利用流体包裹体确定油气成藏年代

利用流体包裹体确定油气成藏年代
利用流体包裹体确定油气成藏年代

利用流体包裹体确定油气成藏年代

1.1国内外研究现状

近年来由于包裹体测试技术的提高,有机包裹体已成为含油气盆地研究的重要手段之一。流体包裹体作为地球化学的一种手段,已广泛用于矿床学等领域中,并取得了显著成效。而包裹体在沉积学及石油地质中的应用,只有十几年的历史。研究表明,流体包裹体在测定古地温、探讨油气演化及生油岩的评价等方面有着广泛的用途。

1.2原理

流体包裹体是在矿物生长过程中被包裹在矿物晶格的缺陷或窝穴中的成矿

流体。流体包裹体在油气储层中广泛分布,按其相态可分为液体包裹体,气体包裹体和气液包裹体;按其成分可以分为盐水包裹体和油气包裹体。油气包裹体是油气在储集层中运移和聚集过程中,被储集层的成岩矿物所包裹而形成的,储集层中的油气包裹体存在反映了在地质历史时期储集层油气充注事件。伴随生烃盆地的演化,形成的有机包裹体的类型、特征等不断地发生规律性的变化。根据有机包裹体的演化特点可以确定有机质的热演化程度和油气的形成阶段。在这里要指出的一点是,烃类包裹体的荧光色不能作为区分期次的主要依据,因为许多情

况下荧光色与包裹体形成过程的分异作用有关。在实验室将气液包裹体置于冷热台上加热至气相消失,再恢复成均一液相时的温度称为流体包裹体的均一温度,以成岩矿物次序为基础,通过流体包裹体均一化温度和冰融点测试,结合储集层

的埋藏受热史,可确定流体包裹体形成时储集层受热的温度,以及相应的埋深和地质时代,从而判断油气充注的时间。

1.3具体实例说明

以塔里木盆地英南2井气藏为例,用流体包裹体进行油气成藏期次的研究。镜下观察流体包裹体,并对与烃类共生的盐水包裹体进行均一化温度和冰融点测试,进行油气藏成藏期的分析。流体包裹体分析表明英南2井气藏多为气态烃包裹体,大部分存在于石英次生加大边中,共生的盐水包裹体的均一化温度集中且

接近现今井温,对比埋藏史得出:天然气是在近10Ma时一次性充注成藏。

英南2井是一个油气藏,在侏罗系、志留系和奥陶系共发现了59层累计厚度达451.5 m的油气显示,在侏罗系井段3624.80—3667.56 m不仅获得了高产工业气流,而且获得了低产凝析油,但未钻遇任何烃源岩。据目前的研究,塔东地区潜在的烃源层有两套:一套是侏罗系陆相烃源岩,另一套是寒武系—下奥陶统海相

烃源岩。所以英南2井气藏可能存在着多期油生成、多个油气系统控油、多期油气成藏等问题。

1.3.1 流体包裹体类型及特征

镜下观察发现英南2井侏罗系、志留系砂岩储层样品有机包裹体不是很发育,丰度低、个体小,一般小于5-8μm。主要赋存于钙质胶结物及石英次生加大边中,呈串珠状分布,荧光下蓝白色,主要为气态烃包裹体。在气—液包裹体中,以气相>50%的包裹体为气体包裹体,液相>50%的包裹体为液体包裹体。单偏光镜显微镜下,包裹体的颜色反映了其中包裹体的性质:气体包裹体多为灰黑色,液体包裹体多为浅黄色和黄褐色,盐水包裹体多为无色透明。英南2井砂岩储层中的流体包裹体主要为以下四种类型。

(1)气态烃包裹体:主要为气态烃,有少量液态烃。气液比大于60%,椭圆形或不规则,个体小于5-8μm,数量多,蓝白色荧光。均一相为气相,反映形成时流体以气体为主。主要存在于方解石胶结物和石英次生加大边中。

(2)液态烃包裹体:数量较少,个体小,一般小于3μm,形态不规则或椭圆形,主要分布在石英颗粒和石英次生加大边中。具很弱的黄色或黄绿荧光。

(3)盐水包裹体:一般在96-203μm,数量多,室温显微镜下多呈气液比小于50%的气液包裹体,无荧光,均一相为液相,反映形成时流体以盐水溶液为主。可见,英南2井气藏的包裹体多为气态烃和盐水包裹体,在偏光显微镜下,气态烃包裹

体多为灰黑色,几乎无荧光,有少量液态烃包裹体,在偏光显微镜下多为浅黄色和黄褐色,在荧光下发弱黄色或黄绿荧光。另外,英南2井侏罗纪和志留纪储层岩石颗粒多为方解石胶结,石英次生加大较发育,据成岩次序,方解石胶结和石英次生加大均发生在成岩晚期。所以,这些特征表明在方解石胶结和石英次生加大时捕获的包裹体多为气态烃包裹体,为晚期包裹体,包裹体中烃类的成熟度高。

1.3.2 流体包裹体的形成温度和时间

流体包裹体分析在油气地质中应用的主要用途之一是利用沉积成岩矿物包

裹体资料进行油气运移路径、注入时间和方向的推测、计算和判断。其方法通常是在流体包裹体均一温度测定的基础上,根据地热增温率即今地温或古地温梯度来推测古埋深,或是通过成岩序列的研究来大致推算包裹体形成的时间。英南2井储层石英加大边中的与气态烃共生的盐水包裹体和其它盐水包裹体的均一化

温度分布见图1、图2、图3。根据盐水均一化温度的应用条件、均相捕获和等溶,即只有均相捕获的流体包裹体才能满足PVT状态方程,其温压和地球化学条

件能代表烃类的形成条件。因此,用于测量英南2井均一化温度的盐水包裹体均为取自石英加大边中的盐水包裹体,而方解石胶结物中的盐水包裹体均一化温度没有测试。

由图2可知,与气态烃共生的盐水包裹体均一化温度分布范围小,为90-100℃,略低于目前井温。冰融点温度t m主要分布在-17—-28℃之间,相对集中,说明侏

图1 英南2井包裹体均一化温度分布

罗纪,形成气态烃的成矿流体的性质相似,也反映了气态烃在形成过程中不存在多期变化,所以这些盐水包裹体为同一期。

图2 英南2井侏罗系流体包裹体均一化温度分布(Y

轴为测值数)及均一化温度t h与冰融点温度t m离散图

由图3可知,与气态烃共生的盐水包裹体均一化温度主要分布在90-110℃,均一化温度的高值与现今志留系储层的地温基本相同。冰融点温度tm主要分布在-17—-28℃之间,相对集中,反映志留系储层中与气态烃包裹体共生的盐水包裹体基本为同一期。在英南2井储层,随深度的增加,均一化温度增加。奥陶系储层多数样品的均一化温度最高分布范围为110-120℃(见图1),侏罗系多数样品的均一化温度较奥陶系要低,志留系储层样品的温度介于两者之间。这种随着深度的增加,与气态烃共生的盐水包裹体的均一化温度逐渐增加的现象,说明气态烃是同期形成的,并且是从深部向浅部垂向运移的结果。奥陶系储层在空间上最接近油气来源,因而均一化温度较高,与现今井中温度(115℃)接近。随着向浅部运移,温度有所降低,石英所包裹的气态烃均一化温度也降低,因此,与气态烃共生的盐水包裹体瞬时地把油气运移的细微变化记录下来了。石英加大边中的其它盐水包裹体温度较宽,说明成矿流体性质较复杂,使均一化温度较离散。

图3 英南2井志留系流体包裹体均一化温度分布(Y

轴为测值数)及均一化温度t h与冰融点温度t m离散图

1.3.3 成藏期次与时间的确定

从区域地层和构造资料可知,英南2号构造受区域构造演化的控制,形成于加里东晚期,经过海西—印支期的不断抬升,最终定型于燕山晚期。在志留纪后,由于构造抬升,下古生界出露地表并遭受剥蚀。此后,又经接受一次短时(发生在侏罗纪)的沉积与抬升,中、上侏罗统遭受一定程度剥蚀。侏罗纪后,英南2井各储层一直接受沉积而埋深加大。从英南2井侏罗系和志留系储层流体包裹体均一化温度的系统测试结果,可以根据与烃类包裹体共生的盐水包裹体均一化温度并结合埋藏热历史确定英南2井气藏的成藏期,英南2井主要产气层石英次生加大边与气态烃包裹体共生的盐水包裹体均一化温度接近于现今气层温度,为

90-110℃,说明气藏形成于近10 Ma内,气藏中伴生的少量油也是这一时间聚集的。

1.4结论

综上所述,从英南2井流体包裹体成藏年代学分析可获得以下认识:

(1)英南2井气藏天然气是近期10 Ma以来聚集成藏;

(2)英南2井气藏烃类的成藏期与塔东区寒武系——下奥陶统源岩主要生烃期(晚奥陶世——志留纪为主)明显不一致,指示烃类流体存在中间过程;

(3)以成岩矿物序次为基础,通过流体包裹体均一化温度测试,在均一化温--—冰融点温度离散图上区分包裹体期次是一种客观且有效的方法。

现代流体测试技术综合实验

研究生教学实验指导书 现代流体测试技术 综合实验 北京航空航天大学能源与动力工程学院 2007年10月

“信号合成与分解实验” 教学实验指导书 教学实验编号: 041701-1 (可不填) 教学实验名称: 信号合成与分解实验 (中文) Synthesis and Analysis of Signal (英文) 学分/学时:1学分/16学时 适用专业:发动机、工程热物理、宇航、气动、汽车专业 先修课程和环节:掌握测量放大器的工作原理和傅里叶变换的理论知识;各种谐波的理 论分析和频率结构;滤波器(低通、高通、带通、带阻)的相关知识; 了解信号的分类。 一、实验目的 1. 在《测试技术》课程中,非正弦周期信号的谐波分析是教学中的重点内容之一。谐波分析的数学工具是将周期函数展开为付氏级数。本实验的主要目的是为了使同学对信号分析中的波形分解、合成及非正弦周期信号的幅值频谱的物理实质建立感性认识与了解。 2. 在精确的测试中,要求测试系统能够确保信号的检测与传输遵循不失真的条件。即要求测试系统是线性的。且幅频特性水平,相频特性为零或与频率成线性关系,本实验的另一个目的是通过实际观察合成某一确定周期信号时,必须保持合理的频率结构,正确的幅值比例和初始相位关系,不管什么原因。如果破坏了其中任何一条,都会导致波形失真,从而加深理解信号检测与运输中确保不失真条件的重要性。 3、 学会用示波器检查各高次谐波与基波之间初始相位差是否为零的测试方法。 二、实验内容及基本原理 本实验内容包括以下四个部分: 1、 测带通滤波器频率特性实验 将信号发生器的乒乓开关打到上方,通过旋钮改变频率,使其在80~120Hz 范围内变化,在输出端测出其相对应的电压,填入表1。 表1 2、 信号分解实验 3、 信号合成实验 4、 观察合理的频率结构,正确的幅值比例和正确的初始相位关系在合成波形中的重要作用 实验原理如下: 对某一个非正弦周期信号)(t f ,其周期为T ,频率为f ,则可以分解为无穷项谐波之和,即

《流体机械基础》课程标准

《流体机械基础》课程标准 一、课程基本情况 课程编号开课年级授课学期第学期 课程名称流体机械基础授课层次中职课程性质必修课 课程类别专业课考核方式理论+平时+实践课程设计 总学时理论学时实验学时 前导课程 后续课程 适用专业数控专业(水泵制造及检测方向) 二、课程定位 《流体机械基础》是机械类水泵专业方向培养应用型人才的必修专业课之一。通过该课程的学习,使学生掌握流体机械的定义概念、工作原理和流体机械的基础理论;掌握典型的流体机械(泵、风机、压缩机等)的结构和用途及流体传动装置的结构和原理;掌握水力机械测试技术等。 根据中等职业教育人才培养理念,本课程通过项目导向,教学探究型教学,加强学生的实践技能培养,重点培养学生的综合职业能力和职业素养、独立学习及获取新知识、新技能、新方法和与人交往、沟通及合作等方面的态度和能力。 通过《流体机械基础》的学习,培养学生能胜任水泵相关企业技术开发及维护工作的能力,能解决水泵相关企业工程实践中遇到的有关流体的问题,从而实现本专业的培养目标。 三、课程目标 总体目标 通过本课程的学习,使学生掌握关于《流体机械基础》的基本原理、典型流体机械的结构和用途,启迪思维模式,建立一丝不苟的工作和认真的学习态度,进而培养学生踏实认真的生活态度,一步一个脚印地努力向前,培养适应专业发展需要的专门人才。为学习有关水泵专业相关知识奠定必要的基础。 (一)知识目标 1、掌握流体机械的定义及能量转换。 2、掌握流体机械的工作原理及基础理论。 3、掌握典型的流体机械结构和用途。 4、了解水力机械测试技术和方法(实验室或下企业)。 (二)技能目标 1.能认识《流体机械基础》课程学习的一般过程,注重激发学生的学习动机,通过学习流体机械相关知识的过程,进而了解流体机械的基本原理及典型流体机械的结构和用途。

流体包裹体研究进展

流体包裹体研究进展 1.流体包裹体的分类及区分 流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中,至今尚在主矿物中封存并与主矿物有着明显的相边界的那一部分物质。 1.1流体包裹体的分类 流体包裹体成分复杂且成因多样,其分类研究多年来一直是随着测试手段的改进和研究内容的深化而变化。早期的分类研究主要是以定性描述为主,随着流体包裹体研究水平额度不断发展,出现了以成因、成分、相态和不同包裹体之间的相互关系为主要依据的各种分类。具有代表性的包括: (1)1953-1976年:最有代表性的是1969年Ermakov提出的分类方案,他根据包裹体的成分和成因,建立了21个类型,并且根据相的相对比例,建立了一种应用很广的分类。另外一些人也建立了不同的分类方案,例如,许多分类方案是根据仍宜选用的气液比而划分的,然而气液比由于其连续变化而不易精确测定,限定了其广泛应用。 (2)1985-2003年:最有代表的芮宗瑶的分类方案,他根据捕获时的流体特征将包裹 体分为由均一体系形成的和由非均一体系形成的。其中,均一体系形成的包裹体又分为原生包裹体、次生包裹体、假次生包裹体和出溶包裹体;非均一体系形成的包裹体包括液相+固相、液体+气体或液体+蒸气、两种不混溶流体3类。 (3)2003年至今:有些学者在著作及文献中阐述了一些流体包裹体类型的划分方案,多以流体包裹体的物理状态、成因、形成期次等指标为划分依据。其中,卢焕章等根据包裹体相数的不同,将流体包裹体分为纯液体包裹体、纯气体包裹体、液体包裹体、气体包裹体、含子矿物包裹体、含液体CO2包裹体、含有机质包裹体和油气包裹体等8类。 1.2流体包裹体的区分 在流体包裹体的诸多分类中,按捕获时间与主晶矿物形成时间的关系可分为原生和次生流体包裹体。原生包裹体是矿物形成时包裹周围的流体而形成的,而次生包裹体的形成晚于主晶矿物,一般与后期主晶矿物的改造事件有关。二者由于形成时间和方式不同而携带了不同的信息。原生包裹体指示了主晶矿物形成时的流体环境和物理化学条件,次生包裹体则指示了主晶矿物后期被改造事件中的流体环境、构造特征以及物化条件。 一般,原生和次生包裹体区分可应用以下两条准则:一是根据包裹体的形状和分布特征判别,即原生包裹体的形状往往是规则的,常呈孤立状或沿主晶矿物某一结晶方位或生长环带分布,次生包裹体的外形一般是不规则的,多沿愈合裂隙分布;二是同一成因的包裹体密度、均一温度、盐度和成分是近似的,可与已知包裹体类比归类。 2.流体包裹体研究的技术方法 2.1流体包裹体显微测温方法 以显微热台、冷热台以及爆裂以为代表的流体包裹体显微测温技术现已达到成熟,实际应用中多采用均一法和爆裂法相结合的方法。 (1)均一法是将流体包裹体放在冷热台上加热,随着温度的升高,气液两相逐步复原为一个均一相,此时的温度为包裹体均一温度。这是包裹体测温的基本方法,其特点是可直接观察到包裹体相态随温度的变化,也能测得各相的体积,所测数据直观可信。具有针对性且便于区分原生和次生包裹体,因此在流体包裹体研究中得到广泛应用。但这种方法测温速度慢,且只适用于透明和半透明矿物。 (2)爆裂法是将流体包裹体加热,使得包裹体内压升高,当内压大于主矿物强度及外压时,流体包裹体就会爆破而发出响声,用仪器收集、放大、记录其爆裂声响,从而来测定爆裂温度。这种方法适用性广,适用于透明和不透明矿物,且测温速度快。缺点是肉眼无法观察到所研究对象的特征,测定结果受主矿物的物理性质与位置、流体成分、流体包裹体形态

流体力学与流体机械习题参考答案

高 等 学 校 教 学 用 书 流体力学与流体机械 习题参考答案 主讲:陈庆光 中国矿业大学出版社 张景松编.流体力学与流体机械, 徐州:中国矿业大学出版社,(重印) 删掉的题目:1-14、2-6、2-9、2-11、2-17、3-10、3-19、4-5、4-13 《流体力学与流体机械之流体力学》 第一章 流体及其物理性质 1-8 3m 的容器中装满了油。已知油的重量为12591N 。求油的重度γ和密度ρ。 解:312591856.5kg/m 9.8 1.5 m V ρ= ==?;38394N/m g γρ== 1-11 面积20.5m A =的平板水平放在厚度10mm h =的油膜上。用 4.8N F =的水平力拉它以0.8m/s U =速度移动(图1-6)。若油的密度3856kg/m ρ=。求油的动力粘度和运动粘度。 解:29.6N/m F A τ==,U h τμ=, 所以,0.12Pa s h U τμ==g ,42/0.12/856 1.410m /s νμρ-===? 1-12 重量20N G =、面积20.12m A =的平板置于斜面上。其间充满粘度0.65Pa s μ=g 的油液(图1-7)。当油液厚度8mm h =时。问匀速下滑时平板的速度是多少。 解:sin 20 6.84F G N ==o ,57Pa s F A τ==g , 因为U h τμ =,所以570.0080.7m/s 0.65h U τμ?=== 1-13 直径50mm d =的轴颈同心地在50.1mm D =的轴承中转动(图1-8)。间隙中润滑油的粘度0.45Pa s μ=g 。 当转速950r/min n =时,求因油膜摩擦而附加的阻

现代热物理测试技术一些知识点总结

第13章:红外气体分析 分子光谱: 分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱). E E E E ?=?+?+?电子振动转动 . 气体特征吸收带: 气体:1~25μ m 近、中红外 . 红外吸收的前提: 存在偶极距(对称分子无法分析)、频率满足要求 . 非分光红外(色散型)原理、特点 : 原理:课本P195 特点: 优点:灵敏度高、选择性好、不改变组分、连续稳定、维护简单寿命长. 缺点:无法检测对称分子气体(如O 2,H 2,N 2.)、测量组分受探头限制. 烟气预处理的作用 :滤除固液杂质(3224SO H O H SO +=)、冷凝保护(1.酸露点温度达 155℃ 2.冷凝器 )、 去除水气影响(1.红外吸收干扰 2.气体溶解干扰 ). 分光红外原理: ? (三棱镜分光原理) 傅立叶分光原理(属于分光红外常用一种)、特点 : 原理:光束进入干涉仪后被一分为二:一束透射到动镜(T),另一束反射到定镜(R)。透射到动镜的红外光被反射到分束器后分成两部分, 一部分透射返回光源(TT), 另一部分经反射到达样品(TR);反射到定镜的光再经过定镜的反射作用到达分束器,一部分经过分束器的反射作用返回光源(RR), 另一部分透过分束器到达样品(RT)。也就是说,在干涉仪的输出部分有两束光,这两束相干光被加和, 移动动镜可改变两光束的光程差,从而产生干涉,得到干涉图,做出此干涉图函数的傅立叶余弦变化即得光谱, 这就是人们所熟悉的傅立叶变换. 特点:优点:测试时间短、同时测多组分、可测未知组分;而且,分辨能力高、具有极低的杂散辐射、适于微少试样的研究、研究很宽的光谱范围、辐射通量大、扫描时间极快. 第12章:色谱法 色谱法的发明和命名、色谱法原理 : P173-174 色谱系统的组成:分析对象、固定相、流动相 气相色谱与液相色谱的区别 :气相色谱法系采用气体为流动相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用记录仪、积分仪或数据处理系统记录色谱信号。高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。 气相色谱和液相色谱优缺点:1、气相色谱采用气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以采用长柱,例如毛细管柱,所以分离效率高。2、由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。3、能和气相色谱分离相匹配的检测器种类很多,因而可用于各种物质的分离与检测。特别是当使用质谱仪作为检测器时,气相色谱很容易把分离分析与定性鉴定结合起来,成为未知物质剖析的有力工具。4、气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和许多高分子化合物。气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。5、液相色谱则不能分析在色谱条件下为气体的物质,但却能分离不挥发、在某溶剂中具有一定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。 色谱系统组成及各部分作用: 载气、进样、温控、分离、检测 (P176) 温控的作用:P178

流体机械新技术

重型船用螺旋桨加工机械———武重CKX5680七轴五 联动车铣复合机床 工程总投资:1000万元以上工程期限:2005年——2007 年 2007年9月18日,国家科技部组织高新技术产品专家验收组专程到武汉,对武汉重型机床集团承担的国家“863计划”项目课题——CKX5680数控七轴五联动车铣复合加工机床进行了验收。这一代表我国船舶加工设备高、精、尖项目的完成,标志着我国数控重型

机床制造水平又上了一个新的台阶。 大型船舶螺旋浆加工设备重型七轴五联动车铣复合加工机床是国家高新技术研究发展计划(863计划)项目。该项目主要由武重集团公司承担,华中科技大学国家数控系统工程技术研究中心和镇江船舶螺旋浆厂参与,产学研相结合共同研制完成的。该机床的最大加工直径达8m、高度达2m、工作台承重达100吨,不仅具有精密铣削加工螺旋桨叶面(包括重叠部分)的功能,而且还能利用车铣功能复合的特点,实现螺旋桨的一次装夹多表面的加工,将大大提高我国舰艇用螺旋桨的加工质量。本项目在主机、控制及空间曲面加工等方面均取得了自主创新的成果。其研究和开发的核心技术,能为我国的能源行业的现代发电装备关键零部件(如大型叶片、水轮机转轮等)的制造加工提供共性加工技术和装备制造技术;为我国飞机发动机、火箭发动机以及舰艇螺旋桨的制造,提供高性能的国产制造装备;填补国内空白,打破西方发达国家的限制和封锁。该技术无论是对我国国防建设,还是对国民经济相关行业的发展都具有非常重要的意义。

2004年12月14日,大连船用推进器厂为丹麦A P.莫勒-马士基集团奥登希船厂制造的、世界最大级别的超大集装箱船用螺旋桨,顺利通过了美国ABS船级社和船东的严格检验并交工,于2004年12月16日装船运往丹麦。 此次交工的超大集装箱船用螺旋桨为6个桨叶,直径达8.95米,总投料重达1 60吨,成品98.4吨,比30万吨VLCC油船用螺旋桨还重25吨,建造难度也大得多。制造过程中首次采用了3个铜水包同时浇注、6台中频感应电炉一起熔炼的高难工艺,并一次浇注成功。螺旋桨叶面采用具有世界先进水平的五轴联动数控铣床加工,产品内在质量和表面精度达到国际先进水平。这只大桨从开工到制造完成仅用了3个月时间,创造了世界建造同等级别船用桨最快纪录,产品质

流体包裹体成因判别

流体包裹体成因判别 芮宗瑶译;张洪涛校 (据Roedder,1976,1979b年的资料修订,不包括出溶包裹体) 一、原生成因判据 1.根据在显示或不显示生长方向或生长环带的某一单晶中的产状。 ①在另一无包裹体的单晶中单独产出(或一个小型三维组合,Roedder,1965b,图10;1972,图版6); ②相对围晶而言,其个体大。例如,其直径≧0.1围晶,特别是出现几个这样的包裹体时; ③远离其它包裹体孤立地产出,其距离约为该包裹体直径的5倍; ④呈遍布晶体的无规律的三维分布产出(Roedder和Coombs,1967,图版4,图A和B); ⑤包裹体周围较规则的位错发生扰动,特别是如果这些位错由包裹体向外呈放射状时(Roedder和Weiblen,1970,图9); ⑥如同主晶中产出的固体包裹体或产出同生相一样,产出的子晶(外来的固体包裹体)。 2.根据显示生长方向的子晶的产状。 ①产在远离(在生长方向上)干扰主晶生长的外来固相(同生相或其他相)处,有时直接产在这种外来固相的前方,而该处主晶尚未完全封闭(由于发育不完全,包裹体可能围着于固体上或离开一定距离,Roedder,1972,图版1); ②产于某早期生长阶段的愈合裂隙之外,原因是该处新晶体生长不完善(Roedder,1965b,图18和19;Roedder等,1966,图15); ③在某一复合晶体的近于平行的两个单元之间产出(Roedder,1972,卷首插图的右上角); ④在几个生长螺旋体的交切面上或在一个在外表面可见到生长螺旋体的中心部位产出; ⑤尤其呈相对较大的扁平状包裹体产出,它们平行于某一外部晶面,并靠近于其中心(也即由于在晶面中心晶体生长发育不良),例如许多“漏斗状盐晶”; ⑥在板状晶体的核心产出(例如绿柱石)。这可能只不过是上述条款的一个极端情况; ⑦尤其沿两晶面的交切边缘成排产出。 3.根据显示生长环带的单晶中的产状(如根据颜色、透明度、成分、X衍射的暗度、捕获的固体包裹体、浸蚀环带和出溶相等标志确定)。 ①产于不规则的三维空间,在临近带中具有不同的富集程度(由于突变的羽毛状的或树枝状的生长);

最新现代流动测试技术大作业

现代流动测试技术 大作业 姓名: 学号: 班级: 电话: 时间:2016

第一次作业 1)孔板流量计测量的基本原理是什么?对于液体、气体和蒸汽流动,如何布置测点? 基本原理:充满管道的流体流经管道的节流装置时,在节流件附近造成局部收缩,流速增加,在上下游两侧产生静压差。在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。公式如下: 4v q d π α== 其中: C -流出系数 无量纲 d -工作条件下节流件的节流孔或喉部直径 D -工作条件下上游管道内径 qv -体积流量 m3/s β-直径比d/D 无量纲 ρ—流体的密度Kg/m3 测量液体时,测点应布置在中下部,应为液体未必充满全管,因此不可以布置的太靠上。 测量气体时,测点应布置在管道的中上部,以防止气体中密度较大的颗粒或者杂质对测量产生干扰。 测量水蒸气时,测点应该布置在中下部。 2)简述红外测温仪的使用方法、应用领域、优缺点和技术发展趋势。 使用方法:红外测温仪只能测量表面温度,无法测量内部温度;安装地点尽量避免有强磁场的地方;现场环境温度高时,一定要加保护套,并保证水源的供应;现场灰尘、水汽较大时,应有洁净的气源进行吹扫,保证镜头的洁净;红外探头前不应有障碍物,注意环境条件:蒸汽、尘土、烟雾等,它阻挡仪器的光学系统而影响精确测温;信号传输线一定要用屏蔽电缆。 应用领域:首先,在危险性大、无法接触的环境和场合下,红外测温仪可以作为首选,比如: 1)食品领域:烧面管理及贮存温度 2)电气领域:检查有故障的变压器,电气面板和接头 3)汽车工业领域:诊断气缸和加热/冷却系统 4)HVAC 领域:监视空气分层,供/回记录,炉体性能。 5)其他领域:许多工程,基地和改造应用等领域均有使用。 优点:可测运动、旋转的物体;直接测量物料的温度;可透过测量窗口进行测量;远距离测量;维护量小。 缺点:对测量周围的环境要求较高,避免强磁场,探头前不应有障碍物,信号传输线要用屏蔽电缆,当环境很恶劣时红外探头应进行保护。 发展趋势:红外热像仪,可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差。便携化,小型化也是其发展趋势。 3)简述LDV 和热线的测速原理及使用方法。

《过程流体机械第二版》思考题答案_完整版

《过程流体机械》思考题参考解答 2 容积式压缩机 ☆思考题2.1 往复压缩机的理论循环与实际循环的差异是什么? ☆思考题2.2 写出容积系数λV 的表达式,并解释各字母的意义。 容积系数λV (最重要系数) λV =1-α(n 1 ε-1)=1-???? ??????-???? ??11 0n s d S p p V V (2-12) 式中:α ——相对余隙容积,α =V 0(余隙容积)/ V s (行程容积);α =0.07~0.12(低压),0.09~0.14(中压),0.11~0.16(高压),>0.2(超高压)。ε ——名义压力比(进排气管口可测点参数),ε =p d / p s =p 2 / p 1 ,一般单级ε =3~4;n ——膨胀过程指数,一般n ≤m (压缩过程指数)。 ☆思考题2.3 比较飞溅润滑与压力润滑的优缺点。 飞溅润滑(曲轴或油环甩油飞溅至缸壁和润滑表面),结构简单,耗油量不稳定,供油量难控制,用于小型单作用压缩机;

压力润滑(注油器注油润滑气缸,油泵强制输送润滑运动部件),结构复杂(增加油泵、动力、冷却、过滤、控制和显示报警等整套供油系统油站),可控制气缸注油量和注油点以及运动部件压力润滑油压力和润滑油量,适用大中型固定式动力或工艺压缩机,注意润滑油压和润滑油量的设定和设计计算。 ☆思考题2.4 多级压缩的好处是什么? 多级压缩 优点:①.节省功耗(有冷却压缩机的多级压缩过程接近等温过程);②.降低排气温度(单级压力比小);③.增加容积流量(排气量,吸气量)(单级压力比ε降低,一级容积系数λV 提高);④.降低活塞力(单级活塞面积减少,活塞表面压力降低)。缺点:需要冷却设备(否则无法省功)、结构复杂(增加气缸和传动部件以及级间连接管道等)。 ☆思考题2.5 分析活塞环的密封原理。 活塞环 原理:阻塞和节流作用,密封面为活塞环外环面和侧端面(内环面受压预紧);关键技术:材料(耐磨、强度)、环数量(密封要求)、形状(尺寸、切口)、加工质量等。 ☆思考题 2.6 动力空气用压缩机常采用切断进气的调节方法,以两级压缩机为例,分析一级切断进气,对机器排气温度,压力比等的影响。 两级压缩机分析:1级切断进气→节流(实际ε1↑)→停止进气排气→2级节流(实际ε2↑)→(短暂)排气温度T2↑→(逐渐)停止进气排气(级间存气);活塞力↑(ε↑),阻力矩变化。 ☆思考题2.7 分析压缩机在高海拔地区运行气量的变化规律并解释其原因。 高海拔地区当地大气压力即吸气压力p s↓,若排气压力p d不变,则名义压力比ε↑,根据(2-12)式和(2-11)式,容积系数λV↓,实际吸气量V s0↓,容积流量q V↓。 ☆思考题2.8 一台压缩机的设计转速为200 r/min,如果将转速提高到400 r/min,试分析气阀工作情况。 定性分析,定量分析难。如压缩机结构参数(行程s、缸径D1、阀片尺寸等)不变,则容积流量q V↑↑(理论增加一倍),使气阀流速和阻力损失↑↑(激增),进排气频率↑,阀片启闭速度↑,阀片撞击阀座程度↑(加剧),阀片寿命↓(缩短),故障概率↑

流体机械的测试技术

误差分析 1仪表的精度等级如何定义? 精度等级的数字表示允许仪器的极限误差为仪器满量程的正负百分之几 2误差如何分类,系统误差如何消除,随机误差分布有何特点? 误差按性质分为三类:系统误差、随机误差和粗大误差; 消除系统误差有两种方法,1:引入修正值,2:消除产生系统误差的根源,如恒温控制; 随机误差指同一仪器,在相同条件下,对同一不变的量测量,测量的值不完全一致,随机误差呈现高斯正态分布的特点 3极限误差的定义 用б表示标准误差,工程上常用极限误差δ来表示偶然误差δ=3б,指任何一个测得值一定处于真值正负δ范围内 4间接测量误差分析中,如何消除交叉项 当N很大时,1 N dx i dx j=0(d x i=x i?x有正有负,dx i dx j为小量),所以可以消除交叉项。 压力测量 1概念: 总压力:气流从某一状态绝能等熵滞止到速度为零的状态时的压力 静压:气流与测量仪器保持相对静止时所测得的压力 表压力:绝对压力超过大气压力的部分称为表压 真空度:表示实际压力低于大气压力的数值 2空气分别以100m/s,300m/s的速度流动,气体温度15度,静压100kpa,利用皮托管测量流动,计算由空气是不可压缩的假设引起的滞止点压力的误差。 15摄氏度时,空气密度为1.225kg/m3,c=340.3m/s,Ma1=0.294,Ma2=0.882 当空气以100m/s的速度流动时,伯努利方程得总压力为Pt=P+1/2*rou*V2=100000+0.5*1.225*100*100=106125Pa,气动函数计算可得:Pt=P*pai(λ)=100000*(1+0.2*0.294*0.294)^(1.4/0.4)=106182.4Pa,误差为△P=57.4Pa; 当空气以300m/s的速度流动时,伯努利方程得总压力为Pt=P+1/2*rou*V2=100000+0.5*1.225*300*300=155125Pa;气动函数计算可得:Pt=P*pai(λ)=100000*(1+0.2*0.882*0.882)^(1.4/0.4)=165884.7Pa,误差为△P=10759.7Pa; 3三孔针对向测量原理是什么?如何用三孔针测量二维气流速度 将三孔针绕测量支杆的轴线转动,使1,3两孔的压力相等,从而保证2孔对准气流P2=Pt.根据P1/P2=f(Pai(λ)),可以求出静压P。由于三孔探针适合在低速区使用,还可以根据伯努利方程求出气流速度. 测量方法:转动探针,使p 1=p 3 ,则p 2 =p*。三孔针在设计时有速度特性曲线, 校准系数ξ不变。当λ≤0.3时,不考虑气流压缩性,此时,p??p=1 2 ρυ2,取1 2 ρυ2 p2?p1=p??p p2?p1 =ξ;当λ>0.3时,ξ= 1 2 ρυ2 p2?p1 = k k+1 p?λ2ελ p2?p1 。从而可计算出p,求解 出速度v。 4压力扫描阀的作用是什么? 对多路的稳态压力进行快速的测量,以缩短大型试验的时间;对压力传感器进行实时校

激光拉曼探针在流体包裹体研究中的应用

[收稿日期]2007-06-29;[修回日期]2007-09-06 [基金项目]国家“973”多种能源共存项目资助(2003CB214603)。[作者简介]张 敏(1974—),女,山东潍坊人,工程师,硕士,主要从事流体地球化学研究。E-mail:zhangmin715@126.com 世界核地质科学WorldNuclearGeoscienceVol.24,No.4Dec.2007 第24卷第4期2007年12月激光拉曼探针在流体包裹体研究中的应用 张 敏,张建锋,李林强,邱林飞 (核工业北京地质研究院,北京100029) [摘要]激光拉曼探针(LRM)是一种非破坏性测定物质分子成分的微观分析技术。在详细介绍激光拉曼探针工作原理、测试方法的基础上,着重阐述了该项技术在单个包裹体成分分析、盐度和压力测定研究中的应用,进而指出了LRM不仅可以对样品中不同期次的单个流体包裹体各相态的成分进行定性分析,而且还可以对包裹体中某些流体成分的相对量及流体的盐度、压力进行定量化研究。同时,也指出了LRM在微区微观分析研究上存在的某些局限性和不足。 [关键词]激光拉曼探针;流体包裹体;成分;盐度;压力[中图分类号]O657.3 [文献标识码]A [文章编号]1672-0636(2007)04-0238-07 TheapplicationoflaserRamanmicroprobetothestudyoffluidinclusion ZHANGMin,ZHANGJian-feng,LILin-qiang,QIULin-fei (BeijingResearchInstituteofUraniumGeology,Beijing100029,China) Abstract:LaserRamanmicroprobeisamicro ̄analyticaltechniquefordeterminingmolecularcomponentswithoutdestroy.BasedontheintroductionofworkingprincipleandanalysismethodofLRM,thispaperexpatiatesonitsapplicationtothestudyofcompositionanalysis,salinityandpressureofsinglefluidinclusion.TheresearchfurthershowsthatLRMcannotonlyqualitativelyanalyzethecomponentofdifferentphasesofsinglefluidinclusionsindifferentages,butalsocanquantitativelydeterminesomerelativecomponents,salinityandpressureoffluidinclusion.SomelimitationandshortageofLRMintheresearchofmicro ̄analysisarealsosummarized.Keywords:laserRamanmicroprobe;fluidinclusion;component;salinity;pressure 激光拉曼探针(laserRamanmicroprobe,LRM),又称显微激光拉曼光谱仪(laserRamanmicrospectrometer),问世于20世纪60年代。早在1928年,印度物理学家拉曼(Raman)首先发现并系统研究了拉曼散射,但由于没有 理想的光源,拉曼谱学的发展受到了极大的限制。随着激光光源和信号处理技术的发展,到20世纪70年代激光拉曼探针作为一项非破坏性微区分析技术已经渗入到地学研究的各个领域,尤其是在矿物岩石和流体包裹体

《现代测试技术》习题

《现代测试技术》习题 基本题型: 填空题、判断题、问答题、名词解释、大题(计算题、作图题) 一、填空题 1.1 传感器主要由、与三大部分构成。 1.2 信号x(t)的正弦形式的傅里叶级数的系数a0= ,a n= ,b n= , A n= ,φn= 。 1.3 傅里叶变换对1?,当x(t)?X(f)时,频移特性为。 1.4 傅里叶变换对δ(t)?,当x(t)?X(f)时,时移特性为。 1.5 傅里叶变换对ε(t)?,当x(t)?X(f)时,时移特性为。 1.6 组合压电元件在力学结构上是形式,在电学结构上是形式。 1.7 光电效应可分为效应、效应与效应。 1.8压电元件的常用结构形式在力学结构上是形式,在电学结构上是形式。 1.9热电偶总电动势是由与两种电动势组成,其中起主要作的是电动势。 1.10 按照滤波器工作目的可分为、、与4种基本类型。 1.11理想滤波器的条件是其通带的幅频特性为,而阻带的幅频特性为。 1.12金属应变片的常用组桥形式主要有电桥、电桥与电桥。 1.13 信号的自相关系数ρx= ,自相关函数R x(τ)= 。 1.14对变极距式电容式传感器采用结构可极大改善非线性特性,采用方式可消除非线性特性。 1.15 电感式传感器按结构参数的变化可分为式、式与式三类。 1.16 电容式传感器按结构参数的变化可分为式、式与式三类。 1.17对测试系统实际特性的拟合可采用拟合与拟合。 1.18 周期信号的自相关函数仍为频率的周期函数,且保留了原信号的信息,丢失了原信号的信息。 1.19 两同频周期信号的互相关函数仍为频率的周期函数,且保留了原信号的信息与信息,丢失了原信号的信息。 1.20实现不失真测试的频域条件(表达式)为与。时域条件是。 二、名词解释题 2.1 应变效应、压阻效应、电涡流效应、金属应变效应、压电效应、霍尔效应、热电阻效应、热敏电阻效应、磁敏效应、磁阻效应、外光电效应、内光电效应、光生伏特效应

用SRXRF微探针研究含油气单个流体包裹体的...

第9卷 第20期 2009年10月167121819(2009)2026145205  科 学 技 术 与 工 程 Science Technol ogy and Engineering  Vol 110 No 120 Oct .2009 Ζ 2009 Sci 1Tech 1Engng 1 地球科学 用SRXRF 微探针研究含油气单个 流体包裹体的微量元素分布 王阳恩 陈传仁1  黄宇营2  何超群1  江隆盛2  邬春学1  李葵发 (长江大学物理科学与技术学院;油气资源与勘探技术教育部重点实验室(长江大学)1,荆州434023; (中国科学院高能物理研究所2,北京100049) 摘 要 简述了同步辐射X 射线荧光微探针用于含油气单个流体包裹无损分析研究的实验装置和方法。通过测定N I ST612标样,计算了不同实验条件下部分元素的检出限。利用日本KEK/PF SRF 工作站的设备对取自柴达木盆地、准噶尔盆地、塔里木盆地等油区16个油气包裹体作了微量元素分析,得到了不同油区不同样品内的微量元素含量。关键词 同步辐射 X 射线荧光分析 单个流体包裹体 微量元素中图法分类号 P575.5; 文献标志码  A 2009年7月15日收到 第一作者简介:王阳恩(1967—),男,汉族,湖南永州人,硕士,副教授。E 2mail:yewang@yangtzeu .edu .cn 。 为了研究流体包裹体,人们发展和形成了各种分析方法。随着微区微量分析技术的发展,人们对流体包裹体的研究,也由测温进入到流体包裹体的微量化学成分,特别是微量元素的定量分析,由破坏性的群体分析方法进入到对单个流体包裹体的无损分析。近年来,对单个流体包裹体的测试分析技术及其应用,受到了多方面研究者的关注[1—8] ,并 进行了有益的探索。 在国际上,随着高强度同步辐射的出现,用同步辐射X 射线荧光(SRXRF )微探针对单个流体包裹体作无损成分分析,近几年取得较快进展。同步辐射光源具有亮度高、通量大、频谱宽且连续可调、发散角小、偏振性好等优异特性,既适宜作μg/g 量级的微量元素分析,又适于进行μm 量级的微区分析,是对单个流体包裹体作微区微量无损分析的有力工具。20世纪80年代末以来,陆续有用同步辐 射X 射线荧光微探针对矿物中单个流体包裹体的成分进行分析测试实验方法研究的报道[9—11] ,其探 针聚焦光斑一般为(10~25)μm ,最小达到(215~ 5)μm ,分析的元素从Na 到REE 。 本文工作是在日本的KEK/PF SRF 工作站进行的,其主要目的是在以前的研究基础上,通过日本工作站新的实验条件,探讨用SRXRF 微探针研究含油气单个流体包裹体的微量元素分布。 1 实验准备 1.1 样品制备 样品属砂岩石英晶体,其中1、2号取自柴达木盆地,3号取自准噶尔盆地,4—16号取自塔里木盆地。将岩芯样品切片,并将其研磨成厚度约为200μm 的薄片,清洗后将其粘贴在与日本工作站装置相配的有机玻璃框架上。用配有长焦距的物镜的偏光显微镜探索尺寸合适的流体包裹体,再用荧光显微镜从中鉴别出含烃的油气包裹体(一般发黄色荧光)并做标记。用显微镜测出待测包裹体的尺寸和深度,判断包裹体的相态。对选出的流体包裹体

流体包裹体研究方法

流体包裹体研究方法 一、野外样品采集和室内样品加工 1、野外样品采集 这里只叙及构造岩的显微样品的采集与制备。微观构造研究的首要工作就是野外标本的采集。构造岩主要产于脆性断层及韧性剪切带内,因此,在野外充分观察的基础上,首先就是以垂直断裂带(面)或剪切带片(麻)理走向作剖面,对构造岩作初步分带,并沿带取样。第一块样应从未变形岩石开始。取构造岩最好是定向标本。定向的方法是:将标本从露头上敲下,再放回原来位置,在标本上选取一平面,用记号笔画上水平线(利用罗盘测量),并标出其方向(一般在右侧用箭头表示),再测出倾向及倾角。其次是做好记录。记录包括:标本号、倾向及倾角、采样处片(麻)理产状、线理或断层擦线产状等,并尽可能作详细素描。 2、室内样品加工 首先是用记号笔将野外编号和定向线一一标好,再标出要切制的薄片面,然后送磨片室切制薄片。若只需切一片,破碎岩薄片一般要平行擦线、垂直断面;糜棱岩薄片则是尽量平行矿物拉伸线理、垂直片(麻)理,这样做出来的切片可直接用来判断运动方向或剪切运动指向(注意:一定要通过手标本恢复到野外产状)。糜棱岩如果要做三维有限应变测量,除平行线理、垂直面理的切片外,一般是垂直线理及面理再切一片。并常用该片做岩组测量,因为该片所切矿物数量最多,信息也最多,而组构图可以旋转到平行矿物线理的方向上。如果岩石本身矿物线理及面理不十分发育,应变测量则需作三个互为垂直的切片(根据三个切片的实际产状和测量结果用计算机拟合)。 二、显微镜下观察和冷热台下测定 1、显微镜下观察 对每个包裹体应做的观察内容包括如下几个方面。 ⑴包裹体的大小:应该注明包裹体两个或三个方向上的尺寸(以μm表示)。这一点很重要,因为有些包裹体的性质,特别是密度、形状可能随包裹体的大小有规律地变化;通常与CO2包裹体比较,水溶液包裹体很少有规则的形状。 ⑵包裹体的形状:大多数包裹体具有不规则的形状,然而如果包裹体具有诸如带晶面的形状(负晶形)、球形、椭球形和扁平形等形状时,需要注意。 ⑶气泡大小:应该在一定温度下测量气泡的直径,或是在温度超过CO2临界点时测量CO2+H2O混合包裹体中富CO2相的大小,以便随后在加热或冷却时引起包裹体的任何泄露能够鉴别出来。 ⑷体积百分数:应该记录温度超过CO2临界点(31.3℃)时(一般是+40℃)CO2+H2O 混合包裹体中富CO2相(内部相)的估计体积(或面积),其目的是计算包裹体中CO2的摩尔分数。 ⑸包裹体丰度:每平方毫米还有包裹体的个数。 ⑹包裹体的产状:包裹体岩相学和产状的研究十分重要,包裹体产在岩石什么显微构造中,它们的成因类型和成分类型。一个包裹体可以产于很多条件或环境中,简言之,包裹体可以呈单个产出,或成群产出,沿愈合裂隙(包裹体轨迹)产出,沿次颗粒边界产出,或是沿晶体各生长面产出,以及伴随着变形薄层(叶理)产出。 2、冷热台下测定 抛光的样品必须切成小片,使之符合冷热台腔的大小。切片的大小也要由包裹体的分布来确定。冷热台下测定以下几项内容。

现代流体测试技术-考试试题资料

2013-2014学年第一学期现代流体测试技术期末试题 一、什么是测量,举例说明3种流动显示技术,详述其特征。详述流动显示中的纹影法、阴影法和干涉法。 1、测量是按照某种规律,用数据来描述观察到的现象,即对事物作出量化描述。测量是对非量化实物的量化过程。 2、例举三种流动显示技术:(1)静态法中的涂膜法:这是一种比较常用的方法。这种方法就是在模型或原型表面涂以具有某种特性的涂料,然后置于流动中,根据涂层在试验中出现的图谱,可以分别定性地确定出层流和湍流区、转捩点位置、流动分离区、表面压力和表面温度分布等流动性状。不同的涂料配方,涂膜法显示原理是不同的,选择涂料要视所显示的流动性状而定。例如,利用某些涂料在不同条件下的蒸发、升华或溶解度的不同,就可在显示的图谱中区分出层流区和湍流区。一般观察水流中边界层的转换,可用安息香酸添加对苯二酚、双醋酸醋、红丹粉与铬酸铅粉末等。在气流中,显示边界层的层流一湍流所用的涂料有轻油,液体石蜡与碳粉或与二氧化氢混合成的涂料、以及混有挥发液的陶土等。显示温度分布的方法是利用对温度敏感的涂料,如液晶,由于已知其颜色是局部温度的函数,因此,根据表面图谱中的颜色分布,就得到物体表面的温度分布。如果涂了涂料的物体表面在流动中可以变形,但又不影响流动,则流动对物面的不均匀压力分布,使涂层产生一个确定的表面起伏,据此可分析出压力分布的结果。这种方法最适宜显示马赫波在壁面的反射,所用涂料是碳黑。 (2)动态法中的光学方法:在高速气流中,由于可压缩性,无法应用示踪粒子法。由于光学技术的发展,光学测试方法就在实验流体力学中得到十分广泛的应用。虽然有各种光学方法,但其原理复杂,设备繁多。光学方法的基本原理可归结为两种:一种是光线通过流场,光的折射率随流体密度而变,其折射偏转量与流场密度分布有关;第二种是受到流场扰动的光线相对于未受扰动的光线,产生相移,这种相移量与流场密度变化有关。根据这两种关系,可设计出各种装置,对流场进行各种观测。按照第一种原理设计的方法有阴影法和纹影法,按照后一种原理设计的有干涉法。还有综合两种原理而设计的纹影干涉法。这些方法都是以几何光学为基础的,要求装置有高度的机械稳定性,以保证方法的灵敏度。此外,还有以波动光学为基础的相差纹影法,基本原理是利用衍射产生相差,这种方法的灵敏度最高。(3)线簇法:这种方法就是在模型表面有规律地布之以一簇一簇的丝线,吹风时,线簇指示的方向显然代表物体表面附近气流的方向。图2则是用这种方法得到的汽车表面的流动。线簇法使用方便,应用广泛,但仅适用于低速流动。以上所述的几种表面流动显示法只能适用于定常流动,显示边界面附近流动的某些性状。但是,它们的适用范围十分宽广,比如,油膜流动法对水流的测定范围为10厘米/秒至15米/秒,对气流为10米/秒至M=6,油点法甚至可用于M=12。6的流动。 3、(1)纹影法:原理与阴影法相同,但其灵敏度比阴影法高一个数量级。它是空气动力学和热力学试验研究中用的最多的流动显示方法,有彩色纹影法、干涉纹影法,从定性流动显示过渡到定量流动显示。纹影仪由光源、透镜(或反射镜)、刀口和观察屏幕(或图像记录装置)四部分组成。当折射角一定的情况下,透镜焦距越大、刀口光轴的距离越小,对比度就越大,所以,为了提高纹影仪的灵敏度,应选用长焦距镜头,调整时应尽量调小刀口光轴的距离至目视最小亮度为止。双透镜纹影仪的原理光路图如下图所示。

流体机械工程测试技术题解

〈流体机械工程测試技术〉 〉习题解 为了引导同学们深入思考问题,特给出下列习题解答供学习参考。 1,名词解释 测量——就是用同性质的标准量与被测量相比较并确定被测量对标准量的倍数(标准量应是国际上或国家所公认的,性能稳定的)。 测定——就是指间接测量。测试——就是指借助于专用设备,通过试验、测量、数据处理等基本环节,获得被试验对象的有关信息量值的专门技术。 实时测试——(在物化现象发生的同时对其进行的测量,没有时间滞后。)在被测过程发生的实际时间内,迅速及时采集所需全部测试数据,随后(或存储一段时间后)直接给出各种所需的测量结果,这种测量方式称为 实时测试。实时测试是实现测试自动化的重要手段。 系统误差——在同一条件下多次测量同一量时,误差的绝对值和符号保持恒定,或在条件改变时,按某一确定的规律变化的误差。 随机误差——在实际相同条件下多次测量同一量时,误差的绝对值和符号的变化,时大时小,时正时负,没有确定的规律,也不可预定,但具有抵偿性的误差。 粗差(疏忽误差)——明显歪曲测量结果的误差。 真值——在某一时刻和某一位置或状态下,某量的效应体现出的客观值或真实值。 约定真值——(1)指测量次数无限多时所求得的平均值;(2)高精度仪表的测得值。 正确度——表明测量结果偏离真值的程度,反映了系统误差的大小。 精密度——表明测量结果的离散程度,或者说是测量值重复(集中)一致的程度,反映了随机 误差的大小。 准确度——反映了系统误差和随机误差合成的大小程度。精度——精度一词原为精密度的简称,现可通常用作泛指性的广义名词。可指正确度、精密度亦可指准确度。 不确定度——是指试验最后多点测定值的两条包络线之间宽度的二分之一。 直接测量——被测参数通过测量仪器直接获得。 间接测量——被测参数须通过直接测量的量及它们之间相互关系求得。 静态(稳态)测量——就是机组在稳定运行时,对被测参数的测量(此时各参数基本上不随时间而变化)。 动态测量——就是对随时间变化而变化的被测参数进行的测量。 非电量电测法——就是将各种非电量(力、温度、流量,物位等)转换为电量(电流、电压、频率)或电路参数(电感、电容等)的变而加以测量的二次(次级)测量方法传感器——将感受的物理量(非电量:力、温度、流量,物位等)转换为另一种物理量(电量:电流、电压/电感、电容等)输出的装置。 电阻应变效应——当金属电阻丝在外力作用下发生机械变形时,其电阻值随之发生变化的现象。压电效应——当某些固体材料变形时能产生电荷。这种作用是可逆的,即在材料上加上电荷时也可使它产生变形。 压阻效应——是指单晶半导体材料的某一晶向受到外力作用时,其电阻率发生变化的现象。闪频效应——当光线以一定的频率照射在以同样大小频率运动的物体上,由于人眼的暂留现象,该物体会呈现出不动的假象。如果运动物体频率低于光线频率,运动物体会被看成在徐徐的反转,反之亦被看成在徐徐的正转。

相关文档
最新文档