无碳小车力的分析(更改版)

无碳小车力的分析(更改版)
无碳小车力的分析(更改版)

无碳小车力的分析驱动力系:

根据作用力与反作用力的关系有:重力(m0+m1)g=地面支持力N0

小车质量:m0

砝码的质量为:m1

绳轮的直径为:D S

第一级齿轮直径为:D1

第二级齿轮直径为:D2

绳的拉力为:T,

则有:T=m1(g-a x)

a x:为砝码下降的加速度

小车的源动力矩为:M0,

则有:

M0=T?D S/2

力的传递分析:

M1=M0

M1:M2=D1:

D2

小车的驱动

力矩M1=M0

等效驱动力:

F0=2M1/D q

D q:为驱动轮直径

约束力系:

惯性阻力

运行阻力

静阻力

惯性阻力系:

小车的启动加速度为:a0,则:

惯性阻力:F g=(m0+m1)a0

静阻力系:

基本阻力F j=(m0+m1)g?Y

g重力加速度

Y运行阻力系数,经验数据约为:0.01

要想使小车正常运行,则

F0>(m0+m1)?(a+g?W)

地面摩擦阻力F f

F f=(m0+m1)g?f

F摩擦系数(木质地板约为0.05—0.08)要是小车不打滑的条件为:

F0

转向等效阻力:F z

假设转向阻力矩恒为:M z

则有:

F z=M Z/L

L:为转向轮曲柄的长度

推杆的推拉力为:F t

则,F z=F t ?cosθ=(M3/D3)?Sinθ

无碳小车实验报告

?朕井令孑科技衣浄 GUILIN UNIVER3ITT OF ELECTRONIC TECHNOLOGY 机械原理课程设计报告书 设计题目:竞赛题目无碳小车的设计 课程名称:《机械原理课程设计》 学生姓名: 学生学号: 所在学院:海洋信息工程学院 学习专业:机械设计制造及其自动化 指导教师:宫文峰 2015年12月11日

目录 (2) 第一章概述 (3) 1.1 课程设计任务与目的 (3) 1.1.2 课程设计任务 (3) 1.2 无碳小车设计的目的与任务 (3) 第二章选题介绍 (4) 2.1 选题背景、意义 (4) 第三章总体设计 (4) 3.1 方案设计 (4) 3.1.3 传动机构 (5) 3.1.4 转向机构 (6) 3.1.5 行走机构 (7) 3.1.6 微调机构 (8) 第四章运动分析 (9) 4.1 用解析法进行机构的运动综合与分析 (9) 4.2 齿轮参数的分析 (12) 第五章设计小结 (12) 参考文献: (13)

第一章概述 机械原理课程设计是机械类各专业学生第一次课程设计,是重要的实践性教学环节,对于培养学生机械系统运动方案设计和创新设计能力、解决工程实际中机构分析和设计能力等 有着十分重要意义。 本次课程设计以第五届全国大学生工程能力综合训练竞赛“无碳小车”题目为基础,进 行创新设计。设计对题目进行了从新分解,运用课程内所学知识,通过查阅资料结合前人经 验,从几个方面进行方案的设计与分析选择,依据机械机构的设计理念,设计出一个完全依 靠重力势能提供动力,以平面转向机构实现周期性转向自动避让障碍物的轻质小车方案。 1.1课程设计目的与任务 1.1.1课程设计目的 1)综合运用机械原理课程的理论和实践知识,分析和解决与本课程有关的实际问题,促进所学理论知识的巩固、深入和归纳; 2)培养学生的创新设计能力、综合设计能力与团队协作精神; 3)加强学生动手能力的培养和工程实践的训练,提高学生针对实际需求进行创新思维、综合和工艺制作等实际工作能力; 4)提高学生运算、绘图、表达、运用计算机、搜集和整理资料能力; 5)为将来从事技术工作打基础。 1.1.2课程设计任务 结合一个简单或中等复杂程度的机械系统,让学生根据使用要求和功能分析,开拓思路,敢于创新,巧妙地构思其工作原理和选择工艺动作过程;由所选择的工作原理和工艺动作过 程综合应用所学过的各类常用机构的结构组成、运动原理、工作特点及应用场合等知识,进 行机构的选型、创新与组合,构思出各种可能的运动方案,并通过方案评价、优化筛选,选择最佳方案;就所选择的最佳运动方案,应用计算机辅助分析和设计方法(也可以使用图解法)进行机构尺度综合和运动分析;由运动方案和尺度综合结果绘制机构系统运动简图。 1.2无碳小车设计的目的与任务 设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换而

无碳小车动力学分析

2、相关计算: 原动机构的作用是将重物下降的重力势能转化为小车的动能。 在重物下降过程中,驱动轴转动,为小车提供动力,设重物质量为M ,下降高度为h ,则其重力势能为Mgh ,转化为自身的动能E K 1、小车的动能E K 2、小车行 走过程中的摩擦及损耗W 损, W E E K k Mgh 损 ++= 21 其中, v E M K 2 1121= , v E M K 21121= , v 1 为重物下降的速度,也是驱动轴的线速度; v 2为同一时刻小车的行进速度,也是后轮的线速度;设驱动轴转动一周,后轮转动 n 周, 所以, d d v v n 2 1后轮 驱动轴 = 设重物下降过程中加速度为a , 绳子的拉力为T , 有: )(a g M T -= 由此产生的力矩为: λ ??=R M T 驱动轴1 (其中λ为考虑摩擦影响而设置的系数) 分析可得: 1.当拉力一定时,驱动轴半径越大,产生的力矩越大,驱动轴半径越小,产生的力矩越小; 2.当力矩M 达到一定的大小保持不变,驱动轴半径越小,拉力T 越大,从而使物块减速。 3、机构设计 根据前面的分析与计算,将驱动轴设计为阶梯轴:

3.1.3动力学分析模型 a 、驱动 如图:重物以加速度向下加速运动,绳子拉力为T ,有 )(a g m T -= 产生的扭矩122λ??=r T M ,(其中1λ是考虑到摩擦产生的影响而设置的系数。) 驱动轮受到的力矩A M ,曲柄轮受到的扭矩1M ,A N 为驱动轮A 受到的压力,A F 为驱动轮A 提供的动力,有 221 λ?=+ M i M M A (其中2λ是考虑到摩擦产生的影响而设 置的系数) R F N M A A A ?+?=δ b 、转向 假设小车在转向过程中转向轮受到的阻力矩恒为C M ,其大小可 由赫兹公式求得,) 11(1 2 2 212 1E E R B N c c c μμπσ-+-?= b B N c c 2??=σ 由于b 比较小,故

无碳小车报告

无碳小车报告 一,无碳小车数据核算阶段 在小组分工中我主要负责soliworks设计,无碳小车主要要是计算取值。 首先第一天我们就确定了用曲柄摇杆机构。主要是因为我们采用了连接头这种有多个自由的的连接装置,才不会被卡死。接下来是计算正弦曲线的长度,苦学了近一天MATLAB才勉强算出来 最后我们综合考虑取了0.4-1-2.64这组数据,然后我们取得后轮半径是100cm最后算出传动比为4.2:1,所以我们决定选用4:1的比例(主要是因为市面的齿轮的齿数限制) 接下来是我们定的初始参数,轮子r=100mm d=4mm单向轴承csk8pp 车架150*200 齿轮齿数分别是40齿和10齿,前轮22*2 轴d=8 和立式轴承座! 对于转向差速问题,我们选用了单向轴承来实现差速,但是其实到后面好像没起什么作用,不知道是不是因为前轮的取材还是因为后轮本来就有问题,这都是后话了。 二,小车的加工阶段

当数据都出来的时候我们就开始加工了,本来我以为可以休息一下的,但是后来车架一直没有得到解决,主要是一开始我们就在纠结什么数控,其实想我们这种选用pc板的小车你用数控其实是很不方便的,就像我们把车轮平一样,没有想到我居然后面融了,就变形了,对此真的是一个败笔。希望后面的人可以注意一下这一点,有时候没有必要来时纠结一种方法,结果白白浪费了时间,到后面没办法就叫在塑料板上划线,然后手动加工了这是干的,接下来是负责数控编程,就洗轮子,小车的连杆摇杆和组装就是由我来了,我只能说小组的合作真的要相互配合,不然很容易出问题,在加工上才方向设计和加工时很有不同的, 比如这之前的车架布局 在后面的加工时发现组装时发生了干涉,我只能说是我们之前想的太美好。所以在设计的时候我们最好为自己后面组装留多点空间,不会到时会很尬尴,哎。不过后面还有问题就是因为重物

无碳小车实验报告 (1)

机械原理课程设计报告书 设计题目: 竞赛题目无碳小车的设计 课程名称:《机械原理课程设计》 学生姓名: 学生学号: 所在学院:海洋信息工程学院 学习专业:机械设计制造及其自动化 指导教师:宫文峰 2015年12月11日目录 (2) 第一章概述 (3) 课程设计任务与目的 (3)

第一章概述 机械原理课程设计是机械类各专业学生第一次课程设计,是重要的实践性教学环节,对于培养学生机械系统运动方案设计和创新设计能力、解决工程实际中机构分析和设计能力等有着十分重要意义。 本次课程设计以第五届全国大学生工程能力综合训练竞赛“无碳小车”题目为基础,进行创新设计。设计对题目进行了从新分解,运用课程内所学知识,通过查阅资料结合前人经验,从几个方面进行方案的设计与分析选择,依据机械机构的设计理念,设计出一个完全依靠重力势能提供动力,以平面转向机构实现周期性转向自动避让障碍物的轻质小车方案。 课程设计目的与任务 课程设计目的 1)综合运用机械原理课程的理论和实践知识,分析和解决与本课程有关的实际问题,促进所学理论知识的巩固、深入和归纳; 2)培养学生的创新设计能力、综合设计能力与团队协作精神; 3)加强学生动手能力的培养和工程实践的训练,提高学生针对实际需求进行创新思维、

综合和工艺制作等实际工作能力; 4)提高学生运算、绘图、表达、运用计算机、搜集和整理资料能力; 5)为将来从事技术工作打基础。 课程设计任务 结合一个简单或中等复杂程度的机械系统,让学生根据使用要求和功能分析,开拓思路,敢于创新,巧妙地构思其工作原理和选择工艺动作过程;由所选择的工作原理和工艺动作过程综合应用所学过的各类常用机构的结构组成、运动原理、工作特点及应用场合等知识,进行机构的选型、创新与组合,构思出各种可能的运动方案,并通过方案评价、优化筛选,选择最佳方案;就所选择的最佳运动方案,应用计算机辅助分析和设计方法(也可以使用图解法)进行机构尺度综合和运动分析;由运动方案和尺度综合结果绘制机构系统运动简图。无碳小车设计的目的与任务 设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换而得到的。该给定重力势能由质量为1Kg的标准砝码(¢50×65 mm,碳钢制作)来获得,砝码的可下降高度为400±2mm。标准砝码始终由小车承载,不从小车上掉落。图1为小车示意图。 小车在行走过程中完成所有动作所需的能量均由此给定重力势能转换而得,小车具有转 向控制机构,且此转向控制机构具有可调节功能。 第二章选题介绍 选题背景、意义 本设计源于6年第五届全国大学生工程能力综合训练竞赛“无碳小车”,该竞赛要求以

8字无碳小车工程管理设计报告

第三届全国大学生无碳小车越障竞赛
工程管理设计报告
总 3 页 产品名称 零件名称
第 1 页 无碳小车
编号: 生产纲领 生产批量
500 台/年 42 台/月
1、工程管理方案概述
为实现安全、文明生产,保证按期供货,降低总成本,提高经济效益,对无碳小车的生产进行了工程管理设计。 装 年生产 500 台无碳小车,属中批量生产。无碳小车的大部分零件属于中高精度,必须保证每个零件的加工精度。通过相应的工程管理,使同种 零件应具有互换性、可靠性。例如:前轮支撑架等零件的生产工艺主要包括:车削、铣削和钳工修整。 生产过程中需要的一些标准件,如:轴承、螺钉、齿轮等外购。金属模铸造和热处理等工艺外协加工,其它工序及总装自主完成。
2、生产过程组织
①生产过程空间组织设计: 学校名称:扬州大学 针对无碳小车按每月 42 台的生产方式,综合考虑生产组织柔性,按工艺原则布置设施。无碳小车的生产工艺主要包括车、铣、线切割、钳。 ②生产过程时间组织设计: 订 根据无碳小车的主要零件的工艺特点,结合生产空间的布置原则,生产过程的时间组织选择顺序移动的方式。
3、主要设备资源配置
①确定生产节拍:无碳小车月产 42 台,按照一个月工作 22 天,每天一班工作 8 小时,时间利用率设为 90%,计算该零件的生产节拍为: r=Fe/N=(F0×g)/N=22×8×90%×60/42=226min/台 其中,r—节拍,Fe—计划期有效工作时间,N—计划期制品产量,F0—制度工作时间,g—时间有效利用系数。 ②确定流水线生产设备数量:针对无碳小车的主要加工件,由中批量生产工艺过程卡片得知,CD6140 车削加工工时 T1 为 59min,铣削加工工 线 时 T2 为 76min,钻床加工工时 T3 为 32min。生产的设备数为: H 普车 =T1/r=59/226=0.26; H 铣 =T2/r=51/226=0.23; H 钻=T3/r=32/226=0.14 因此,无碳小车零件加工成组流水生产线需要 CD6140 普通车床、普通铣床、台钻各 1 台。
-1-

无碳小车设计说明书

第三届福建省大学生工程训练 综合能力竞赛 无碳小车设计说明书 参赛者:邓磊林源兴趣詹发星 指导老师:张宁 学校:福建工程学院 地点:福建福州 时间:2015年1月1-2日

摘要 第三届福建省大学生工程训练综合能力竞赛命题主题为“无碳小车越障竞赛”,并为接下来的第四届国赛做好准备。我们在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE、CATIA等软件辅助设计。 我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。 方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计。分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。我们的方案为:车架采用三角底板式、原动机构采用了锥形轴、传动机构采用齿轮、转向机构采用曲柄连杆、行走机构采用双轮驱动、微调机构采用微调螺母螺钉。其中转向机构利用了调心轴承、关节轴承。 技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能耗规律分析、运动学分析、动力学分析、灵敏度分析。进而得出了小车的具体参数,和运动规律。接着应用PROE软件进行了小车的实体建模和部分运动仿真。在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。 小车大多是零件是标准件、可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来。对于塑料会采用自制的‘电锯’切割。因为小车受力都不大,因此大量采用胶接,简化零件及零件装配。调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。

无碳小车设计使用说明(一等奖作品)

第二届全国大学生工程训练综合能力竞赛 无碳小车设计说明书 参赛者:龚雪飞赵鹏飞刘述亮 指导老师:朱政强戴莉莉 2011-1-16

摘要 第二届全国大学生工程训练综合能力竞赛命题主题为“无碳小车”。在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE等软件辅助设计。 我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。 方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计。分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。我们的方案为:车架采用三角底板式、原动机构采用了锥形轴、传动机构采用齿轮或没有该机构、转向机构采用曲柄连杆、行走机构采用单轮驱动实现差速、微调机构采用微调螺母螺钉。其中转向机构利用了调心轴承、关节轴承。 技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB 分别进行了能耗规律分析、运动学分析、动力学分析、灵敏度分析。进而得出了小车的具体参数,和运动规律。接着应用PROE软件进行了小车的实体建模和部分运动仿真。在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。

无碳小车的机构与运动分析

1 无碳小车的设计要求 设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换来的。竞赛时统一用质量为1Kg 的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许从小车上掉落。要求小车行走过程中完成所有动作所需的能量均来自重物重力势能转换,不可使用任何其他的能量来源。要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。要求小车为三轮结构。2 无碳小车机构运动设计和性能分 析 图1 无碳小车机构简图 小车由重物下降通过尼龙线带动绕 线轮为小车提供动力,由零件1,2,3,4,5 无碳小车的机构与运动分析 吴朝春 西南交通大学机械工程学院 四川成都 611756 组成的曲柄连杆机构控制前轮的摆动实现小车的导向,利用齿轮传动将动力传递到后轮轴实现小车的驱动。 同时为了更好的实现小车的性能要求:位移路程比V、位移S、、跑偏量L、绕桩数N,对小车五大机构进行最大程度优化。 3 无碳小车机构分析 3.1 无碳小车的结构组成 无碳小车主要有五大机构构成: 1)支撑机构:小车的骨架,是各机构布置的基础; 2)原动机构:提供小车运动的装置, 实现重物块重力势能转变为小车的动能; 3)传动机构:将原动机构一部分能 量传递到转向机构; 4)转向机构:完成小车的导向,保证小车实现预定轨迹运行; 5)驱动机构:实现小车的前进 。 3.2 支撑机构的设计车辆底板承受较大的载荷,而且要求在强度足够的情况下,重量尽可能地小。考虑到重量、加工成本等,底板采用3mm 厚的铝合金加工压制制作,底板前端叠加 一块加固板增加转向部分的强度;后轮主轴支架,大齿轮轴支架采用5mm 厚铝合金板制作,而且采用一体成型的方法,减小零件数量。铝的材料密度小,强度较大,而铝合金的性能更优于普通铝制材料,适合用来制作支架。其次,为了制作 和携带方便,将重物支撑架单独制作,将 每一根支架杆两端攻螺纹, 最后用螺栓固定到底板上。3.3 原动机构的设计 为了让重物的重力势能转化为小车的动能,即将重物块的直线下降运动(以小车底盘为参考系)转化为小车车轮的旋转运动。首先我们在结构中加入一个滑轮,通过滑轮和尼龙线我们可以将作用在重物块上的重力传递到绕线轴上,为驱动机构,转向机构的运行等提供保证,实现能量的转化。 3.4 传动机构的设计 经过原动机构已经实现了将重物块的直线下降运动(以小车底盘为参考系)转化为绕线轴的旋转运动。但仅仅只有原动机构并不能实现小车的行进功能。为此该小车必须设计一个转向机构,以及连接原动机构和驱动机构间的传动机构。传动机构的功能目标:实现传动比3:1将绕线轴的转动传递到后轮轴上 。传动功能的实现方式的选择:为了更好的实现传动机构的设计目标,本文作者根据该无碳小车的具体情况并在对比 了带传动和齿轮传动的优缺点后选择了齿数比为1:3的两个齿轮。 3.5 转向机构的选择 小车在行进过程中为了能完成“S”形前进,则小车必须有一个导向装置,本设计采用了前轮导向。为了能实现前轮导向的功能采用了曲柄连杆机构实现前轮的自动转向。转向机构由曲柄连杆机构构成。曲柄连杆机构配合紧密加工简单运动可靠,本文设计方案曲柄连杆机构由关节轴承、转向摇杆前微调轴、微调连接杆、转向摇杆后微调轴和微调曲柄组成,采用微调曲柄和微调连杆长度的改变,调节前轮转动角度的大小从而满足障碍物间距变化造成的路线改变。转向轴承为RBL 关节轴承,可以满足一定角度的空间任意方向的全尺寸旋转,因为为标准件可直接购买,降低了制作成本。 根据之前制作的无碳小车实际调试经验,转向机构的功能对无碳小车的运行效果起着至关重要的作用。特别是微调曲柄和微调连杆长度的长度对小车轨迹运行影响巨大。本文利用螺纹副来调节微调连杆长度,大大的提高了调节精度。同时转向机构也同样需要尽可能的减少摩擦耗能,满足结构简单,零部件易获得等基本条件。 3.6 驱动方式设计 为了尽量减少滑动摩擦带来能量的损失,小车要实现“S”形行进,则小车后轮应该在转弯时实现差速,避免滑动摩擦。 实现方式:后轮交替驱动。结构设计:利用单向轴承滚针轴承,同时为了增强小车行进的稳定性,利用普通轴承过盈配合连接,实现后轮轴与两后轮稳定连接。 4 运动分析 在重物下降的同时,尼龙线经过滑轮将力传递到绕线轴,形成转矩带动绕线轴的转动;通过曲柄连杆机构带动前轮的摆动实现前轮导向;通过齿轮啮合传动,将绕线轴的运动传递到后轮轴;后轮轴通过单向轴承将转动传递到后轮,后轮在地面给的摩擦力的作用下实现驱动;从而实现小车按照预定轨迹运行。

无碳小车传动方案课程设计.

目录 一任务书 (1) 二方案设计分析 (2) 2.1车架 (3) 2.2原动机构 (4) 2.3传动机构 (4) 2.4转向机构 (4) 2.5行走机构 (6) 2.6微调机构 (7) 三运动参数及构件尺寸计算 (7) 3.1建立数学模型及参数确定 (7) 3.1.1能耗规律模型 (8) 3.1.2运动学分析模型 (9) 3.1.3动力学分析模型 (13) 3.1.4参数确定 (14) 四设计总结 (15) 五参考资料目录 (15)

二设计方案分析 通过对小车的功能分析小车需要完成重力势能的转换、驱动自身行走、自动避开障碍物。为了方便设计这里根据小车所要完成的功能将小车划分为五个部分进行模块化设计(车架、原动机构、传动机构、转向机构、行走机构、微调机构)。为了得到令人满意方案,采用扩展性思维设计每一个模块,寻求多种可行的方案和构思。下面为我们设计图框(图一) 图一

在选择方案时应综合考虑功能、材料、加工、制造成本等各方面因素,同时尽量避免直接决策,减少决策时的主观因素,使得选择的方案能够综合最优。 图二 2.1车架 车架不用承受很大的力,精度要求低。考虑到重量加工成本等,车架采用木材加工制作成三角底板式。可以通过回收废木材获得,已加工。

2.2原动机构 原动机构的作用是将重块的重力势能转化为小车的驱动力。能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优。小车对原动机构还有其它的具体要求。1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。2.到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。3.由于不同的场地对轮子的摩擦摩擦可能不一样,在不同的场地小车是需要的动力也不一样。在调试时也不知道多大的驱动力恰到好处。因此原动机构还需要能根据不同的需要调整其驱动力。4.机构简单,效率高。 基于以上分析我们提出了输出驱动力可调的绳轮式原动机构。我们可以通过改变绳子绕在绳轮上不同位置来改变其输出的动力 2.3传动机构 传动机构的功能是把动力和运动传递到转向机构和驱动轮上。要使小车行驶的更远及按设计的轨道精确地行驶,传动机构必需传递效率高、传动稳定、结构简单重量轻等。 1.不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率最高、结构最简单。在不考虑其它条件时这是最优的方式。 2.带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率及传动精度并不高。不适合本小车设计。 3.齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高。因此在第一种方式不能够满足要求的情况下优先考虑使用齿轮传动。 2.4转向机构 转向机构是本小车设计的关键部分,直接决定着小车的功能。转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时

无碳小车结构设计报告

第三届山东大学大学生工程训练综合能力竞赛结构设计报告总页第 1 页产品名称:无碳小车编号 1、设计概述 设计原则: A.整车的重心要低,操作、调整方便灵活; B.结构尽量简单,传动件数少; C.质量小,足够的刚度,振动小; 2、设计方案 按照命题要求小车必须具有方向自控功能, 绕过直线布置的每隔1 米1 个障碍物的要求。小车必 须左转、右转再左转地周期性转向, 在速度一定的前提下, 必须要保证小车的运动轨迹曲率是连续变 化的, 小车才能平稳行驶。因此, 曲柄匀速转动, 摇杆左右匀速摆动的曲柄摇杆机构可以作为转向机 构, 小车运行轨迹接近正弦曲线, 曲率变化连续。从滚筒轴的回转运动到控制前轮转向的摇杆的水平 摆动, 需要把竖直平面的运动转化为水平面运动, 以实现小车的转向。要实现把竖直平面的运动转化 为水平面运动, 可以选用变形的曲柄摇杆机构来实现转向轮转向的方案,见下图4。曲柄摇杆机构中 的曲柄回转中心(即滚筒轴轴心) 应与摇杆的摆动平面等高,保证机构无急回特性, 曲柄作等速转动, 摇杆摆动时左右行程的平均速度相等, 即使得前轮左右摆幅相同, 按照指定轨迹行驶。把铅垂平面的 运动转化为水平面运动是个三维空间的运动转换, 通用的曲柄摇杆机构不能完成三维空间的运动转 换, 因此必须采用双球型关节的连杆, 使得水平与垂直方向的自由度都不受约束。为了提高运行过程 的精度和降低加工难度,可设计成四个圆柱关节, 安装成水平和竖直形式(如下图4 所示), 代替双球 型关节, 最终实现了与滚筒轴连接的曲柄的回转运动转化为摇杆的水平运动, 摇杆在水平面内摆动, 使得前轮左右摆幅相同, 实现了小车前轮的转向问题, 且保证了传动的准确。 根据图2 行走示意图, 采用余弦函数: Y=-0.35cosπx, 周期T=2 m 的曲线拟合小车行驶路径图1:小车的三维视图

无碳小车设计说明书一等奖作品1

第二届全国大学生工程训练综合能力竞赛无碳小车设计说明书 王金卫参赛者: 指导老师:刘吉兆陈丰峰2011-1-16 1 摘要 第二届全国大学生工程训练综合能力竞赛命题主题为“无碳小车”。在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE等软件辅助设计。

我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。 方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计.使其每个零件或结构件具有平衡性已达到减小摩擦.提高校车整体平衡的目的。分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。我们的方案为:车架采用三角底板式、原动机构采用了锥形轴、传动机构采用齿轮或没有该机构、转向机构采用四连杆机构、行走机构采用单轮驱动实现差速、微调机构采用微调螺母螺杆。其中转向机构利用了调心轴承、关节轴承.圆锥滚子轴承。 技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能耗规律分析、运动学分析、动力学分析、灵敏度分析。进而得出了小车的具体参数,和运动规律。接着应用PROE软件进行了小车的实体建模和部分运动仿真。在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。 小车大多的零件是标准件、可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来。对于塑料会采用自制的‘电锯'切割。因为小车受力都不大,因此大量采用胶接,简化零件及零件装配。 2 调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。 关键字:无碳小车参数化设计软件辅助设计微调机构灵敏度分析目录 摘要 (2) 一绪论 (5) 1.1本届竞赛命题主题 (5) 1.2小车功能设计要求 (5) 1.3小车整体设计要求 (6) 1.4小车的设计方法 (6) 二方案设计 (7) 2.1车架 (10) 2.2原动机构 (10) 2.3传动机构 (11) 2.4转向机构 (12) 2.5行走机构 (14) 2.6微调机构 (15) 三技术设计 (16) 3.1建立数学模型及参数确定 (17) 3.1.1能耗规律模型 (17) 3.1.2运动学分析模型 (19) 3.1.3动力学分析模型 (24) 3.1.4灵敏度分析模型 (26)

无碳小车结构设计报告

2015(第四届)山东省大学生工程训练综合能力竞赛 结构设计报告 总 5 页 第 1 页 产品名称:无碳小车 编号 1.设计概述 设计原则: 整车的重心要低,操作、调整方便灵活;结构尽量简单,传动件数少;质量小,足够的刚度,运动平稳。 2.设计方案 通过对小车的功能分析,小车需要完成重力势能的转换、驱动自身行走、自动避开障碍物。为了方便设计这里根据小车所要完成的功能将小车划分为六个部分进行模块化设计,分别是:车架 、原动机构 、传动机构 、转向机构 、行走机构 和微调机构,下面将详细介绍这六个模块。 2.1车架 车底板因不需承受很大的力,精度要求不是很高,考虑到加工方便、质量轻、成本低等因素,底板选用厚度为6mm 的铝板,尺寸定为143.5mm × 115mm 。小车运行起来按避障要求左右转向,引绳带动重块在重力的作用下将大幅摆动,可以通过降低小车底板距离地面的高度来降低整车的重心,为此将小车底板折弯,满足整车重心降低的需要。 2.2原动机构 原动机构的作用是将重块的重力势能转化为小车的驱动力。小车对此机构主要有以下要求: 驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。由于不同的场地对轮子的摩擦可能不一样,在不同的场地小车是需要的动力也不一样。在调试时也不知道多大的驱动力恰到好处。因此还需要能根据不同的需要调整其驱动力。 在此结构中应让重块保持一定高度的支架以及重块带动车体的连接部件,考虑到立柱在满足一定强度的基础上需尽可能的轻,我们选用φ6铝棒材料。为了避免小车在行驶过程中,重块晃动过大,极易造成翻车现象, 通过多次的改进最终采用的是四根立柱,既轻便又稳固,达到预期效果。 至于滑轮,由于车体及车轮均采用铝板而不是材质较轻的雅格利板、碳板,车体较重,小车不易起动。定滑轮即稳定又容易改变力的方向,故选用了定滑轮。 2.3传动机构 传动机构的功能是把动力和运动传递到转向机构和驱动轮上。它的优劣直接决定了小车的性能,能量是否充分利用,转向是否精确皆取决于此。我们决定采用齿轮传动,它具有结构紧凑、可靠性好、效率高、传动稳定等特点。由于小车只绕8字走三圈,需提高小车的速度,减少能量的损失。 因此传动机构选择了传动比5:1的一级齿轮传动。在齿轮材质的选择上,综合考虑到齿轮材质轻、价格便宜、规格齐全并能满足小车所需齿轮强度要求,故采用铝制齿轮。 学校 名 称: 参赛项 目: 8子 型赛 道常 规 赛 装 订 线

无碳小车设计报告

2014年****工程训练综合能力竞赛 无碳小车设计报告 参赛者: 指导老师: 2014/10/15

1、设计概述 “无碳小车”是将重力势能转换为机械能,使小车实现行走及转向功能的装置。 小车由能量转换机构、传动机构、转向机构和车身构成,首先通过能量转换机构获得动力来驱动后轮转动,继而通过传动机构将运动传给转向机构使转向轮,利用横纵向直线运动复合运动使转向轮呈正弦波形周期性摆动,从而避开设置在波形内固有间距的障碍物。 具体设计为小车以1kg重物块下落500mm产生的重力势能作为动力,通过线绳带动齿轮轴等传动机构,单轮驱动;通过正弦机构带动前轮周期性摆动实现转向。无碳小车结构设计总装图如图所示。 2、设计思路和方案 小车的设计分为三个主要阶段:功能分析、、制造加工调试 2.1功能分析 对小车功能要求进行分析,寻找功能元解,将小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块。对每一个模块进行多方案设计,综合对比选择最优的方案组合。 2.2参数分析与个性化设计 利用Solidworks软件进行小车的实体建模、部分运动仿真。 对方案建立数学模型进行理论分析,使用MATLAB软件分别进行能耗规律分析、运动学分析、动力学分析、灵敏度分析,得出小车的具体参数和运动规律。

2.3 机械总功能分解及功能元解 表1.势能转向小车形态学矩阵 2.4 机构选型基本原则 ①满足工艺动作和运动要求。 ②结构最简单,传动链最短。 ③原动机的选择有利于简化结构和改善运动质量。 ④机构有尽可能好的动力性能。 ⑤机器操纵方便、调整容易、安全耐用。 ⑥加工制造方便,经济成本低。 ⑦具有较高的生产效率与机械效率。 2.5转向机构分析 目前,能够实现无碳小车车轮转向控制的机构主要有曲柄摇杆机构、正弦机构(曲柄移动导杆机构)、RSSR空间四杆机构凸轮推杆机构和圆轮导杆机构。这5 种机构在结构和功能上有各自的特点。转向机构是本小车设计的关键部分,直接决定着小车的功能。转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。能够将旋转运动转化为满足要求的来回摆动。同样也 2.5.1曲柄摇杆机构 优点:连杆机构中的运动副为低副,其运动副元素为面接触,压力较小,易润滑,损耗能量少,且运动副一般是几何封闭,对保证小车行进的可靠性有利。 缺点:由于连杆机构的运动必须经过中间构件进行传递,因而构件数目多,传动路线长,若加工不能保证适当精度,易产生较大的误差积累,也使机械效率降低。 无急回曲柄摇杆机构是平面机构,要求曲柄处于前轮支架轴线的垂直面,要多一级转换机构。该机构对于摇杆与前轮角度的精度要求较高,装配难度较大,而且曲柄长度不具备调节功能,会导致摇杆摆角不对称。

无碳小车加工工艺过程

第二届全国大学生工程训练综合能力竞赛机械加工工艺方案设计总3页第1页编号: 产品名称无碳小车生产纲领600台/年零件名称前插生产批量50台/月 材料45钢毛坯种类棒料毛坯外形尺寸?24×570mm 每毛坯可制作件数 6 每台件数 1 备注 序号工序 名称 工序内容工序简图 机床 夹具 刀具 量具 附具 工时 (min) 1 锯锯切?26×570mm的毛坯料G4025 锯床 平口虎 钳 锯米尺 1.5 2 车1车端面 2车?23外圆 3粗车?12?10?6外圆 4精车?10?8外圆保证其同心度 ?0.06 C6140 车床 三爪卡 盘 90°左偏 刀 游标卡 尺,千分 尺 8 3 铰1铰M6螺纹 C6140 车床M5板牙 游标卡 尺 0.5

三爪卡盘 4 车1车断C6140 车床 三爪卡 盘 车断刀 游标卡 尺 0.5 5 铣 1粗铣四平面至15×19 2精选四平面至14×18 X5032 铣床 平口虎 钳 ?40端 铣刀 游标卡 尺 8 6 画线1画出?5孔圆心位置钳工工 作台 画针 高度尺 0.5 7 钻1钻?5孔Z3035 摇臂钻 床 ?5麻花 钻头 游标卡 尺 0.5

平口虎钳 8 铣 1铣U 型槽 X5032 铣床 平口虎钳 ?5立铣刀 游标卡 尺 4 9 线切割 1线切割出U 型槽 DK7725数控电 火花线切割 压板,螺栓,垫铁 线切割丝 游标卡尺 扳手 28 刘士强 2011-5-10 编制(日期) 审核(日期) 标准化(日期) 会签(日期) 标记 处数 更改文件号 签字 日期 2011-5-10 2011-5-12 2011-5-13 2011-5-13 装 订 线 学校名称:东北林业大学

无碳小车 设计说明

作品设计说明书

摘要 我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。 方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构五个模块,进行模块化设计。分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。我们的方案为:车架采用三角底板式、原动机构采用了带轮轴、传动机构采用带轮、转向机构采用凸轮机构、行走机构采用双轮驱动。 技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能运动学分析和动力学分析,进而得出了小车的具体参数,和运动规律y 以及确定凸轮的轮廓曲线;接着应用Solidworks软件进行了小车的实体建模和部分运动仿真。在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。 小车大多零件是标准件,可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来。调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。 关键字:无碳小车参数化设计软件辅助设计

目录

小车改进方向 (21)

一绪论 命题主题 根据第四届全国大学生工程训练综合能力竞赛主题为“无碳小车越障竞赛”。命题与高校工程训练教学内容相衔接,体现综合性工程能力。命题内容体现“创新设计能力、制造工艺能力、实际操作能力和工程管理能力”四个方面的要求。 小车功能设计要求 给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。该自行小车在前行时能够自动避开赛道上设置的障碍物(间隔范围在700-1300mm,放置一个直径20mm、长200mm的弹性障碍圆棒)。以小车前行距离的远近、以及避开障碍的多少来综合评定成绩。 给定重力势能为4焦耳(取g=10m/s2),竞赛时统一用质量为1Kg 的重块( 50×65 mm,普通碳钢制作)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。 要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。 小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。

无碳小车设计说明书(一等奖作品)

第二届全国大学生工程训练综合能力 竞赛 无碳小车设计说明书 参赛者:龚雪飞赵鹏飞刘述亮 指导老师:朱政强戴莉莉 2011-1-16

摘要 第二届全国大学生工程训练综合能力竞赛命题主题为“无碳小车”。在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE等软件辅助设计。 我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。 方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计。分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。我们的方案为:车架采用三角底板式、原动机构采用了锥形轴、传动机构采用齿轮或没有该机构、转向机构采用曲柄连杆、行走机构采用单轮驱动实现差速、微调机构采用微调螺母螺钉。其中转向机构利用了调心轴承、关节轴承。 技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB 分别进行了能耗规律分析、运动学分析、动力学分析、灵敏度分析。进而得出了小车的具体参数,和运动规律。接着应用PROE软件进行了小车的实体建模和部分运动仿真。在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。 小车大多是零件是标准件、可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来。对于塑料会采用自制的‘电锯’切割。因为小车受力都不大,因此大量采用胶接,简化零件及零件装配。调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。 关键字:无碳小车参数化设计软件辅助设计微调机构灵敏度分析

无碳小车设计方案

重庆大学工程训练综合能力竞赛 ——无碳小车设计方案

1摘要 本作品是依据竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车运行,即给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转化为机械能并用来驱动小车行走的装置。该小车通过微调装置,能够实现自动走“8”字及直线绕障。此模型最大的特点是通过两个不完全齿轮驱动前轮摆动,进行可调整的周期性摆动,使前轮的摆动节拍具有可调性。本文将对无碳小车的设计过程,功能结构特点等进行详细介绍。并介绍创新点。 2引言 随着社会科技的发展,人们的生活水平的提高,无碳对于人们来说,显得越来越重要,建设无碳社会,使得生活更加的环保,没有任何的污染。节能、环保、方便、经济,是现代社会所提倡的。现在许多发达国家都把无碳技术运用到各个领域,像交通,家具等,这也是我国当今所要求以及努力的方向。针对目前这一现状,我们设计了无碳小车模型,用重力势能转化为机械能提供了一种全新的思路,以便更好的解决以上问题。 3目的 本作品设计的目的是围绕命题主题“无碳小车”,即不利用有碳资源,根据能量转化原理,利用重力势能驱动带动具有方向控制功能的小车模型。这种模型比较轻巧,结构相对的简单,能够成功的将重力势能转化为小车的动能,从而完成小车前行过程中的所有动作。 4工作原理和设计理论推导 4.1总体结构 无碳小车模型的主要机构有驱动机构、转向机构、行走机构及微调机构。主要部件如下图的小车整体模型

4.2设计理念及说明 4.2.1无碳小车模块机构介绍 ◆驱动机构: 本方案采用绳轮作为驱动力转换机构。我们采用了梯形轮使能量转化过程中有更合适的转矩使驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。同时做到了到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击,提高了能量利用率。绳轮机构简单,传动效率高,且在针对不同场地导致的所需动力不同的情况,可通过调节绕绳位置来改变转矩,使动力改变,增强适应性。 ◆转向机构: 如图,本方案采用了摇杆加两个完全相同的不完全齿轮,实现可变周期性转向。考虑到摩擦、制造、安装误差的敏感性等因素,我们最终选用了摇杆加不完全齿轮的方案。考虑到适应场地的需求,我们将原来的一个不完全齿轮改为两个,实现了不完全齿角度差的可调性。

无碳小车设计报告

无碳小车设计报告 一、设计理念 煤炭是大自然给予人类的一笔宝贵财富,可是由于人们对煤炭的巨大需求,煤炭资源日趋减少近于枯竭。随着人们节能环保意识的提升,无碳的理念也越来越被人们提上研究的课题。更洁净、更环保、更节能、更高效的理念也深入人心。无碳小车是对“无碳”理念的探索与开发,对未来“无碳”的憧憬。本小车依照现代工程师的标准,注重设计的巧妙、制作的精良、调试的可靠性等。与其他类似的模型小车相比,本小车更注重能量的利用、车体结构的稳定性、匀速性等;采用的柔性摆杆机构更涉及了诸多数学理论的验证;,且使小车控制转弯更省力、使小车的躲避障碍物的周期更容易实现与控制,亦降低了整车重量。再者小车整体构造简洁,组合零件不多,摩擦损耗小,效率高,较容易制造安装。在完成设计的要求下充分考虑了外观和成本等问题,方便以后的扩展和进一步的开发。并能满足大部分初高中及大学学生对机械知识实践的实验与了解。对激发青少年对机械构造的热情有深远的影响。适合广大青少年学习研究。 二、无碳小车设计要求 设计说明: 以重力势能驱动的具有方向控制功能 的自行小车 设计一种小车,驱动其行走几转向的能 量是根据能量转换原理,由给定重力势能转 换来的。力势能为4焦耳(g=10m/s^2),给定统一质量为1kg 的重块,落差为400mm ,重块落下后,须被小车承载并同小车一起运动,不允许从小车上掉落。 小车宏观尺寸限制在:长*宽=200*100mm 本项目对应知识点:三维制图、二维制图、能量转换机构、杆机构(平面、空间)、运动学、力学、常用机构、材料零部件选型,机构的设计与制造。 具体要求: 1、小车需自主设计并制作全部零件(标准件:如重块有特定要求,统一购买或规定)。 2、小车要求采用四轮结构(2个转向轮,2个驱动轮),转向轮最大外径应不小于φ30mm ,整车具体结构、造型以及材料选用均由参赛者自主设计完成。 3、起动时,小车的中心线必须与赛道中心线重合,允许最大偏离距离为左右各20mm 。 ↑赛道示意图

相关文档
最新文档