初中数学竞赛专题选讲(初三.5)对称式

初中数学竞赛专题选讲(初三.5)对称式
初中数学竞赛专题选讲(初三.5)对称式

初中数学竞赛专题选讲(初三.5)

对称式

一、内容提要

一.定义

1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值

不变,则称这个代数式为绝对对称式,简称对称式.

例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, y

x 11+, xyz

x z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式.

2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,

则称这个代数式为轮换对称式,简称轮换式.

例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc

c b a 1111-++, (xy+yz+zx )()111z y x ++, 222222222111b

a c a c

b

c b a -++-++-+. 都是轮换式.

显然,对称式一定是轮换式,而轮换式不一定是对称式.

二.性质

1. 含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍.

2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,

且系数相等.

例如:在含x, y, z 的齐二次对称多项式中,

如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:

m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数.

3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的

一切同型式,且系数相等.

例如:轮换式a 3(b -c)+b 3(c -a)+c 3(a -b)中,有因式a -b 一项, 必有同型式b -c 和 c -a 两项.

4. 两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式).

例如:∵x+y, xy 都是对称式,

∴x+y +xy , (x+y )xy , xy

y x +等也都是对称式. ∵xy+yz+zx 和z

y x 111++都是轮换式,

z y x 111+++xy+yz+z , (z

y x 111++)(xy+yz+z ). 也都是轮换式.. 二、例题 例1.计算:(xy+yz+zx )()111z y x ++-xyz()111222z

y x ++. 分析:∵(xy+yz+zx )()111z

y x ++是关于x,y,z 的轮换式,由性质2,在乘法展开时,只要用xy 分别乘以x 1,y 1,z

1连同它的同型式一齐写下. 解:原式=(z xy y zx x yz ++)+(z+x +y )+(y+z+x)-(z

xy y zx x yz ++) =2x+2y+2z.

例2. 已知:a+b+c=0, abc ≠0.

求代数式 222222222111b

a c a c

b

c b a -++-++-+的值 (1989年泉州市初二数学双基赛题)

分析:这是含a, b, c 的轮换式,化简第一个分式后,其余的两个分式,可直接写出它的

同型式. 解:∵2221c b a -+=222)(1b a b a ---+=ab

21-, ∴2

22222222111b a c a c b c b a -++-++-+=-ab 21-bc 21-ca 21 = -abc

b a

c 2++=0. 例3. 计算:(a+b+c )3

分析:展开式是含字母 a, b, c 的三次齐次的对称式,其同型式的系数相等,可用

待定系数法.

例4. 解:设(a+b+c )3=m(a 3+b 3+c 3)+n(a 2b+a 2c+b 2c+b 2a+c 2a+c 2b)+pabc.

(m, n, p 是待定系数)

令 a=1,b=0,c=0 . 比较左右两边系数得 m=1;

令 a=1,b=1,c=0 比较左右两边系数得 2m+2n=8;

令 a=1,b=1,c=1 比较左右两边系数得 3m+6n+p=27.

解方程组?????=++=+=27638221p n m n m m 得??

???===631p n m

∴(a+b+c )3=a 3+b 3+c 3+3a 2b+3a 2c+3b 2c+3b 2a+3c 2a+3c 2b+6abc.

例5. 因式分解:

① a 3(b -c)+b 3(c -a)+c 3(a -b);

② (x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5.

解:①∵当a=b 时,a 3(b -c)+b 3(c -a)+c 3(a -b)=0.

∴有因式a -b 及其同型式b -c, c -a.

∵原式是四次齐次轮换式,除以三次齐次轮换式(a -b )(b -c)(c -a),可得

一次齐次的轮换式a+b+c.

用待定系数法:

得 a 3(b -c)+b 3(c -a)+c 3(a -b)=m(a+b+c)(a -b )(b -c)(c -a)

比较左右两边a 3b 的系数,得m=-1.

∴a 3(b -c)+b 3(c -a)+c 3(a -b)=-(a+b+c)(a -b )(b -c)(c -a).

② x=0时,(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=0

∴有因式x ,以及它的同型式y 和z.

∵原式是五次齐次轮换式,除以三次轮换式xyz ,其商是二次齐次轮换式.

∴用待定系数法:

可设(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5

=xyz [m(x+y+z)+n(xy+yz+zx)].

令 x=1,y=1,z=1 . 比较左右两边系数, 得 80=m+n ;

令 x=1,y=1,z=2. 比较左右两边系数, 得 480=6m+n.

解方程组?

??=+=+480680n m n m 得???==0

80n m . ∴(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=80xyz(x+y+z).

三、练习

1. 已知含字母x,y,z 的轮换式的三项x 3+x 2y -2xy 2,试接着写完全代数式________

________.

2. 已知有含字母a,b,c,d 的八项轮换式的前二项是a 3b -(a -b),试接着写完全代数式

_________________________________.

3. 利用对称式性质做乘法,直接写出结果:

① (x 2y+y 2z+z 2x )(xy 2+yz 2+zx 2)=_____________________. ② (x+y+z )(x 2+y 2+z 2-xy -yz -zx )=___________________.

4. 计算:(x+y )

5.

5. 求(x+y )(y+z)(z+x)+xyz 除以x+y+z 所得的商.

6. 因式分解:

① ab(a -b)+bc(b -c)+ca(c -a);

② (x+y+z)3-(x 3+y 3+z 3);

③ (ab+bc+ca )(a+b+c)-abc ;

④ a(b -c)3+b(c -a)3+c(a -b)3.

7. 已知:abc

c b a 1111=++. 求证:a, b, c 三者中,至少有两个是互为相反数.

8. 计算:bc ac ab a a +--22+ca ba bc b b +--22+ab

cb ca c c +--22

. 9. 已知:S =2

1(a+b+c ). 求证:16

)(416)(416)(4222222222222222b a c a c a c b c b c b a b a -+-+-+-+-+- =3S (S -a )(S -b)(S -c).

10. 若x,y 满足等式 x=1+y 1和y=1+x

1且xy ≠0,那么y 的值是( ) (A )x -1. (B )1-x. (C )x. (D )1+x.

练习题参考答案

1. y 3+z 3+y 2z+z 2x -2y 2z -2z 2x

2. b 3c+c 3d+d 3a -(b -c)-(c -d)-(d -a)

3. ②x 3+y 3+z 3-3xyz

4. 设(x+y)5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3), a=1, b=5, c=10.

5. 设原式=(x+y+z )[a(x 2+y 2+z 2)+b(xy+yz+zx)], a=0, b=1.

6 .③当a=-b 时,原式=0, 原式=m(a+b)(b+c)(c+a) m=1

7. 由已知等式去分母后,使右边为0, 因式分解

8. 1

9. 一个分式化为S (S -a )(S -b)(S -c)

10. 选 C

全国初中数学竞赛辅导(八年级)教学案全集第26讲 含参数的一元二次方程的整数根问题

全国初中数学竞赛辅导(八年级)教学案全集第二十六讲含参数的一元二次方程的整数根问题 对于一元二次方程ax2+bx+c=0(a≠0)的实根情况,可以用判别式Δ=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.本讲结合例题来讲解一些主要的方法. 例1 m是什么整数时,方程 (m2-1)x2-6(3m-1)x+72=0 有两个不相等的正整数根. 解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得 由于x1,x2是正整数,所以 m-1=1,2,3,6,m+1=1,2,3,4,6,12, 解得m=2.这时x1=6,x2=4. 解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知 所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即 m2=3,4,5,7,9,10,13,19,25,37,73, 只有m2=4,9,25才有可能,即m=±2,±3,±5. 经检验,只有m=2时方程才有两个不同的正整数根. 说明一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是

这样做的.有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法. 例2 已知关于x的方程 a2x2-(3a2-8a)x+2a2-13a+15=0 (其中a是非负整数)至少有一个整数根,求a的值. 分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来. 解因为a≠0,所以 所以 所以只要a是3或5的约数即可,即a=1,3,5. 例3设m是不为零的整数,关于x的二次方程 mx2-(m-1)x+1=0 有有理根,求m的值. 解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令 Δ=(m-1)2-4m=n2, 其中n是非负整数,于是 m2-6m+1=n2,

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛专题分类解析第四讲:平行四边形和梯形讲义

初中数学竞赛公益讲座:平行四边形和梯形 2018/4/7 一、基础知识: 1)平行四边形:平移、中点、中心对称(旋转180度)2)特殊的平行四边形:矩形、菱形、正方形 3)梯形:梯形问题转化、分割、拼接 三角形或者平行四边形问题 二、例题分析 例1、如下左图,在等腰△ABC中,延长边AB到点D,延长边CA到点E,连 接DE,恰有AD=BC=CE=DE,求∠BAC的度数。 例2、如上右图,在RT△ABC中,∠ACB是直角,CD⊥AB于D,AE平分∠ABC,交CD于K,F在BE上且BF=CE,求证:FK?AB。 例3、如下左图,△ABC内部一点P,满足∠PBA=∠PCA,作平行四边形PBQC,求证:∠QAB=∠PAC。

例4、如上右图,已知A、B是两个定点,C是位于直线AB某一侧的一个动点,分别以AC、BC为边,在△ABCDE外部作正方形CADI、CBEF,求证无论C点 在什么位置上,DE的中点M的位置不变。 例5、如下左图,梯形ABCD中,AB?CD,BC⊥CD,AB=2,CD=4,点E是BC上的一个动点,连接并延长EA到点F,使得EF:AE=2:1,连接并延长ED到点G,使得EG:ED=3:2,以EF和EG为临边作平行四边形EFHG,连接EH交AD于点P,1)求EH的最小长度;2)求证:P是定点。 例6、如上右图,四边形ABCD中,点E、F分别在边AB、CD上,连接BF、CE交于点P,连接AF、DE交于点Q,若四边形EQFP是平行四边形,求证: 四边形ABCD是梯形。 例7、如下图,等腰梯形ABCD,对角线AC与BD交于点O,M 、N分别为腰AB和CD上的点,且AM=CN,连接MN分别交BD、AC于点P、Q,求证: MP=QN。

【精品】全国初中数学竞赛辅导(初三分册全套

全国初中数学竞赛辅导(初三分册)全套

第一讲分式方程(组)的解法 分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根. 例1 解方程 解令y=x2+2x-8,那么原方程为 去分母得 y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0, y2-4xy-45x2=0, (y+5x)(y-9x)=0, 所以 y=9x或y=-5x.

由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1. 经检验,它们都是原方程的根. 例2 解方程 y2-18y+72=0, 所以 y1=6或y2=12. x2-2x+6=0.此方程无实数根. x2-8x+12=0,

所以 x1=2或x2=6. 经检验,x1=2,x2=6是原方程的实数根. 例3 解方程 分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为 整理得 去分母、整理得 x+9=0,x=-9. 经检验知,x=-9是原方程的根. 例4 解方程

分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为 即 所以 ((x+6)(x+7)=(x+2)(x+3). 例5 解方程 分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论

全国初中数学竞赛辅导(八年级)教学案全集 第二十一讲分类与讨论 分类在数学中是常见的,让我们先从一个简单的例子开始. 有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数? 因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论. 任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个. 上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论. 分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论. 例1求方程 x2-│2x-1│-4=0 的实根. x2+2x-1-4=0,

x 2-2x +1-4=0, x 1=3,x 2=-1. 说明 在去绝对值时,常常要分类讨论. 例2 解方程x 2-[x]=2,其中[x]是不超过x 的最大整数. 解 由[x]的定义,可得 x ≥[x]=x 2-2, 所以 x 2-x -2≤0, 解此不等式得 -1≤x ≤2. 现把x 的取值范围分成4个小区间(分类)来进行求解. (1)当-1≤x ≤0时,原方程为 x 2-(-1)=2, 所以x=-1(因x=1不满足-1≤x <0). (2)当0≤x <1时,原方程为 x 2=2. (3)当1≤x <2时,原方程为 x 2-1=2, 所以 (4)当x=2时,满足原方程.

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

完整word版,2019全国初中数学竞赛初三预赛试题

(第2题图) 2019全国初中数学竞赛初三预赛试题 注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解! 2018年全国初中数学竞赛九年级预赛试题 〔本卷总分值120分,考试时间120分钟〕 【一】选择题〔本大题共6个小题,每题5分,共30分〕 在以下各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分、 1.从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是〔〕 A 、41 B 、31 C 、21 D 、1 2、如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,且AB =10,BC =15,MN =3,那么△ABC 的周长为〔〕 A 、38 B 、39 C 、40 D.41 3、1≠xy ,且有09201152=++x x ,05201192=++y y ,那么y x 的值等于〔〕 A 、9 5 B 、5 9 C 、 52011- D 、9 2011- 4、直角三角形的一直角边长是4,以这个直角三角形的三边 为直径作三个半圆(如下图),两个月牙形(带斜线的阴 影图形)的面积之和是10,那么以下四个整数中,最接近图 中两个弓形〔带点的阴影图形〕面积之和的是〔〕 A 、6 B.7C 、8 D 、9 5、设a ,b ,c 是△ABC 的三边长,二次函数2 )2(2b a cx x b a y - ---=在1=x 时取最小值 b 5 8-,那么△ABC 是〔〕 A 、等腰三角形 B 、锐角三角形 C 、钝角三角形 D 、直角三角形 6、计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取 出按照“先进后出”的原那么,如图,堆栈〔1〕中的2个连续存储单元 已依次存入数据b ,a ,取出数据的顺序是a ,b ;堆栈〔2〕的3个 连续存储单元已依次存入数据e ,d ,c ,取出数据的顺序是c ,d , e ,现在要从这两个堆栈中取出5个数据〔每次取出1个数据〕 ,那么不 (1) (2) (第5题图)

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

初中数学竞赛辅导讲义及习题解答 第1讲 走进追问求根公式

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。而公式法是解一元二次方程的最普遍、最具有一般性的方法。 求根公式a ac b b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个。 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。 【例3】 解关于x 的方程02)1(2=+--a ax x a 。 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。 【例4】 设方程04122=---x x ,求满足该方程的所有根之和。 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+1111, 试求x 的值。 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x 。 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==。

江苏省第十六届初中数学竞赛试题(初三年级)及答案

江苏省第十六届初中数学竞赛试题(初三年级) 一、选择题(6×6=36分) 1. 已知a b == 的值为 (A )3 (B )4 (C )5 (D )6 2. 若两个方程20x ax b ++=和2 0x bx a ++=,则( ) (A )a b = (B )0a b += (C )1a b += (D )1a b +=- 3. 下列给出四个命题: 命题1 若||||a b =,则||||a a b b =; 命题2 若2550a a -+= 1a =-; 命题3 若关于x 的不等式(3)1m x +>的解集是13x m < +,则3m <-; 命题4 若方程210x mx +-=中0m >,则该方程有一正根和一负根,且负根的绝 对值较大。 其中正确的命题个数是( ) (A )1 (B )2 (C )3 (D )4 4. 如图,四边形ABCD 中,∠BAD=90°, AB=BC=AC=6,AD=3, 则CD 的长是( ) (A )4 (B )(C )(D ) 5.已知三角形的每条边长的数值都是2001的质因数那么这样的三角形共有( ) (A )6个 (B )7个 (C )8个 (D )9个 6.12块规格完全相同的巧克力,每块至多被分为两小块(可以不相等)。如果 这12 块巧克力可以平均分给n 名同学,则n 可以为( ) (A )26 (B )23 (C )17 (D )15 二、填空题(5×8=40分) 7. 若||2a ==,且0ab <,则a b -= . 8.如图,D 、E 、F 分别是△ABC 的边BC 、CA 、AB 上的点且DE ∥BA , DF ∥CA 。 (1) 要使四边形AFDE 是菱形,则要增加条件:____________________________ (2) 要使四边形AFDE 是矩形,则要增加条件: ____________________________ 第4题 第8题

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

全国初中数学竞赛辅导(初三)讲座(3)

全国初中数学竞赛辅导(初三)讲座(3) 例1:解方程084223=+--x x x 。 例2:解方程()()()()197412=+++-x x x x 。 例3:解方程()()()6143762=+++x x x 。 例4:解方程01256895612234=+-+-x x x x 。 例5:解方程52222=??? ??++x x x 。 例6:解方程()()821344=-++y x 。 例7:解方程()()02652112102234=++++---a a x a x a x x ,其中a 是常数,且6-≥a 。 解答:(1)221==x x ,23-=x (2)28552,1±-=x 2554,3±-=x (3)32 1-=x 35 2-=x (4)23 ,32 ,21 ,24321====x x x x (5)2,121=-=x x (6)4,021-==x x (7)622,1+± =a x ,934,3+±=a x 。 练习: 1、填空: (1)方程()()()()24321=++++x x x x 的根为__________。 (2)方程0233=+-x x 的根为__________。 (3)方程025********=+--+x x x x 的根为__________。 (4)方程()()()2 222222367243+-=+-+-+x x x x x x 的根为__________。 (5)方程()()()29 134782=+++x x x 的根为__________。 2、解方程()()()()431121314x x x x x =++++。 3、解方程403322 =??? ??-+x x x 。

初中数学竞赛—奥数讲义计数专题:排列组合及答案

华杯赛计数专题:排列组合 基础知识: 1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。 2.排列数的计算:约定:0!=1 排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。 3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。 4.排列与组合的关系:。 5.组合数的计算: 6.排列数与组合数的一些性质: 例题: 例1.4名男生和3名女生站成一排: (1)一共有多少种不同的站法? (2)甲,乙二人必须站在两端的排法有多少种? (3)甲,乙二人不能站在两端的排法有多少种? (4)甲不排头,也不排尾,有多少种排法? (5)甲只能排头或排尾,有多少种排法? 【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略 【解答】

例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种? 【答案】4186种 【解答】至少有3件是次品,分两种情况 第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中, ,然后,从46件正常品中抽2件,总共种。其中, 所以,3件是次品的抽法共种。 第二种情况:4件是次品的抽法共:种。 任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起, 所以,总共是4×23×45+46=23×182=4186种。 总结:有序是排列,无序是组合。 例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种? 【答案】540种 【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为 =3×2×1=6。用乘法原理表示为3!=6。 六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。 所以,不同的分配方法共有种。 例4.有多少个五位数,满足其数位上的每个数字均至少出现两次? 【答案】819 【解答】 方法一: (1)出现一个数字的情况是9种; (2)出现两个数字,首位不能是0,共有9种情况, (i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=54种。 (ii)首位确定之后,如果首位数总共出现2次,则从后面的4个数位中,选出一位,总共种情况,剩下的三个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=36种。 所以,出现两个数字的情况为(36+54)×9=810.

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

初中数学竞赛专题选讲-三点共线

初中数学竞赛专题选讲 三点共线 一、内容提要 1. 要证明A ,B ,C 三点在同一直线上, A 。 B 。 C 。 常用方法有:①连结AB ,BC 证明∠ABC 是平角 ②连结AB ,AC 证明AB ,AC 重合 ③连结AB ,BC ,AC 证明 AB +BC =AC ④连结并延长AB 证明延长线经过点C 2. 证明三点共线常用的定理有: ① 过直线外一点有且只有一条直线和已知直线平行 ② 经过一点有且只有一条直线和已知直线垂直 ③ 三角形中位线平行于第三边并且等于第三边的一半 ④ 梯形中位线平行于两底并且等于两底和的一半 ⑤ 两圆相切,切点在连心线上 ⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 二、例题 例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB , PN ⊥CD 求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM ⊥AB ,PN ⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴ M ,N ,P 三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直 线上 已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和 BD 的交点 求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行

∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称 点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 X ∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B O 1 和⊙O 2于E ,F 。 求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例 ,

相关文档
最新文档