热阻和结温详细概念和设计指导

热阻和结温详细概念和设计指导
热阻和结温详细概念和设计指导

结温(junction temperature)

结温(junction temperature)是处于电子设备中实际半导体芯片(晶圆、裸片)的最高温度。它通常高于外壳温度和器件表面温度。结温可以衡量从半导体晶圆到封装器件外壳间的散热所需时间以及热阻。

2最高结温

最高结温会在器件的datasheet数据表中给出,可以用来计算在给定功耗下器件外壳至环境的热阻。这可以用来选定合适的散热装置。如果器件工作温度超过最高结温,器件中的晶体管就可能会被破坏,器件也随即失效,所以应采取各种途径降低工作温度或是让结温产生的热量尽快散发至环境中。

结温为:热阻×输入电力+环境温度,因此如果提高接合温度的最大额定值,即使环境温度非常高,也能正常工作。

一个芯片结温的估计值Tj,可以从下面的公式中计算出来:

Tj=Ta+( R θJA × PD )

Ta = 封装的环境温度( º C )

R θJA = P-N结至环境的热阻( º C / W )

PD = 封装的功耗(W)

3降低结温的途径

1、减少器件本身的热阻;

2、良好的二次散热机构;

3、减少器件与二次散热机构安装介面之间的热阻;

4、控制额定输入功率;

5、降低环境温度;

热阻thermal resistance

热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,表明了1W热量所引起的温升大小,单位为℃/W或K/W。用热功耗乘以热阻,即可获得该传热路径上的温升。可以用一个简单的类比来解释热阻的意义,换热量相当于电流,温差相当于电压,则热阻相当于电阻。

热阻Rja:芯片的热源结(junction)到周围冷却空气(ambient)的总热阻,乘以其发热量即获得器件温升。

热阻Rjc:芯片的热源结到封装外壳间的热阻,乘以发热量即获得结与壳的温差。

热阻Rjb:芯片的结与PCB板间的热阻,乘以通过单板导热的散热量即获得结与单板间的温差。

热阻公式

一般,热阻公式中,Tcmax =Tj - P*Rjc的公式是在假设散热片足够大而且接触足够良好的情况下才成立的,否则还应该写成Tcmax =Tj - P*(Rjc+Rcs+Rsa). Rjc表示芯片内部至外壳的热阻,Rcs表示外壳至散热片的热阻,Rsa表示散热片的热阻,没有散热片时,Tcmax =Tj - P*(Rjc+Rca)。Rca表示外壳至空气的热阻.一般使用条件用Tc =Tj - P*Rjc的公式近似。厂家规格书一般会给出Rjc,P等参数。一般P是在25度时的功耗.当温度大于25度时,会有一个降额指标。

实例

举个实例:一、三级管2N5551 规格书中给出25度(Tc)时的功率是1.5W(P),Rjc 是83.3℃/W。此代入公式有:25=Tj-1.5*83.3,可以从中推出Tj为150度。芯片最高温度一般是不变的。所以有Tc=150-Ptc*83.3,其中Ptc表示温度为Tc时的功耗.假设管子的功耗为1W,那么,Tc=150-1*83.3=66.7度。注意,此管子25度(Tc)时的功率是1.5W,如果壳温高于25度,功率就要降额使用.规格书中给出的降额为12mW/度(0.012W/度)。我们可以用公式来验证这个结论.假设温度为Tc,那么,功率降额为0.012*(Tc-25)。则此时最大总功耗为1.5-0.012*(Tc-25)。把此时的条件代入公式得出:Tc=150-

(1.5-0.012*(Tc-25))×83.3,公式成立. 一般情况下没办法测Tj,可以经过测Tc的方法来估算Ttj,公式变为:Tj=Tc+P*Rjc。

同样以2N5551为例.假设实际使用功率为1.2W,测得壳温为60度,那么:

Tj=60+1.2*83.3=159.96此时已经超出了管子的最高结温150度了!按照降额0.012W/度的原则,60度时的降额为(60-25)×0.012=0.42W,1.5-0.42=1.08W.也就是说,壳温60度时功率必须小于1.08W,否则超出最高结温.假设规格书没有给出Rjc的值,可以如此计算:Rjc=(Tj-Tc)/P,如果也没有给出Tj数据,那么一般硅管的Tj最大为150至175度.同样以2N5551为例。知道25度时的功率为1.5W,假设Tj为150,那么代入上面的公式:Rjc=(150-25)/1.5=83.3 如果Tj取175度则Rjc=(175-25)/1.5=96.6 所以这个器件的Rjc 在83.3至96.6之间.如果厂家没有给出25度时的功率.那么可以自己加一定的功率加到使其壳温达到允许的最大壳温时,再把数据代入:Rjc=(Tjmax-Tcmax)/P 有给Tj最好,没有时,一般硅管的Tj取150度。

补充说明

我还要作一下补充说明。

可以把半导体器件分为大功率器件和小功率器件。

1、大功率器件的额定功率一般是指带散热器时的功率,散热器足够大时且散热良好时,可以认为其表面到环境之间的热阻为0,所以理想状态时壳温即等于环境温度.功率器件由

于采用了特殊的工艺,所以其最高允许结温有的可以达到175度。但是为了保险起见,一

律可以按150度来计算.适用公式:Tc =Tj - P*Rjc.设计时,Tj最大值为150,Rjc已知,假设环境温度也确定,根据壳温即等于环境温度,那么此时允许的P也就随之确定.

2、小功率半导体器件,比如小晶体管,IC,一般使用时是不带散热器的。所以这时就要考虑器件壳体到空气之间的热阻了。一般厂家规格书中会给出Rja,即结到环境之间的热阻.(Rja=Rjc+Rca)。同样以三级管2N5551为例,其最大使用功率1.5W是在其壳温25度

时取得的.假设此时环境温度恰好是25度,又要消耗1.5W的功率,还要保证可温也是25度,唯一的可能就是它得到足够良好的散热!但是一般像2N5551这样TO-92封装的三极管,是不可能带散热器使用的。所以此时,小功率半导体器件要用到的公式是:Tc =Tj -

P*Rja。Rja:结到环境之间的热阻.一般小功率半导体器件的厂家会在规格书中给出这个参数。2N5551的Rja厂家给的值是200度/W。已知其最高结温是150度,那么其壳温为25度时,允许的功耗可以把上述数据代入Tc =Tj - P*Rja 得到25=150-P*200,得到P=0.625W。事实上,规格书中就是0.625W.因为2N5551不会加散热器使用,所以我们平常说的2N5551的功率是0.625W而不是1.5W!还有要注意,SOT-23封装的晶体管其额定功率和Rja数

据是在焊接到规定的焊盘(有一定的散热功能)上时测得的。

3、另外告诉大家一个窍门,其实一般规格书中的最大允许储存温度其实也是最大允许结温。最大允许操作温度其实也就是最大允许壳温.最大允许储存温度时,功率P当然为0,所以公式变为Tcmax =Tjmax - 0*Rjc,即Tcmax =Tjmax。是不是很神奇!最大允许操作温度,一般民用级(商业级)为70度,工业级的为80度.普通产品用的都是民用级的器件,工业级的一般贵很多。热路的计算,只要抓住这个原则就可以了:从芯片内部开始算起,任何两点间的温差,都等于器件的功率乘以这两点之间的热阻.这有点像欧姆定律。任何两

点之间的压降,都等于电流乘以这两点间的电阻。不过要注意,热量在传导过程中,任何介质,以及任何介质之间,都有热阻的存在,当然热阻小时可以忽略.比如散热器面积足够大时,其与环境温度接近,这时就可以认为热阻为0.如果器件本身的热量就造成了周围环境

温度上升,说明其散热片(有散热片的话)或外壳与环境之间的热阻比较大!这时,最简单的方法就是直接用Tc =Tj - P*Rjc来计算.其中Tc为壳温,Rjc为结壳之间的热阻.如果你Tc 换成散热片(有散热片的话)表面温度,那么公式中的热阻还必须是结壳之间的加上壳与散热器之间的在加散热器本身的热阻!另外,如果你的温度点是以环境来取点,那么,想想这中间包含了还有哪些热路吧。比如,散热片与测试腔体内空气之间的热阻,腔体内空气与腔体外空气间的热阻.这样就比较难算了。

设计管理制度汇编(附流程图及附表)

力勤控股集团管理体系程序文件文件编号 版本号2013-1 生效日期2013. 设计管理制度(试行) 修改状态修订情况 生效 日期I II III IV 起草职务日期 审核职务日期 审核职务日期 审核职务日期 签发职务日期

1.目的 1.1.为强化集团公司房地产开发设计管理,促进项目设计管理标准化、规范化,提高设计管理水平,实现房地产最佳经营运作模式,获得最佳的投资效益。 1.2.设计管理应本着“统一规划、合理布局、因地制宜、综合开发、配套建设”的方针,做到“定位准确、设计创新、安全美观、环境协调”,充分发挥项目的社会效益、经济效益和环境效益。 1.3.规划设计管控的重点是“功能布局、面积指标、重大效果、成本控制”四大项内容。 1.4.集团房地产板块(地产事业部)的设计管理工作分为二级管理。集团总部的设计管理部门为集团地产事业部规划设计部,集团所属城市公司的设计管理部门为设计管理部。 2.适用范围 2.1.本办法适用于集团房地产板块,其他(多元化)产业板块中的涉及设计管理工作的参照本办法。 2.2.集团、城市公司,以及各合作控股公司必须遵守本管理办法。 3.职责界面 3.1.集团地产事业部规划设计部: 3.1.1.负责集团及城市公司所有项目的概念规划方案、建筑方案、园林景观方案、室内精装修方案、泛光照明方案的设计管理。 3.1.2.督导、配合城市公司完成专业报建图、初步设计、施工图设计以及相关专业顾问设计的设计管理以及现场技术支持工作。 3.1.3.负责集团产品线的研究和设计技术标准的制定。 3.1. 4.协调各方开展工作,包括内部外部协调以及平行协调。 3.2.城市公司设计管理部职责: 3.2.1.负责报建图、初步设计阶段、施工图阶段的设计管理以及现场技术管理工作。 3.2.2.参与城市公司项目的概念规划方案、建筑方案、园林景观方案、室内精装修方案、泛光照明方案的设计管理,根据项目所在地相关技术规范,提供专业意见。 3.2.3.配合集团产品线的研究和设计技术标准的制定。

Flotherm中的接触热阻的设置与验证

Flotherm中的接触热阻的设置与验证 相信大家在使用Flotherm时都会碰到如何设置固体与固体之间的接触热阻的问题,软件对此也给出了非常方便的设置。下面给出了设置的过程与验证结果。 首先以软件自带的Tutorial 1作为研究对象,然后分别对模型中的Large Plate 和Heated Block取Monitor(位于对象的中心)。测量Heated Block的尺寸,Length=40mm,后面将会用到该参数。

对模型不做任何更改,直接进行计算。下图是模型的表面温度云图,从Table 里可以知道Monitor的最终温度值。 THeated-Block=78.8552, TLarge-Plate=77.9205 接下来,开始设置接触热阻。对Heated Block进行Surface操作,在Surface Finish对话框中新建一个Surface属性22,然后在Surface Attribute里的Rsur-solid 中进行设置。这里,希望在Heated Block和Large Plate之间的添加一个1°C/W的接触热阻,而Rsur-solid的单位是Km^2/W,其实就是(K/W)×(m^2),即所需热阻值与接触面的面积。前面知道,Heated Block是一个边长为40mm的正方形,面积即为0.0016m^2,所以,这里需要输入的值就是: 1°C/W×0.0016m^2=0.0016Km^2/W。 Heated Block与Large Plate的接触面出现在Heated Block的Xo-Low面上,就需要在Surface Finish对话框中的Attachment的下拉菜单中选择Xo-Low。

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

设计管理制度汇编(附流程图及附表)

设计管理制度汇编(附流程图及附表)

1.目的 1.1.为强化集团公司房地产开发设计管理,促进项目设计管理标准化、规范化,提高设计管理水平,实现房地产最佳经营运作模式,获得最佳的投资效益。 1.2.设计管理应本着“统一规划、合理布局、因地制宜、综合开发、配套建设”的方针,做到“定位准确、设计创新、安全美观、环境协调”,充分发挥项目的社会效益、经济效益和环境效益。 1.3.规划设计管控的重点是“功能布局、面积指标、重大效果、成本控制”四大项内容。 1.4.集团房地产板块(地产事业部)的设计管理工作分为二级管理。集团总部的设计管理部门为集团地产事业部规划设计部,集团所属城市公司的设计管理部门为设计管理部。 2.适用范围 2.1.本办法适用于集团房地产板块,其他(多元化)产业板块中的涉及设计管理工作的参照本办法。 2.2.集团、城市公司,以及各合作控股公司必须遵守本管理办法。 3.职责界面 3.1.集团地产事业部规划设计部: 3.1.1.负责集团及城市公司所有项目的概念规划方案、建筑方案、园林景观方案、室内精装修方案、泛光照明方案的设计管理。 3.1.2.督导、配合城市公司完成专业报建图、初步设计、施工图设计以及相关专业顾问设计的设计管理以及现场技术支持工作。 3.1.3.负责集团产品线的研究和设计技术标准的制定。 3.1. 4.协调各方开展工作,包括内部外部协调以及平行协调。 3.2.城市公司设计管理部职责: 3.2.1.负责报建图、初步设计阶段、施工图阶段的设计管理以及现场技术管理工作。 3.2.2.参与城市公司项目的概念规划方案、建筑方案、园林景观方案、室内精装修方案、泛光照明方案的设计管理,根据项目所在地相关技术规范,提供专业意见。 3.2.3.配合集团产品线的研究和设计技术标准的制定。

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

接触热阻与接触导热填料 1999

接触热阻与接触导热填料 任红艳胡金刚 (北京空间飞行器总体设计部北京100086) 文摘在调研国内外接触热阻研究的基础上,介绍了关于接触热阻及接触导热填料的研究发展情况。对导热脂及油、金属、导热垫、RTV、镀层等导热填料的性能、应用情况作了简介,提供工程应用参考。 关键词接触热阻,接触热导率,填料 Thermal Contact Resistance and Thermal Conductive Filler Ren Hongyan Hu Jingang (Beijing Insti tute o f Spacecraft System Engineering Beijing100086) Abstract O n the basis investigation of thermal contact resistance developed in the w orld,the development on ther2 mal contact resistance and thermal conductive filler is briefly introduced.The properties and applications of some thermal conductive filler materials such as thermal conductive grease and oil,metal,gasket,RT V,coating etc.are presented here to provide reference to engineering use. Key words Thermal contact resistance,Thermal contac t conductive,Filler 1引言 航天器在其飞行过程中要经历极为恶劣的热环境,其温度可从摄氏零下200多度变至数千度以上。因此,为保证航天器能正常工作,就需要对航天器内外各组件、仪器设备之间的导热过程进行控制,导热过程的控制是以分析和控制导热途径上的热阻为出发点,而影响实际导热过程的一个重要因素就是构件之间的接触热阻。 接触热阻是由于两接触面凹凸不平使得接触不完全而产生的热阻。接触热阻的大小与接触表面的材料、连接方式、表面状况及接触压力大小等多种因素有关。因此,接触热阻就很容易成为卫星热分析中的不确定因素,这种不确定性在极端情况下,甚至会影响卫星热设计的可靠性和卫星运行的可靠性。即使在一般情况下,接触热阻的存在也会增大热流途径上的温降。对航天器热控制来说,过大的接触热阻还可能使其它热控手段(比如热管)失效。 随着科学技术的发展,在工程实践和科学实验中,接触热阻问题愈来愈引起人们的注意。特别是随着空间技术的发展,卫星内大功率组件的热功耗越来越大,为使卫星内部的温度处于适宜的范围之内,就需要对接触热阻问题进行理论和实验研究,以对卫星内部导热过程进行有效的控制。 2接触热阻的理论研究 2.1接触热阻的点理论 如果把离散的局部接触面积称为点,接触热阻点理论的一般方法是:对单接触点接触热阻算法进行研究,再对接触点数目进行研究,从而完成对多接触点接触热阻的计算。对单接触点接触热阻的计算大多将接触点简化为圆台、圆柱及圆盘三种计算模型,这三种模型中,圆台计算模型较其它两种更接近实际情况,因它考虑了锥角H的影响。 收稿日期:1999-03-22 任红艳,1972年出生,主要从事接触热阻方面的研究工作

接触热阻ansys例子

命令如下:finish /clear /prep7 et,1,solid70 mp,kxx,1,100 mp,dens,1,1000 mp,c,1,2000 ET,2,TARGE170 ET,3,CONTA174 mp,mu,6,0.1 block,0,0.01,0,0.01,0,0.1 block,0,0.01,0,0.01,0.1,0.2 vsel,s,,,1 vatt,1 esize,0.001 vmesh,all vsel,s,,,2 vatt,1 esize,0.002 vmesh,all R,3, RMORE, RMORE,,1000 RMORE,0 keyopt,3,1,2 !temp as DOF KEYOPT,3,9,0 KEYOPT,3,10,1 KEYOPT,2,2,0 KEYOPT,2,3,0 /solu asel,s,,,2 NSLA,S,1 Type,2 Mat,6 Real,3 ESURF allsel ASEL,S,,,7 NSLA,S,1 Type,3 Mat,6 Real,3 ESURF allsel asel,s,loc,z,0 da,all,temp,100 asel,s,loc,z,0.2 da,all,temp,200 alls solve /post1 set,last plns,temp 1

2 图 1 模型网格划分 图 2、模型整体温度云图 图 3、导体整体上的温度分布,可以明显看出在0.1米处,由于接触热阻而引起的温度差。 有问题请联系有问题请联系:: 下天雄 mawb_ihep@https://www.360docs.net/doc/cf7313697.html,

导热系数和热阻的实际应用

导热系数和热阻的实际应用 夏俊峰 2015.08.05 第3版 前言 本文第1版最早于2007年7月发布在中国光学光电子行业论坛上,之后在2009年8月修改为第2版。本次做了全面的修改,增加了模拟计算的内容,以说明如何来正确认识热阻概念。并通过简单介绍模拟软件中有关接触热阻的设置问题,让读者更好地认识导热系数和热阻的实际应用。需要说明的是,本文是讨论仅在热传导方面,所有概念的定义也是针对热传导而言的。并且本文主要是针对LED 应用方面来谈的。 第一章 有关理论知识介绍 要讲导热系数和热阻的问题,首先要搞清楚这两个概念的定义。而要明确定义,必须要先介绍导热的基本理论。 在传热学中,关于热传导的基本理论就是傅里叶定律。对于一维热传导,傅里叶定律表述为:单位时间内通过厚度为L 的热量Q 与厚度两边的温度变化率ΔT 及平板面积A 成正比,即: L ΔT λA t Q -= ——(1) 式中:λ是材料的导热系数。负号表示热量自温度高向温度低方向传递。 对于上述导热定律,读者必须清楚,公式(1)仅是针对一维、热流密度均匀、测温的平面上温度均匀相等的情况。也就是说,引起ΔT 的因素是通过面积A 的热量Q。如果热源有部分热量没有经过面积A,则不能计算在内。 单位时间内传导的热量,就是热功率,用P 表示,单位是:瓦(W)。 由公式(1)可以得知: 导热系数λ是指在稳定传热条件下,单位时间内通过物体单位距离、单位截面积的平行面、产生1度温差的热量。其单位为:瓦/(米·度)。 导热系数和温度有关。具体相关参数要查阅相关物料手册。 对公式(1)做个变换,可以得到: A L T - P λ?= ——(2) 令: A λL R =θ ——(3) 公式(2)就可以简化为: θ R T P ?= ——(4)

概念性方案设计管理流程样本

概念性方案设计管理流程 第一章流程图 第一条流程图 第二章总则

第二条为规范项目设计概念阶段的操作程序,加强监控,达到确保质量、进度,控制成本的目的。 第三条适用于公司项目的概念设计管理。 第四条术语与定义 概念设计:提出产品的设计原则和构思,包括总平面设计、市政条件分析、配套建设分析、交通路线组织、绿化景观组织和景观概念设计。 第三章关键活动描述 第五条设计资料准备 (一)总部设计管理部根据项目设计计划的时间要求,组织收集概念设计阶段需要资料,包括: 1、总部营销策划部:日常产品研究成果、产品配置标准等资料 2、设计管理部:当地规划管理技术规定、面积计算管理规定等相关文件;已完成同类型项目的经验总结和完善后的设计图纸 3、总部投资拓展部:土地规划设计条件(土地证、用地规证、规划设计要点)、《项目可行性研究报告》 4、总部营销策划部:《宗地自然条件表》、《宗地社会条件表》、《竞争楼盘设计信息表》、《项目策划报告》 5、总部设计管理部组织项目设计基础资料评审,评审意见和结论形成会议纪要,并由参与评审人员共同签字确认。 (二)《概念设计任务书》的编制和评审 1、总部设计管理部负责《概念设计任务书》的编制,地区设计部配合,并组织总部成本管理部、总部营销策划部对《概念设计任务书》进行会稿。 2、总部设计管理部根据评审意见对《概念设计任务书》进行修正完善后,由集团设计总监组织相关部门评审、审批。

(三)设计单位选择 总部设计管理部根据【设计供应商选择与管理流程】的要求选择概念设计单位。 (四)概念设计 1、总部设计管理部向设计单位发出《概念设计任务书》并交底。 2、设计过程控制: 3、在概念设计过程中,总部设计管理部至少组织一次与设计单位的中期交流工作,并及时掌握设计进度和设计方向。 5、总部设计管理部根据《概念设计任务书》要求对设计单位送交的概念方案进行初审,提交集团总建和分管执总审核,待审核通过后,由总部设计管理部组织评审。 (四)概念设计评审 1、总部设计管理部组织地总及其授权人、总建、总工、董事长和外部专家等按《设计评审表》的指引要求进行概念设计评审,总裁办公会策划与方案评审小组审批。 2、总部设计管理部根据评审意见提交设计单位对概念方案进行修改、调整,分管执总确定是否组织相关部门再次评审。修改后的设计成果经总部设计管理部预审后将设计成果提交集团总建审核,分管执总审批。 3、概念设计确定后,设计公司进行景观的概念设计工作。 第四章支持性文件 无 第五章使用工具

浅谈热力学对流系数与接触热阻

浅谈热力学对流系数与接触热阻 浅谈热力学对流系数与接触热阻 摘要:热流从一个面流入则会从另一个面穿出,净流体积的热量等于从一些面元流入面的减去从其它面元流出面的热量.这里符号规则规定热流流出为正,单位时间内流入小体积元内的总热量和波动方程比较,这三类边界条件虽然是从不同的物理模型中归结出来的,具有不同的物理意义,但它们的数学形式却是相同的,由此说明提出这三类边界条件的普遍意义。 关键词:热力对流系数接触热阻 一、引言 在实际应用中,散热片可以具有不同的横截面面积并且可以连接到圆形表面上。在不同的横截面区域必须要推导一个变量,其基本的解决方案是运用微分方程和数学技术,然而采用微分方程和数学技术会变得更加繁琐,推导出更复杂的情况从而不利于得出结果。热导率的物理意义为:当相距单位长度的两个平行平面间的温度相差一个单位时,在单位时间内通过单位面积所传导的热量。对流传热系数是在对流传热条件下,单位时间内经对流方式从表面S传出的热量与温度差T1-T2和表面积S的比例。 若要测量良导体样品,则样品需做成截面积比较小而传热方向上的长度较大的细长形状。因为良导体的导热性能好,样品只有做的比较长才能在其两端产生比较明显、易于测量的温差,而做的比较细是为了尽可能减小侧面散热的影响。需要热电偶的冷端保持温度恒定,实验中采用冰水混合物来保证热电偶的冷端保持0℃;需要尽可能减小样品侧面散热的影响,因此将样品做成薄圆盘状;需要样品的上、下表面各自温度均匀且易于测量,实验中加热盘和散热盘均为金属盘且各自与样品的上、下表面分别密切接触;需要易于散热,实验中采用风扇对散热盘吹风来保证,等等。理论上对环境温度是先测量还是后测量都是一样的,但是从实际情况分析还是后测量比较准确,这是从减小实验误差的角度考虑的。实验进行前,由于还没有进行实验,

热阻与热阻抗Word版

热传导的基础理论 傅立叶方程 对界面材料的热传导,一般按一维来处理,其热传导过程可用傅立叶方程描述: Q=KA△T/d ┄┄┄┄┄┄┄ (1) 式中:K:导热系数,W/m.k A:接触面积,m2 Q:趁热量,W △T:热量流入面与流出面之间的温差,℃d:壁面的厚度,m 导热系数 导热系数是描述材料导热能力的一个物理量,为单一材料的固有特性,与材料的大小、形状无关。而对于采用玻璃丝网或聚合物膜加固的界面材料,由于其导热系数取决于不同材料层的相对厚度及导热的方向性能,所以用相对导热系数来表征材料的导热性能更合适。 热阻 热阻表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: Rθ=d/K (2) 对于单一材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 热阻抗 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其热阻和与接触表面间的接触热阻之和,表示如下: Zθ=d/(K.A)+Ri (3) 表面平直度、表面粗糙度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件,其影响因素有:接触面积A:接触面积增加,装配热阻即减小。 材料厚度d:绝缘厚度增加,材料的装配热阻增大。 装配压力(Pressure):在理想条件下,装配压力增加,热阻减小,但压 力增加到一定值后,热阻减小的幅度很小,该点的压力则为材料的最佳 压力值。另外,装配热阻的大小还跟测试方法有关。 界面材料的测试方法 热阻抗的测试方法 ASTM D5470规定的测试方法 遵照美国ASTM D5470-93标准其测试原理图如右图所示: 测试头为圆柱体:截面积1in2 表面粗糙度:小于1μm 材料为:铝6160 T6 加热块及平衡加热器材料为:铜 压力:500PSI±1psi 平衡判定:10分钟内温度变化:小于1℃ ASTM D5470 测试方法示意图 计算方法为: 热量(Heat): Q cal1,2= Kcal1,2 A cs m1,2(W) 平均热量(Average Heat): Q avg=( Q cal1+ Q cal2)(W)

接触热阻与接触导热填料

接触热阻与接触导热填料 任红艳 胡金刚 ( 北京空间飞行器总体设计部 北京 100086 ) 文 摘 在调研国内外接触热阻研究的基础上,介绍了关于接触热阻及接触导热填料的研究发展情况。对导热脂及油、金属、导热垫、RT V、镀层等导热填料的性能、应用情况作了简介,提供工程应用参考。 关键词 接触热阻,接触热导率,填料 Thermal C ontact Resistance and Thermal C onductive Filler Ren H ongyan Hu Jingang ( Beijing Institute of S pacecraft System Engineering Beijing 100086 ) Abstract On the basis investigation of thermal contact resistance developed in the w orld,the development on ther2 mal contact resistance and thermal conductive filler is briefly introduced.The properties and applications of s ome thermal conductive filler materials such as thermal conductive grease and oil,metal,gasket,RT V,coating etc.are presented here to provide reference to engineering use. K ey w ords Thermal contact resistance,Thermal contact conductive,Filler 1 引言 航天器在其飞行过程中要经历极为恶劣的热环境,其温度可从摄氏零下200多度变至数千度以上。因此,为保证航天器能正常工作,就需要对航天器内外各组件、仪器设备之间的导热过程进行控制,导热过程的控制是以分析和控制导热途径上的热阻为出发点,而影响实际导热过程的一个重要因素就是构件之间的接触热阻。 接触热阻是由于两接触面凹凸不平使得接触不完全而产生的热阻。接触热阻的大小与接触表面的材料、连接方式、表面状况及接触压力大小等多种因素有关。因此,接触热阻就很容易成为卫星热分析中的不确定因素,这种不确定性在极端情况下,甚至会影响卫星热设计的可靠性和卫星运行的可靠性。即使在一般情况下,接触热阻的存在也会增大热流途径上的温降。对航天器热控制来说,过大的接触热阻还可能使其它热控手段(比如热管)失效。 随着科学技术的发展,在工程实践和科学实验中,接触热阻问题愈来愈引起人们的注意。特别是随着空间技术的发展,卫星内大功率组件的热功耗越来越大,为使卫星内部的温度处于适宜的范围之内,就需要对接触热阻问题进行理论和实验研究,以对卫星内部导热过程进行有效的控制。 2 接触热阻的理论研究 2.1 接触热阻的点理论 如果把离散的局部接触面积称为点,接触热阻点理论的一般方法是:对单接触点接触热阻算法进行研究,再对接触点数目进行研究,从而完成对多接触点接触热阻的计算。对单接触点接触热阻的计算大多将接触点简化为圆台、圆柱及圆盘三种计算模型,这三种模型中,圆台计算模型较其它两种更接近实际情况,因它考虑了锥角θ的影响。 收稿日期:1999-03-22 任红艳,1972年出生,主要从事接触热阻方面的研究工作

概念方案设计管理流程

概念、方案设计管理流程 编制__________ 日期__________ 审核__________ 日期__________ 批准__________ 日期__________ 修订记录 1目的 规范公司项目概念、方案设计阶段的操作程序,加强对项目设计前期阶段的监控,达到确保质量、进度,控制成本的目的。 2适用范围 适用于项目设计过程的概念、方案设计管理工作。

3术语与定义 概念规划设计:土地获取后提出的产品设计原则和构思,包括总平面设计、市政条件分析、配套建设分析、交通路线组织、绿化景观组织和景观概念设计等。 方案设计:包括建筑方案设计和建筑单体设计。 4职责 4.1.1集团设计管理部/一线公司设计管理部 4.1.2负责收集项目设计基础资料。 4.1.3组织编制【概念、方案设计任务书】。 4.1.4组织此阶段与设计单位的设计交流、修改、审核等工作。 4.1.5组织对此阶段设计成果的内部分析和公司评审。 4.2集团市场营销部/一线公司市场营销部 4.2.1负责提供【产品定位报告】。 4.2.2负责提供【设计输入条件】和【展示区设计输入条件】。 4.2.3参与此阶段设计任务书及设计成果的评审。 4.3集团经营管理部/一线公司投资发展部 4.3.1负责提供项目前期资料及项目可研报告; 4.3.2负责提供【设计输入条件】。 4.3.3负责提供项目开发计划,审核设计部门编制的设计计划。 4.3.4参与此阶段设计任务书及设计成果的评审。 4.4集团成本管理部/一线公司成本管理部 4.4.1负责项目此阶段的成本测算。 4.4.2负责提供【设计输入条件】和【展示区设计输入条件】。 4.4.3参与此阶段设计任务书及设计成果的评审,提出专业意见。 4.5集团商业/一线公司物业 4.5.1负责提供【设计输入条件】。 4.5.2参与此阶段设计任务书及设计成果的评审,提出专业意见。 4.6集团/一线公司决策层 4.6.1按【权责手册】审核审批此阶段设计任务书及设计成果。

LFA447 接触热阻计算

LFA447接触热阻计算方法 一、概述 对于LFA双层复合材料的测试,若上下两层的厚度、密度、比热与热扩散系数均为已知,可以直接计算得到两层之间的接触热阻(contact resistance)。 二、测量 在LFA447测量软件中,使用双层模式对样品进行设定: Layer列表中包含样品上(面向红外检测器)、下(面向激光源)两层的属性定义,其中厚度与密度两项需输入准确数值,比热与热扩散系数因均随温度而变,对于多温度点测试此处可暂写为1,留待分析软件中另作链接设定。由于测量软件中限定双层模式测量必须包含一

个已知层和一个未知层,此处可将任意一层作为未知层(diffusivity留空)处理。 随后编辑温度程序,设定amplifier、duration等参数并进行测试: 三、分析计算 1.在LFA数据库中导入测量得到的LFA447数据文件。在出现的材料设定对话框中对各层材料的比热与热扩散系数进行链接设定。对于接触热阻的计算,需要上下两层的热扩散系数均为已知(均需链接相应的热扩散系数表)。若测试温度较高,因样品膨胀而导致的厚度与密度变化不可忽略,则还需链接线膨胀系数表。

2.将导入的数据载入分析界面,当出现提示进行多层模式计算的对话框时可跳过不计算(点击“否”。此处的计算为根据已知层来计算未知层的热扩散系数,因现在两层事实上均为已知,实验目的是为了得到两层之间的接触热阻,再做“未知层”的计算并无意义): 3.点击“测量”-->“计算接触热阻” 在出现的对话框中选择基线类型(推荐“线性”,具体请参考“LFA数据分析向导”),“强制重新计算”选不选都没关系,随后点击“确定”:

常见材料导热系数(史上最全版)

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

7.分阶段设计流程管理制度

分阶段设计流程管理制度 一、目的 根据集团经营策略和项目定位,通过对概念设计、方案设计、初步设计、施工图设计及施工配合阶段的过程管理,控制建筑效果和技术指标,使设计不断优化,提高集团项目的技术竞争力,实现经济效益和社会效益的最大化。 二、适用范围 适用于中珠集团、中珠控股房地产开发之所有新建、改建、扩建之项目。 三、原则 3.1工作原则 3.1.1市场意识——客户至上。 3.1.2成本意识——以经济效益和技术条件为技术管理基本出发点。 3.1.3注重依据——个人工作文件夹、过程记录可追溯性。 3.1.4计划意识——个人工作的时间计划性、实际工作完成率。 3.1.5标准意识——严格按照公司及部门的相关标准化制度完成工作。 3.1.6团队意识——依靠团队,注重流程。 3.1.7经验总结意识——注重经验提升、知识沉淀。 3.1.8沟通意识——有效的信息沟通技巧。 3.1.9因地制宜——充分尊重项目所在地的设计习惯及地方要求,各设计阶段应根据当地情况及公司要求,综合考虑设计公司。 3.2管理原则 3.2.1分阶段设计原则 设计分为概念设计、方案设计、初步设计、施工图设计、施工阶段设计配合等5个阶段,其中可以根据项目的复杂程度及公司决策,决定是否合并概念设计和方案设计,可以根据项目的复杂程度、地方的管理规定及公司决策,决定是否需要进行初步及扩大初步设计。 3.2.2分阶段管理原则 20233 4F09 伉/U20680 50C8 僈25060 61E4 懤26931 6933 椳s

概念设计方案设计、初步设计阶段由总部设计管理部进行负责管理,施工图设计、施工阶段设计配合由项目公司工程部负责管理,遇重大技术问题及变更事项时报总部设计管理部审批;建筑(结构、机电等)、外幕墙、装修、泛光照明、园林景观等都按此进行分工管理。 3.2.3设计评审原则 设计管理部负责组织概念设计、方案设计、初步设计等阶段的设计评审,项目公司工程部负责组织施工图设计阶段内部评审及外部审查,概念设计、方案设计等阶段成果必须通过公司评审后方可进入下一道工序,施工图图纸必须通过公司内审和外部审查后方可用于施工。 3.2.4设计管控原则 3.2. 4.1供方管理 设计管理部会同成本管理部负责组建设计供方信息管理库。信息库应包含设计供方信息,供方服务评价管理等,设计管理部负责配合成本部定期更新。 3.2. 4.2招投标管理 方案设计供方原则上采用方案招标的形式确定,设计管理部根据项目特性,在设计供方信息库中选择3-5家供方进行方案邀请招标,根据方案评审结果确定方案设计供方。施工图设计阶段,项目公司根据项目地域特性,在设计供方信息库中选择3-5家供方进行邀请招标或议标,根据供方的服务评价历史及报价确定设计供方。 3.2. 4.3设计计划管理 设计管理部负责根据项目总进度计划,与项目公司、报建部一同编制规划方案设计、初步设计、施工图设计计划。 3.2. 4.4图纸管理 项目公司负责依据总包合同、分包合同、分项合同等确定适合的图纸份数,并完成相应的图纸管理工作。 3.3设计管理工序节点及责任人

热阻值和导热系数关系

热阻值和导热系数关系 Revised by Hanlin on 10 January 2021

(R值)与(U值) R值和U值是用于衡量建筑材料或装配材料热学性能的两个指标。R值代表建筑材料阻止热量穿过的能力。R值越高,材料的阻热和隔热性能越高。U值的意义则与之相反。U 值代表不同材料表面之间的热传导量。U值越低,表示热传导量就越低,材料的隔热效果就越好。 基本材料的热导率? 所有的建筑材料都有各自的热导率,热导率的单位是W/Mk。导热系数是指在稳定的传热条件下,单位截面、厚度的材料在单位温差和单位时间内直接传导的热量,单位是"瓦/(米·开尔文)。材料的热导率越低,代表产品的隔热性能越好。岩棉是最理想的隔热材料之一,其热导率很低,因而产品隔热效果良好。材料的热导率(用K或λ表达),有不同的标准,比如欧盟标准(EN),美国标准(ASTM)以及其他国际或地方标准。利用K 值可以衡量材料或的热阻值(R值)和热导系数(U值)。 R值(热阻值) 热阻值(R值)与材料的厚度和热导率有关。需要注意的是,在热导率恒定的前提下,材料厚度越高,热阻值也越高。 R=d/k 其中:R表示热阻值d表示材料厚度(单位米)k表示热导率材料的热阻值(R值)会影响房屋及屋顶的建造效果。传统的建筑材料通常是砖、水泥、瓦片、钢筋和木头,这些材料的热阻性能不是很好。采用特殊材料进行隔热处理,效果非常良好。采用岩棉隔热,

同等厚度岩棉的隔热效果超过砖头的隔热效果20倍,同等厚度岩棉的热阻性能是水泥热阻性能的40倍以上。第三方独立研究显示,采用隔热材料改善能效是最可行的方法。 U值(热导系数) 建筑物的热导系数(U值)表示在稳定传热条件下,单位面积的建筑截面材料,两表面在单位空气温差和单位时间内直接传导的热量,单位是"瓦/(米2·开尔文)。 U=1/Rt 其中Rt代表材料总的热阻值:Rt=Ro+d1/k1+d2/k2+...........dn/kn+Ri在该等式中:Ro代表外表面的空气薄层热阻单位(m2K/W)Ri代表内表面的空气薄层热阻单位 (m2K/W)k代表基本材料的热导率单位(W/mK)d代表基本材料的厚度单位(米)建筑材料的U值越低,代表抗热性越好。

设计管理制度和流程

设计管理制度和流程 轨道工程事业部设计部

目录 第一章总则1 1.1 目的1 1.2 职责1 1.3 适用范围1 第二章设计招标管理1 2.1 设计招标原则1 2.2 招标程序和内容2 2.2.1 设计计划2 2.2.2 设计任务书2 2.2.2.1 方案设计任务书2 2.2.2.2 初步设计说明2 2.2.2.3 扩初设计说明2 2.2.3 招标邀请函2 2.2.4设计单位推荐2 2.2.5设计单位初选 2 2.2.6 发标2 2.2.7 评标 3 2.2.8 签约 3 第三章设计过程控制管理3 3.1 工程设计计划3 3.2 设计过程跟踪控制3 3.3 设计评审4 3.3.1 方案设计审查 4

3.3.2 初步设计审查 4 3.3.3 扩初设计审查 4 3.3.4 施工图设计审查 5 3.4 设计输出文件的审查与验收5 3.5 设计控制总结5 3.6 工法审核6 3.7 文件归档6 3.8 附表6 3.8.1 《工程项目设计任务》 6 3.8.2 《设计任务修改审批表》 6 3.8.3 《设计跟踪检查记录单》7 3.8.4 《设计输出文件审查表》8 3.8.5 《施工组织设计报审表》9 3.8.6 《工程施工进度计划表》9 3.8.7 《进度调整计划审批表》10 第四章设计变更管理流程11 4.1 概述11 4.1.1目的11 4.1.2适用范围11 4.1.3 定义11 4.1.4 原则11 4.2 设计变更分类11 4.2.1 使用单位原因11 4.2.2 施工单位原因11 4.2.3 设计单位原因11 4.2.4 公司领导要求11 4.3 设计变更流程12

相关文档
最新文档