含有很多杂蛋白,采用一步纯化法不可能得到纯度较高的Ig M抗体[2].经典的方法多采用硫酸铵分部盐析后凝胶过滤,硫酸铵具有溶解度大且随温度变化小,价格低廉等优点[3],但由于硫酸铵盐析步骤多、损失大,Ig M在血液中含量本来就低,所以探索其他更为便捷的方法是大量获得Ig M 的共同愿望.文章通过辛酸沉淀法和凝胶过滤法纯化猪血清中Ig M抗体,试图在获取高纯度、高得率Ig M的同时对Ig M纯化方法作初步探讨.

辛酸为短链脂肪酸,辛酸沉淀法原理是在酸性条件下辛酸可沉淀腹水和血清中的非Ig蛋白[4] .而凝胶过滤法主要是根据多孔凝胶对不同半径的蛋白质分子具有不同的排阻效应实现的.对于某种型号的凝胶,一些大分子不能进入凝胶颗粒内部而完全被排阻在外,只能沿着颗粒间的缝隙流出柱外;而一些小分子不被排阻,渗透进入凝胶内部的筛孔,尔后又被流经的洗脱液带走;中等大小的分子只能进入一部分凝胶较大的孔隙,因此这些分子从柱中流出的顺序也介于大、小分子之间.这样待分离样品经过层析后,分子便按照从大到小的顺序依次流出,达到分离不同分子量物质的目的[5].

1 仪器与试剂

1.1 仪器

高速离心机,透析袋,玻璃层析柱(1c m×100 c m),层析系统,核酸蛋白检测仪(W Z29021型),电泳槽,摇床,分光光度计,Eppendo rf移液器,磁力搅拌器,震荡器,电泳仪(北京君义)、A lp haEaseFC凝胶成像分析系统.

1.2 试剂

乙酸,乙酸钠,辛酸,Sephadex G200,T ris,丙烯酰胺,甲叉双丙烯酰胺,SD S,甘氨酸,过硫酸铵,甲醇,冰醋酸,考马斯亮蓝R2250,B radfo rd试剂盒, PB S(pH7.2~7.4).

2 材料与方法

2.1 材料

猪新鲜血液(采自阜阳市颖南屠宰场)

2.2 方法

2.2.1 常规方法制备血清.

2.2.2 Ig M的粗提

收稿日期:2007209211

基金资助:国家自然基金项目(30671537);安徽省教育厅教学研究项目(2007jyxm345);阜阳师范学院自然科学青年项目(2003YQL08).

作者简介:刘生杰(1971-),男,硕士,讲师,兽医师.研究方向:动物学、动物免疫学.

辛酸沉淀法[6],有改进.取10mL 血清,加40mL 乙酸2乙酸钠缓冲液磁力搅拌稀释,用0.1m o l L N aoH 调节pH 至4.5.室温下边搅拌边缓慢加入辛酸1.25mL 按辛酸25ΛL mL 血清稀释液),加后继续搅拌30m in .以13000r m in 的转速离心30m in ,弃沉淀,留上清

.上清用多层纱布过滤,装入透析袋中透析,每8~10h 和换一次透析液,透析48h .

2.2.3 Ig M 的纯化

采用Sep hadex G 200凝胶过滤法[7].2.2.3.1 凝胶预处理[8]

称取5g Sep hadex G 200,加入50mL 去离子水,浸泡溶胀24h ;倾去Sep hadex G 200溶胀后凝胶上层的水,再加入凝胶等体积的1.0m o l L N aOH 液并轻轻搅动,浸泡1h 后倾去上清;用去离子水反复洗涤3~5次,倾去悬浮的细小凝胶颗粒,并使凝胶悬液pH 至中性;将Sephadex G 200凝胶悬液盛放于抽滤瓶中,用洗耳球塞住杯口,减压抽气30m in ,除去凝胶液内气泡,将脱气后的凝胶溶液轻轻倒入烧杯中,其中盛有1 2去离子水.2.2.3.2 装柱

取干净层析柱(51c m ×100c m ),上、下端连接塑料管并装上螺旋夹,将层析柱垂直装于铁架台上,并多角度校正使柱垂直;打开柱上、下端口,从柱底向柱内注水至柱高1 4,使柱底全部充满水而不留气泡,关闭柱出口,最终柱内留存2c m

的水;旋开柱的上口,搅动凝胶溶液,使形成均一的薄胶浆,并立即沿玻棒倒入层析管内,使凝胶在柱内自然沉降,待柱底积起约1~2c m 的凝胶床后,打开柱出口调节流速;同时上面不断加入凝胶液,使凝胶连续沉降(如果凝胶床面上不再有凝胶沉降,应该用玻棒均匀地将凝胶床搅起数厘米高,然后再加凝胶,不然就会形成界面,影响层析效果),最终柱床高度约70c m .连接层析系统(自动部分收集器,紫外检测仪,记录仪)并打开电源预热,调解水流速度约0.2mL m in ,平衡洗脱.

2.2.

3.3 加样、洗脱与收集在柱床表面放一张大小适合的滤纸,以防止加样时冲动柱床面.小心吸去柱床面以上洗脱液,或打开下端出口让柱床面上的洗脱液刚好完全进入凝胶床.立即沿管壁将2mL 辛酸沉淀透析液小心加到凝胶柱中,让样品溶液自然降入柱床内.当样品液面恰好与凝胶床表面相平时,再加入4mL 洗脱液淋洗管壁,使所有样品全部进入凝胶床后,接通层析柱与洗脱液储瓶之间的导管,以0.25mL m in 流速洗脱

.1h 后开启自动部分收集器,按2mL

管收集.2.2.4 蛋白质分子量与纯度鉴定

SD S 2PA GE 法[9]

.采用10%的分离胶、

5%的浓缩胶,分别按顺序向加样孔中加样.用A lphaEaseFC

凝胶成像分析软件对电泳图片处理分析鉴定分子量和蛋白纯度.2.2.5 蛋白浓度测定及得率计算

采用B radfo rd 法测定纯化蛋白浓度,并依据蛋

白稀释度还原计算提纯蛋白得率.2.2.5.1 样品配制

标准蛋白B SA (牛血清白蛋白)配制与检测样品准备(表1)按试剂盒步骤进行.

表1 测定样品液配制

样品名样品量(ul )PBS (ul )Comm assie (m l

)

To tal (m l )血清-1:64501002.853.00辛酸-1:5501002.853.00凝胶第一峰501002.853.00凝胶第二峰

50

100

2.85

3.00

2.2.5.2 吸光度测定

使用分光光度计测定595nm 波长时标准蛋白

B SA 和测定样品吸光度值,并根据B SA 标准蛋白吸光度值对其浓度绘制标准曲线,再由标准曲线计算测定样品的浓度.

2.2.5.3 蛋白浓度与得率计算

由测定样品浓度按原蛋白稀释度还原计算提取蛋白得率.

3 结果

3.1 凝胶层析

凝胶层析获得两个洗脱峰,两峰基本分开但有部分重叠(图1).

图1 凝胶层析洗脱曲线

3.2 分子量与纯度鉴定

SD S 2PA GE 电泳结果见图2.

3

2第4期 刘生杰等:辛酸沉淀2凝胶过滤法提取猪血清Ig M

图2 提纯蛋白电泳图

1.血清

2.辛酸沉淀上清

3.凝胶第二峰

4.凝胶第一峰

5.蛋白M arker 3.2.1 Ig M分子量测定

A lphaEaseFC凝胶成像分析软件测定图2第4泳道条带1、2分子量分别为75kD、26kD,和Ig M重链

、轻链分子量一致,故判断为Ig M经还原剂还原

后产生的重链和轻链;第3泳道条带3、4分子量分别

约57kD、26kD,分别和IgG重链、轻链一致,故判断

其为IgG经还原后形成的重链和轻链[10].

3.2.2 纯度测定

对图2中2、4泳道用A lphaEaseFC凝胶成像分

析软件计算得辛酸沉淀上清中Ig M(2泳道)纯度9.

5%;凝胶过滤纯化的Ig M(4泳道)纯度63.8%.

3.3 浓度与得率测定

3.3.1 B SA标准液吸光度值纪录与标准曲线绘制

B SA标准液吸光度值纪录见表2,标准曲线绘

制见图3.

表2 BSA标准液吸光度值

管号0123456

BSA吸光度值0.000.1000.1920.2830.3840.4900.594

浓度(m g m l)00.0033340.0066670.010.0133340.0166670.02

图3 标准液浓度与吸光度曲线

3.3.2 测定样品吸光度值纪录与得率计算结果,见

表3.

表3 免疫球蛋白得率及浓度测定结果

凝胶层析洗脱峰凝胶第1峰凝胶第2峰

测定蛋白吸光度值0.0530.096

测定蛋白浓度m g mL0.00190.0034

蛋白原液中浓度m g mL0.1140.204

蛋白得率m g mL血清1.289.18

4 分析与讨论

4.1 辛酸沉淀与硫酸铵盐析提取Ig M效果比较

实验结果表明辛酸沉淀猪血清能去除血清中免

疫球蛋白外大部分杂蛋白,能为进一步纯化Ig M提

供粗提物,笔者多次试验证明,此法粗提Ig M要比

经典的硫酸铵分部盐析效果要好,硫酸铵盐析会因

pH偏离Ig M等电点及步骤繁杂使含量本就很低的

Ig M大量丢失,所以在分离提纯Ig M时,应避免采

用硫酸铵沉淀.辛酸沉淀法药品价廉易得、操作简

单、环境条件要求不高、快速方便,是个很好的免疫

球蛋白粗提方法,但因离心速度(>10000rpm)要

求较高而使推广会受到一定局限.

4.2 凝胶层析的影响因素

由凝胶层析洗脱曲线可见,两个层析峰重叠明

显,重叠部分必然有IgG和Ig M混合.洗脱峰重叠严

重的原因可能是上样体积过大,导致洗脱蛋白量超

出凝胶的分离承载量,而使不同分子量蛋白不能充

分分开,导致洗脱峰偏态分布,或者是多肩峰、多峰

重叠等,一般100mL柱床加样122mL(1%22%).解

决的办法是在分部收集时,应尽可能减少每管收集

量,最后通过电泳确定纯度较高的纯化蛋白后再合42 阜阳师范学院学报(自然科学版) 第24卷

并相应收集管,而不能仅凭经验未经纯度鉴定就合并同一洗脱峰,该实验纯化Ig M 纯度仅为63.8%的原因可能就是把整个第一峰全部收集合并的缘故;或收集第一峰时仅收集其上升支可使纯化蛋白的纯度大为改善,但这样会明显降低其回收率,该实验中纯化Ig M 回收率(1.28m g mL 血清)较高的原因可能也是含有了部分杂蛋白的缘故.

洗脱时,洗脱液的流速受凝胶颗粒大小的影响,颗粒大时流速较大,但使用较大流速常使洗脱峰形态变宽;颗粒较小时流速较慢,分离效果较好.每一种凝胶均有最适宜的流速,一般选择厂家建议的流

速或通过试验筛选适宜流速.

4.3 提前免疫可提高Ig M 提取得率

猪血清Ig M 是猪免疫应答早期分泌的免疫球蛋白,分泌量少、半衰期短,导致血液中含量较低,所以要想获得较多Ig M 应该提前对猪进行人工免疫,一周后采血提取纯化.

总之,文章为Ig M 纯化作了相应方法探索,采用辛酸沉淀-凝胶过滤法初步纯化获得了较高纯度和得率的猪血清Ig M ,对于纯度要求不高的实验与应用能够基本满足要求.

参考文献

[1] 陈 飞,秦爱建,姚永华,等.猪Ig M 单克隆抗体的研制与鉴定[J ].动物科学,2005,7:829.

[2] 刘生杰,余为一.免疫球蛋白IgG 和Ig M 分离纯化技术现状与展望[J ].阜阳师范学院学报(自然科学版),2006,23(3):

26231.

[3] 罗 垒,朱雅东,丁霄霖.聚丙酰胺凝胶电泳研究猪血清蛋白硫酸铵分级盐析J ].食品科学,2006,27(2):2182222.[4] M cK inney MM ,and Park inson A .A si m p le ,non -ch rom atograph ic p rocedure to purify i m m unoglobulins from serum

and ascites fluid [J ].J I mm uno lM eth ,1987,96:2712278.

[5] 杨健雄.生物化学与分子生物学实验技术教程[M ].北京:科学出版社,2002,5:85288.

[6] M ichella MM m ,A ndrew P .A si m p le ,non 2ch rom atog raph ic p rocedure to purify i m m unoglobulins from serum and as 2

cites fluid [J ].Journal of I mm uno logicalM ethods ,1987,96:2712278.

[7] 王秀奇,秦淑媛,高天慧,等.基础生物化学实验[M ].北京:高等教育出版社,1999,6:2362241.[8] 杨健雄.生物化学与分子生物学实验技术教程[M ].北京:科学出版社,2002,5:1132114.[9] 陶钧辉,陶 力,李 俊,等.生物化学实验[M ].3版.北京:科学技术出版社,2005,4:1102114.[10] 章金钢,钱爱东,丘鹤英,等.猪的免疫学基础[J ].中国兽医杂志,1997,23(3):51253.

Pur if ica tion and Iden tif ica tion of Ig M from Sw i ne Seru m

L I U Sheng 2jie 1,2,ZHOU Yang 1,ZHU M ao 2ying 1,N IE Chuan 2peng 1,L I Dong 2w ei 1,YU W ei 2yi

2

(1.S chool of L if e S cience ,F uy ang T eachers Colleg e ,F uy ang ,A nhu i 236041,Ch ina ;2.S chool of L if e S cience ,A nhu i A g ricu ltu re U niversity ,H ef ei ,A nhu i 231072,Ch ina )

Abstract :Purify the i m m unoglobulin M (Ig M )from s w ine serum w ith the cap rylic acid p reci p itati on 2the Sepherdax

G 200gelatin filters and app roach the purifying effect by identifying its purity .T he experi m ent com bines the cap rylic acid p re 2ci p itati on m ethod and the Sepherdax G 200gelatin filters to purify Ig M .T hen the mo lecular w eigh t and purity of Ig M are de 2ter m ined by SD S 2PA GE and A lphaEaseFC analysis softw are ,and the yield of Ig M is calculated acco rding to the p ro tein con 2centrati on deter m ined by B radfo rd k it .T he cap rylic acid p reci p itati on can eli m inate the bulk of p ro teins w h ich are no t Ig M .Tw o eluting peak s are abtained in the p rocess of purificati on Ig M by the Sepherdax G 200gelatin filters

.T he purity of Ig M w h ich is only in the first eluting peak is 63.8%and the yield is 1.28m g m l serum .T he experi m ent can get h igh purity and yield of Ig M by the cap rylic acid p reci p itati on m ethod and the Sepherdax G 200gelatin filters

.T he Ig M purified from s w ine serum in th is experi m ent can m eet the need of the experi m ents and the app licati ons ,in w h ich the requirem ent of purity is no t h igh .

Key words :s w ine serum ;i m m unoglobulin M (Ig M );extract ;purify

5

2第4期 刘生杰等:辛酸沉淀2凝胶过滤法提取猪血清Ig M

蛋白质的盐析与透析

蛋白质的盐析与透析 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液。 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。 附:胶棉半透膜的制备 市售5%的胶棉液,加入干燥的150mL锥形瓶中,将锥形瓶横斜不断转动,使瓶的内壁和瓶口都均匀沾有胶棉液。倒出多余的胶棉液,然后倒置约1min使乙醚、乙醇不断蒸发,直到干燥。逐步剥离瓶口的薄膜,沿瓶壁薄膜夹缝注入蒸馏水,使薄膜逐步跟瓶壁胶离,轻轻取出,浸入蒸馏水中备用。 如有侵权请联系告知删除,感谢你们的配合!

植物蛋白质提取方法总汇

植物蛋白质提取方法总汇 一、植物组织蛋白质提取方法 1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。 2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4小时)。 3、用离心机离心8000rpm40min4℃或11100rpm20min4℃ 4、提取上清液,样品制备完成。蛋白质提取液:300ml 1、1Mtris-HCl(PH8) 45ml 2、甘油(Glycerol)75ml 3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g这种方法针对SDS-PAGE,垂直板电泳! 二、植物组织蛋白质提取方法 氯醋酸—丙酮沉淀法 1、在液氮中研磨叶片 2、加入样品体积3倍的提取液在-20℃的条件下过夜,然后离心(4℃8000rpm以上1小时)弃上清。 3、加入等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4℃8000rpm以上1小时),然后真空干燥沉淀,备用。 4、上样前加入裂解液,室温放置30分钟,使蛋白充分溶于裂解液中,然后离心(15℃8000rpm 以上1小时或更长时间以没有沉淀为标准),可临时保存在4℃待用。 5、用Brandford法定量蛋白,然后可分装放入-80℃备用。 药品:提取液:含10%TCA和0.07%的β-巯基乙醇的丙酮。裂解液:2.7g尿素0.2gCHAPS 溶于3ml灭菌的去离子水中(终体积为5ml),使用前再加入1M的DTT65ul/ml。 这种方法针对双向电泳,杂质少,离子浓度小的特点!当然单向电泳也同样适用,只是电泳的条带会减少! 三、组织:肠黏膜 目的:WESTERN BLOT检测凋亡相关蛋白的表达 应用TRIPURE提取蛋白质步骤: 含蛋白质上清液中加入异丙醇:(1.5ml每1mlTRIPURE用量) 倒转混匀,置室温10min

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蛋白质的盐析与透析

蛋白质的分离纯化 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液,双缩脲试剂 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。

盐析法

盐析法综述 摘要:沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。盐析法是其中的一种,盐析法是在中药水提液中,加入无机盐至一定浓度,或达饱和状态,可使某些成分在水中溶解度降低,从而与水溶性大的杂质分离。常作盐析的无机盐有氯化钠、硫酸钠、硫酸镁、硫酸铵等。 关键词:沉淀法;盐析;原理;方法评价;蛋白质盐析 沉淀法 沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。 有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。有机溶剂的沉淀机理是降低水的介电常数,导致具有表面水层的生物大分子脱水,相互聚集,最后析出。等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。两性电解质分子上的净电荷为零时溶解度最低,不同的两性电解质具有不同的等电点,以此为基础可进行分离。、非离子多聚体沉淀法用于分离生物大分子非离子多聚物是六十年代发展起来的一类重要沉淀剂,最早用于提纯免疫球蛋白、沉淀一些细菌和病毒,近年来逐渐广泛应用于核酸和酶的分离提纯。最常用的是铅盐法,可以用于除去杂质,也可用于沉淀有效成分。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。 对沉淀形式的要求 (1)沉淀的溶解度要小,以保证被测组分能沉淀完全。 (2)沉淀要纯净,不应带入沉淀剂和其他杂质。 (3)沉淀易于过滤和洗涤,以便于操作和提高沉淀的纯度。 (4)沉淀易于转化为称量形式。 盐析法 胶体的盐析 胶体的盐析是加盐而使胶粒的溶解度降低,形成沉底析出的

蛋白质提取方法

蛋白质提取方法-------列举10种方法 一、植物组织蛋白质提取方法(summer) 1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。 2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4 小时)。 3、用离心机离心8000rpm40min4℃或11100rpm20min4℃ 4、提取上清夜,样品制备完成。 蛋白质提取液:300ml 1、1Mtris-HCl(PH8)45ml 2、甘油(Glycerol)75ml 3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g 这种方法针对SDS-PAGE,垂直板电泳! 二、植物组织蛋白质提取方法(summer) 三氯醋酸—丙酮沉淀法 1、在液氮中研磨叶片 2、加入样品体积3倍的提取液在-20℃的条件下过夜,然后离心(4℃8000rpm以上1小时)弃上清。 3、加入等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4℃8000rpm以上1 小时),然后真空干燥沉淀,备用。 4、上样前加入裂解液,室温放置30 分钟,使蛋白充分溶于裂解液中,然后离心(15℃8000rpm 以上1小时或更长时间以没有沉淀为标准),可临时保存在4℃待用。 5、用Brandford法定量蛋白,然后可分装放入-80℃备用。 药品: 提取液:含10%TCA 和0.07%的β-巯基乙醇的丙酮 裂解液:2.7g 尿素0.2gCHAPS 溶于3ml 灭菌的去离子水中(终体积为5ml),使用前再加入1M 的DTT65ul/ml。 这种方法针对双向电泳,杂质少,离子浓度小的特点!当然单向电泳也同样适用,只是电泳的条带会减少! 三、组织:肠黏膜(newinbio) 目的:WESTERN BLOT检测凋亡相关蛋白的表达 应用TRIPURE 提取蛋白质步骤: 含蛋白质上清液中加入异丙醇:(1.5ml每1mlTRIPURE用量)倒转混匀,置室温10min 离心:12000 g,10min,4度,弃上清,加入0.3M盐酸胍/95%乙醇:(2ml每1mlTRIPURE 用量)振荡,置室温20min 离心:7500g,5 min,4 度,弃上清 重复0.3M盐酸胍/95%乙醇步2 次 沉淀中加入100%乙醇2ml 充分振荡混匀,置室温20 min 离心:7500g,5min,4度,弃上清吹干沉淀,1%SDS溶解沉淀 离心:10000g,10min,4度 取上清-20 度保存(或可直接用于WESTERN BLOT) 存在的问题:加入1%SDS 后沉淀不溶解,还是很大的一块,4 度离心后又多了白色沉定,SDS 结晶?测浓度,含量才1mg/ml左右。 解决:提蛋白试剂盒,另外组织大小适中,要碎,立即加2X BUFFER,然后煮5-10分钟,

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

植物组织蛋白质提取方法汇总

用200毫摩每升的tris-cl 和62.5毫摩每升的tris-cl,我们研究室一般用100毫摩每升的tris-cl,pH 8.0 .另外,最好加150毫摩每升的NaCl,用来分离以弱电荷结合到多糖上的蛋白。 2我提的蛋白难溶,请问怎么解决?1、请问这是为什么呢?怎么解决? 2、溶解时是先在100℃沸水浴后在涡旋吗? 3、涡旋时产生大量泡沫,对蛋白有影响吗? 4、是在常温溶解还是在4℃?或-20℃? 5、一般溶解需要多长时间?怎样才算溶解充分了? 我也是做植物叶片的,建议你可以用TCA-丙酮沉淀,方法如下: 1、在液氮中研磨叶片30min,加PVP,和石英砂 2、加入样品体积3倍的提取液(丙酮溶液1)在-20℃的条件下过夜,然后离心(4℃10000rpm以上1小时)弃上清。 3. 每份加入9ml丙酮溶液II,捣碎沉淀,常温振动混匀,-20℃沉淀1h;10000rpm,4℃离心15min,弃上清. 4. 每份加入9ml丙酮溶液II,常温振动混匀,-20℃沉淀1h;10000rpm,4℃离心15min,弃上清. 5. 每份加入9ml 80%丙酮溶液III, 常温振动混匀,-20℃沉淀1h, 10000rpm,4℃离心15min,弃上清6.干燥成硬块,磨成粉磨-20℃保存待用。 第二个问题: 37度水浴 第三个问题: 涡旋时产生大量泡沫,没有影响 第四个问题: 37度溶解 第五个问题 1个小时,中间混匀数次 出现这种情况是很正常的,要是全部都溶了倒是不太正常。用沉淀法浓缩蛋白都存在一个变性的问题,在具体的操作过程中,有一部分蛋白变性了,所以会不溶解。操作的时候尽量保持低温! 溶解的时候可以在常温下,蛋白变成粉末后,立即加1*SDS上样缓冲液,用加样器吹打,大约5分钟就好,可以用来进行下一步的实验了。也可以在4度溶解过夜。 涡旋时产生大量泡沫,个人认为影响不大 一般溶解半个小时就很充分了,但仍会有很多不溶物!可以离心弃掉!丙酮沉淀之后要干燥,这个过程一定不要时间太长,不然样品干燥得过了,就很难溶了。即使你加上了硫脲,高浓度尿素也不行。我的经验是只要半个小时左右就足够了,表面上看上去比较干就可以了。

盐析法沉淀蛋白质的原理

盐析法沉淀蛋白质的原理 1 中性盐沉淀(盐析法) 在溶液中加入中性盐使生物大分子沉淀析出的过程称为“盐析”。除了蛋白质和酶以外,多肽、多糖和核酸等都可以用盐析法进行沉淀分离。 盐析法应用最广的还是在蛋白质领域,已有八十多年的历史,其突出的优点是: ①成本低,不需要特别昂贵的设备。 ②操作简单、安全。 ③对许多生物活性物质具有稳定作用。 ⑴中性盐沉淀蛋白质的基本原理 蛋白质和酶均易溶于水,因为该分子的-COOH、-NH2和-OH都是亲水基团,这些基团与极性水分子相互作用形成水化层,包围于蛋白质分子周围形成1nm~100nm颗粒的亲水胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲和力越大,因而溶解度也越大。亲水胶体在水中的稳定因素有两个:即电荷和水膜。因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即形成沉淀。

⑵中性盐的选择 常用的中性盐中最重要的是(NH4)2SO4,因为它与其他常用盐类相比有十分突出的优点: 1) 溶解度大:尤其是在低温时仍有相当高的溶解度,这是其他盐类所不具备的。由于酶和各种蛋白质通常是在低温下稳定,因而盐析操作也要求在低温下(0~4℃)进行。 2) 分离效果好:有的提取液加入适量硫酸铵 盐析,一步就可以除去75%的杂蛋白,纯 度提高了四倍。 3) 不易引起变性,有稳定酶与蛋白质结构的 作用。有的酶或蛋白质用2~3mol/L浓度的 (NH4)2SO4保存可达数年之久。 4) 价格便宜,废液不污染环境。 ⑶盐析的操作方法 最常用的是固体硫酸铵加入法。将其研成细粉,在搅拌下缓慢均匀少量多次地加入,接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀。盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤。 在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法。

提取蛋白的常规方法

1、原料的选择 早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经 常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料, - 105 - 蛋白质提取与制备Protein Extraction and Preparation 因而对提取要求更复杂一些。 原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰富及成 本低的原料。尽量要新鲜原料。但有时这几方面不同时具备。含量丰富但来源困难,或含量 来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。一般要注意种属 的关系,如鲣的心肌细胞色素C 较马的易结晶,马的血红蛋白较牛的易结晶。要事前调查 制备的难易情况。若利用蛋白质的活性,对原料的种属应几乎无影响。如利用胰蛋白酶水解 蛋白质的活性,用猪或牛胰脏均可。但若研究蛋白质自身的性质及结构时,原料的来源种属 必须一定。研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白、贫血血红蛋白)时,不但 使用种属一定的原料,而且要取自同一个体的原料。可能时尽量用全年均可采到的原料。对 动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。 2、前处理 a、细胞的破碎 材料选定通常要进行处理。要剔除结缔组织及脂肪组织。如不能立即进行实验,则应冷 冻保存。除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先 将细胞破碎,使其充分释放到溶液中。不同生物体或同一生物体不同的组织,其细胞破坏难 易不一,使用方法也不完全相同。如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即 可,肌肉及心组织较韧,需预先绞碎再制成匀桨。 ⑴机械方法 主要通过机械切力的作用使组织细胞破坏。常用器械有:①高速组织捣碎机(转速可达 10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两 个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间

蛋白质的提取与纯化

蛋白质的提取与纯化 一,蛋白质的提取 大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。 (一)水溶液提取法 稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。 下面着重讨论提取液的pH值和盐浓度的选择。 1、pH值 蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。 2、盐浓度 稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等

中性盐,一般以0.15摩尔。升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。 (二)有机溶剂提取法 一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。 二、蛋白质的分离纯化 蛋白质的分离纯化方法很多,主要有: (一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。

蛋白纯化硫酸铵沉淀盐析法

蛋白纯化硫酸铵沉淀盐析 还能想起那些在荧屏中曾经震撼过我们,具有超能力的英雄么? 蜘蛛侠,敏捷,灵活迅速飞流直下,忽闪直冲高楼; 绿巨人浩克,力量,速度,耐力,在我们的想象力中膨胀; 还有,我们随身携带星形盾牌,品格高尚的美国队长…… 幻想里中的人物形象存在我们的记忆力,然而生物背景出身的我们,总归要锻炼出属于自己的实验技能,即便是相同的实验步骤,每个人做出来的结果也不尽相同,差别在哪?反复练习,用心总结出属于自己的心得,转化为自己的实验“超能力”吧。本文总结了蛋白纯化硫酸铵沉淀详细的实验原理、步骤,供大家参考。 -------锻炼属于我们自己的实验“超能力”之一 我是超级蜘蛛精 看我有劲儿不? 冲啊,我是美国队长 而我是一只冷静的科研小蜗牛 这次,我们所要分享的便是一种很常见,但是也很重要的蛋白质纯化方法:硫酸铵沉淀蛋白法,一起走进实验室吧。 硫酸铵沉淀法是粗分离蛋白时常用的纯化和浓缩蛋白的技术。蛋白质的溶解度和盐浓度密切相关,在低浓度的条件下,随着盐浓度的增加,蛋白质的溶解度

增加;但在高浓度的盐溶液里,盐离子竞争性的

结合蛋白表面的水分子,破坏蛋白表面的水化膜,溶解度降低,蛋白质在疏水作用下聚集形成沉淀。每种蛋白质的溶解度不同,因此可以用不同浓度的盐溶液来沉淀不同的蛋白质。硫酸铵的溶解度大,解离形成大量的NH4+、SO42-离子,会结合大量的水分子,使蛋白质的溶解度下降,另外,其温度系数小,不易使蛋白质变性,因此,蛋白质粗分离时硫酸铵沉淀法是很重要的一种技术,后续可采用层析技术进一步纯化蛋白,效率更高。硫酸铵沉淀法是常用的分离免疫球蛋白的方法。 各种不同蛋白质盐析需要不同浓度的硫酸铵溶液。在实验中建议配置不同梯度浓度的硫酸铵溶液来确定蛋白质沉淀所需的最佳浓度。 (1)参照如下表格配置不同浓度的硫酸铵溶液; 例如,在25 ℃条件下,配置饱和度为100 %的硫酸铵溶液,称取767 g的硫酸铵固体,边搅拌边加入到1 L的蒸馏水中,完全溶解后,用氨水或者硫酸调节pH 到7.0。 (2)沉淀蛋白 将样品离心,去除沉淀,保留上清液并测量体积;一边搅拌一边慢慢的加入硫酸

有机溶剂沉淀法分离与纯化蛋白质

有机溶剂沉淀法分离与纯化蛋白质 摘要:有机溶剂能降低溶液的电解常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度的降低;另外,有机溶剂与水的作用,能破坏蛋白质的水化膜,故蛋白质在一定浓度的有机溶剂中的溶解度差异而分离的方法,称“有机溶剂分段沉淀法”,它常用于蛋白质或酶的提纯。 关键词:有机溶剂沉淀分离与纯化 正文 一、有机溶剂沉淀法 1.有机溶剂沉淀法的概念 利用与水互溶的有机溶剂(如甲醇、乙醇、丙酮等)能使蛋白质在水中的溶解度显著降低而沉淀的方法,称为有机溶剂沉淀。 2.有机溶剂沉淀法的原因 有机溶剂引起蛋白质沉淀的主要原因是加入有机溶剂使水溶液的介电常数降低,因而增加了两个相反电荷基团之间的吸引力,促进了蛋白质分子的聚集和沉淀。有机溶剂引起蛋白质沉淀的另一种解释认为与盐析相似,有机溶剂与蛋白质争夺水化水,致使蛋白质脱除水化膜,而易于聚集形成沉淀。 3.有机溶剂沉淀法的影响因素 (一)有机溶剂的选择在实际生产中,常用的有机溶剂有乙醇、丙酮、异丙醇、氯仿等。丙酮的介电常数小,沉淀能力强;而乙醇无毒,广泛应用于药品生产中。 (二)温度的控制有机溶剂沉淀时,温度是重要的控制指标。根据沉淀对象不同,采用的温度不同,为防止生物大分子在较高温度时发生变性,一般要求在低温下进行,同时还要考虑有机溶剂与水混合时的放热现象。 (三)pH值等电点时,蛋白质的溶解度最低。在有机溶剂沉淀时,应选择pH值在等电点附近,但是pH值的控制还必须考虑目的药物的稳定性条件,一般生产中常用缓冲液来控制溶液的pH值。 (四)离子强度在有机溶剂和水的混合液中离子强度是一个特别重要的因素。因为盐在一定的浓度范围内能增加蛋白质或酶在有机溶剂中的溶解度,使有机溶剂沉淀收率降低,因此当采用盐析沉淀法得到蛋白质或酶后,如需进一步用有机溶剂沉淀法纯化,一定要先透析除盐。 4.有机溶剂沉淀法的溶剂选择原则

蛋白质的提取方法

沉淀法分级蛋白质: 水溶性蛋白质分子表面带有亲水性基团,因此很容易进行水合作用,顺利进入水溶液中。如果溶液的pH偏离等电点,则所有分子会带相同电荷,这进一步增进了它们的分散能力。因此,凡是能破坏蛋白质分子水合作用或者减弱分子间同性相斥作用的因素,都可能降低蛋白质在水中的溶解度,使其沉淀。常用的方法有盐析法和有机溶剂法。 (一)盐析法向蛋白质水溶液中加入中性盐,可以产生两种影响:一是盐离子与蛋白质分子中的极性和离子基团作用,降低蛋白质分子的活度系数,使其溶解度增加。在盐浓度较低时以这种情形为主,蛋白质表现为易于溶解,称为盐溶现象;二是盐离子也与水这种偶极分子作用,使水分子的活度降低,导致蛋白质水合程度的降低,使蛋白质溶解度减少。在盐浓度较高时这种情形起决定性作用,蛋白质便会沉淀,称为盐析现象。采用加入中性盐的方法使各种蛋白质依次分别沉淀的方法称为盐析法。 各种离子盐析能力的强弱可用Hofmeister序列表示: PO4>SO4>C2O4>(CHOHCOO)2>AC>Cl>NO3, K>Rb>Na>Cs>Li>NH4 实际工作中,常用的盐析剂是硫酸铵,因为它盐析能力强,在水中溶解度大,价格便宜,浓度高时也不会引起蛋白质生物活性的丧失。硫酸铵浓溶液的pH约为5.5,配置硫酸铵饱和溶液时,可在水中加过饱和量的硫酸铵,加温至50℃,至大部分盐溶解,室温放置过夜后,再用NaOH或硫酸调所需pH。 (二)有机溶剂沉淀法在等电点附近,蛋白质分子主要以偶极离子形式存在。这时如果添加有机溶剂,由于有机溶剂有较低的介电常数,会使溶液介电常数减小,根据库伦定律,这样会增强偶极离子之间的静电引力,从而使分子聚集沉淀。另一方面,有机溶剂本身的水合作用会破坏蛋白质表面的水合层,也促使蛋白分子脱水沉淀。选用有机溶剂的原则是:1.必须能与水完全混溶;2.不与蛋白质发生反应;3.要有较好的沉淀效应;4.溶剂蒸汽无毒,且不易燃。丙酮和乙醇是使用最为广泛的两种有机溶剂。在低介电常数环境中,蛋白质分子基团间的作用力会受到影响,超过限度时会使蛋白质变性。因此,有机溶剂沉淀法一般都要在低温下进行。蛋白质分子本身是多价离子,对溶液介电常数有相当贡献。当蛋白浓度太低时,如添加有机溶剂过度会产生变性现象,若这时加入介电常数大的物质(如甘氨酸),可避免蛋白变性。蛋白浓度高时,介电常数也相应提高,可以减少蛋白变性。 (三)有机聚合物沉淀法除了盐和有机溶剂能使蛋白质沉淀外,水溶性中性高聚物也能沉淀蛋白质。分子量高于4000的PEG可以非常有效地沉淀蛋白质。最常用的使分子量6000和20000的PEG。PEG可以看作是聚合的有机溶剂,其作用原理可能与有机溶剂类似。聚丙烯酸可以沉淀带正电蛋白质。聚丙烯酸分子上有相当多的羧基,碱性蛋白质含较多的碱性基团,羧基和碱性基团形成盐键,则把聚丙烯酸和碱性蛋白结成成很大颗粒沉淀下来。沉淀时碱性蛋白与溶液分开,加入钙离子后,聚丙烯酸成钙盐,蛋白质则游离出来。

蛋白质的盐析

蛋白质的盐析 SANY GROUP system office room 【SANYUA16H-

蛋白质的盐析(验证型) 一、实验目的 了解在工业化生产过程中使用(NH4)2SO4的情况,及(NH4)2SO4使用时的注意事项。 二、实验原理 用高浓度中性盐使蛋白质从溶液中沉淀出来的方法称盐析。常用的中性盐有(NH4)2SO4、NaCl 等。高`浓度中性盐能使蛋白质沉淀是因为它具有脱水性,能脱去蛋白质胶粒水膜,又有中和蛋白质胶粒外双电层电荷的作用。不同蛋白质盐析时所需盐浓度不同,故调节盐浓度,可适当地将蛋白质分开。如球蛋白在半饱和硫酸铵溶液中沉淀,清蛋白在饱和硫酸铵溶液中沉淀,用盐析法沉淀的蛋白质并未变性,用稀释的方法或透析的方法可使之复溶。 三、器材与试剂 1、发酵溶液 2、10%的三氯醋酸溶液 3、饱和(NH4)2SO4溶液 4、(NH4)2SO4粉末 四、实验步骤 (1)取发酵溶液5ml,加饱和(NH4)2SO4溶液1ml2ml3ml4ml5ml,混匀,静止数分钟,即有白色沉淀析出,应为何物?过滤至清,除去沉淀,滤液备用。取少量沉淀,加H2O看是否复溶? (2)取滤液0.5ml,加10%的三氯醋酸数滴,有白色沉淀产生,应为何物?然后在721分光光度计OD600下进行透光率的检测,检测时必须在倒入比色皿以后10秒内读取(为什么?)。(在进行检测时应注意将721分光光度计调整到OD600;在测量前应把机器预热半小时左右。在检测时应注意有效的检测范围是T值15%以上到70%以下)。 (3)另外,取滤液2.5ml于小烧杯中,加(NH4)2SO4粉末,随加随搅拌,直至(NH4)2SO4不能溶解为止,有白色沉淀产生,应为何物?然后过滤至清,除去沉淀,过滤备用。 (4)将(1)-(3)做的滤液中加10%三氯醋酸数滴观察有无沉淀产生。找到没有沉淀的加饱和(NH4)2SO4溶液的点。然后在721分光光度计OD600下进行透光率的检测。并且作出曲线。 (5)对大量的发酵液进行处理,在滤液中加10%三氯醋酸数滴观察有无沉淀产生。 (6)盐析曲线的制作方法:如果要分离一种新的蛋白质和酶,没有文献数据可以借鉴,则应先确定沉淀该物质的硫酸铵饱和度。具体操作方法如下:取已定量测定蛋白质或酶的活性与浓度的待分离样品溶液,冷至0℃~5℃,调至该蛋白质稳定的pH值,分6~10次分别加入不同量的硫酸铵,第一次加硫酸铵至蛋白质溶液刚开始出现沉淀时,记下所加硫酸铵的量,这是盐析曲线的起点。继续加硫酸铵至溶液微微混浊时,静止一段时间,离心得到第一个沉淀级分,然后取上清再加至混浊,离心得到第二个级分,如此连续可得到6~10个级分,按照每次加入硫酸铵的量,查出相应的硫酸铵饱和度。将每一级分沉淀物分别溶解在一定体积的适宜的pH缓冲液中,测定其蛋白质含量和酶活力。以每个级分的蛋白质含量和酶活力对硫酸铵饱和度作图,即可得到盐析曲线。 五、盐析注意事项: 1.盐析的成败决定于溶液的pH值与离子强度,溶液pH值越接近蛋白的等电点,蛋白质越容易沉淀。 2.盐析一般用的硫酸铵,容易吸潮,因而在使用前,一般先磨碎,平铺放入烤箱内60℃烘干后再称量,这样更准确。 3.在加入盐时应该缓慢均匀,搅拌也要缓慢,越到后来速度应该更注意缓慢,如果出现一些未溶解的盐,应该等其完全溶解后再加盐,以免引起局部的盐浓度过高,导致酶失活。

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

蛋白质的十种提取方法

蛋白质的十种提取方法.txt大人物的悲哀在于他们需要不停地做出选择;而小人物的悲哀在于他们从来没有选择的机会。男人因沧桑而成熟,女人因成熟而沧桑。男人有了烟,有了酒,也就有了故事;女人有了钱,有了资色,也就有了悲剧。蛋白质提取方法-------列举10种方法 [ 来源:绿谷生物网点击数: 4587 更新时间: 2008年05月30日 ][ 收藏本文 ] 一、 植物组织蛋白质提取方法(summer) 1、根据样品重量(1g样品加入3.5ml提取液,可根据材料不同适当加入),准备提取液放在冰上。 2、把样品放在研钵中用液氮研磨,研磨后加入提取液中在冰上静置(3-4 小时)。 3、用离心机离心8000rpm40min4℃或11100rpm20min4℃ 4、提取上清夜,样品制备完成。 蛋白质提取液:300ml 1、1Mtris-HCl(PH8) 45ml 2、甘油(Glycerol)75ml 3、聚乙烯吡咯烷酮(Polyvinylpolypyrrordone)6g 这种方法针对SDS-PAGE,垂直板电泳! 二、 植物组织蛋白质提取方法 (summer) 三氯醋酸—丙酮沉淀法 1、在液氮中研磨叶片 2、加入样品体积3倍的提取液在-20℃的条件下过夜,然后离心(4℃8000rpm以上1小时)弃上清。 3、加入等体积的冰浴丙酮(含0.07%的β-巯基乙醇),摇匀后离心(4℃8000rpm以上1 小时),然后真空 干燥沉淀,备用。 4、上样前加入裂解液,室温放置30 分钟,使蛋白充分溶于裂解液中,然后离心(15℃8000rpm 以上1小 时或更长时间以没有沉淀为标准),可临时保存在4℃待用。 5、用Brandford法定量蛋白,然后可分装放入-80℃备用。 药品: 提取液:含10%TCA 和0.07%的β-巯基乙醇的丙酮 裂解液:2.7g 尿素0.2gCHAPS 溶于3ml 灭菌的去离子水中(终体积为5ml),使用前再加入1M 的 DTT65ul/ml。 这种方法针对双向电泳,杂质少,离子浓度小的特点!当然单向电泳也同样适用,只是电泳的条带会减少! 三、 组织:肠黏膜(newinbio) 目的:WESTERN BLOT检测凋亡相关蛋白的表达

实验四 蛋白质纯化 盐析沉淀法

实验四蛋白质纯化盐析沉淀法 【实验目的】 采用硫酸铵盐析法将日本血吸虫谷胱甘肽硫转移酶融合蛋白从大肠杆菌BL21(DE3)pGEX-NS53细胞裂解液中分离出来,使学生学习掌握制备细胞裂解液的技术和采用盐析法从中分离目的蛋白质的技术。 【实验原理】 用盐析法从成分复杂的蛋白质溶液(如细胞裂解液)中提取目的蛋白质是一种传统的目前仍被广泛使用的蛋白质分离纯化技术。此种技术的工作原理如下:蛋白质在稀盐溶液中,其溶解度会随盐浓度的升高而增加,此种现象被称作盐溶。但是当盐的浓度继续增高时,蛋白质的溶解度又以不同程度地下降并先后从溶液中析出,此种现象被称为盐析。上述现象是由于蛋白质分子中极性基团之间存在静电力。在低盐浓度下,蛋白质分子中极性基团之间的静电力受盐离子的影响而被消除,蛋白质在水中的极性基团的电荷被中和,水化膜被破坏,于是蛋白质分子之间相互聚集并从溶液中析出。盐析法就是根据不同蛋白质在一定浓度的盐溶液中溶解度降低程度的不同而达到彼此分离的方法。 盐析的一般操作步骤是,选择一定浓度范围的盐溶液(如0-25%饱和度的硫酸铵)使部分杂质呈“盐析”状态从溶液中沉淀出来,经离心法去除。而目的蛋白质呈盐溶状态,存在于上清中。增加盐浓度(如25-60%饱和度的NH4SO4)使目的蛋白质呈盐析状态,而从溶液中分离出来。 在盐析时,蛋白质的溶解度与溶液中离子强度的关系,可用下式表示:S lg = -Ks×I S0 式中的S为蛋白质在离子强度为I的溶解度,S0蛋白质在纯水(离强度为0)中的溶解度;K S为盐析常数。离子强度I可用下式表示: I=1/2∑Z2 式中,M-溶液中各种离子克分子浓度 Z-各种离子所带的电荷数 在温度恒定时,S0对于某一种蛋白质在某一溶液中的溶解度是一个常数,lgS0也为一常数,以β代替,故式(1)可以改写为: lgS= Ks×I (3) β值主要与蛋白质的结构,盐离子的平均半径以及盐离子的电荷数有关,也受溶液中的氢离子浓度(PH值)和温度影响。一般来说,蛋白质在某一盐溶液中的盐析系数--K S越大,盐析效果越好。

蛋白质提取常用试剂及操作方法

蛋白质提取常用试剂及操作方法 一、原料选择和前处理 (一)原料的选择 早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。尽量要新鲜原料。但有时这几方面不同时具备。含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。一般要注意种属的关系,如鲣的心肌细胞色素C 较马的易结晶,马的血红蛋白较牛的易结晶。要事前调查制备的难易情况。若利用蛋白质的活性,对原料的种属应几乎无影响。如利用胰蛋白酶水解蛋白质的活性,用猪或牛胰脏均可。但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白、贫血血红蛋白)时,不但使用种属一定的原料,而且要取自同一个体的原料。可能时尽量用全年均可采到的原料。对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。 (二)前处理 1.细胞的破碎 材料选定通常要进行处理。要剔除结缔组织及脂肪组织。如不能立即进行实验,则应冷冻保存。除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。 ⑴机械方法 主要通过机械切力的作用使组织细胞破坏。常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。小量的也可用乳钵与适当的缓冲剂磨碎提取,也可加氧化铝、石英砂及玻璃粉磨细。但在磨细时局部往往生热导致变性或pH 显著变化,尤其用玻璃粉和氧化铝时。磨细剂的吸附也可导致损失。 ⑵物理方法 主要通过各种物理因素的作用,使组织细胞破碎的方法。 Ⅰ.反复冻融法 于冷藏库或干冰反复于零下15~20℃使之冻固,然后缓慢地融解,如此反复操作,使大部分细胞及细胞内颗粒破坏。由于渗透压的变化,使结合水冻结产生组织的变性,冰片将细胞膜破碎,使蛋白质可溶化,成为粘稠的浓溶液,但脂蛋白冻结变性。 Ⅱ.冷热变替法 将材料投入沸水中,于90℃左右维持数分钟,立即置于冰浴中使之迅速冷却,绝大部分细胞被破坏。 Ⅲ.超声波法 暴露于9~10 千周声波或10~500 千周超声波所产生的机械振动,只要有设备该法方便且效果也好,但一次处理量较小。应用超声波处理时应注意避免溶液中气泡的存在。处理一些

相关文档
最新文档