ZigBee技术分析与发展前景

ZigBee技术分析与发展前景
ZigBee技术分析与发展前景

ZigBee技术分析及发展前景

当今世界通信技术迅猛发展,随着Internet的迅速发展和个人对数据通信需求的快速增长,全球通信产业技术的发展呈现三大趋势:无线化、宽带化和IP化。互联网业务的发展推动了市场对宽带网络的需求,宽带用户数量在全球呈现出非常强势的增长态势。在众多的宽带技术中,无线技术尤其是移动通信技术成为近年来通信技术市场的最大亮点,是构成未来通信技术的重要组成部分。无线通信技术满足了用户对在不同移动状态下获取网络信息的强烈需求,也符合当今社会人员流动性大、工作生活节奏紧张的发展趋势。另一方面,无线通信技术具有网络部署迅速便捷的特点,对于缺乏线缆资源的新兴运营商来说,无线通信技术是成功部署通信网络,迅速为用户提供语音和数据服务的最佳手段。目前, 各类网络中最具增长潜力的是无线网络, 许多机构会选择采用无线局域网( WLAN) 来拓展他们的现有网络, 获得在机构区域内部移动接入网络的能力。近距离无线通信技术在人们生活中扮演着越来越重要的作用。ZigBee作为一种新兴的短距离无线通信技术,正有力地推动着低速率无线个人区域网络LR-WPAN(Low-Rate WirelessPersonal Area Network)的发展。

一、Zigbee技术

紫蜂(ZigBee)这一名称来源于蜜蜂的八字舞,由于蜜蜂是靠飞翔和“嗡嗡”地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。

ZigBee技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。主要用于距离短、功耗低且传输速率不高的各种电子设备之间进行数据传输以及典型的有周期性数据、间歇性数据和低反应时间数据传输的应用。ZigBee过去又称为“HomeRFlite”,“RF-EasyLink”或“FireFly”无线电技术,目前统一称为ZigBee技术。

ZigBee是IEE802.15.4协议的代名词。根据该协议规定这是一种短距离、低功耗的无线通信技术。IEEE 802.15.4技术标准是ZigBee技术的基础,蛋ZigBee不仅只是IEEE 802.15.4的名字。因为IEEE 802.15.4仅处理低级MAC层和物理层协议,而ZigBee联盟对其网络层协议和API进行了标准化,完整的ZigBee协议套件由应用层、网络层、数据链路层和物理层组成。网络层以上协议由ZigBee联盟制定。IEEE802.15.4负责物理层和链路层标准。网络功能是ZigBee最重要的特点,也是与其他无线局域网标准不同的地方。在网络层方面,其主要工作在于负责网络机制的建立于管理,并具有自我组态与自我修复功能。在网络层中,ZigBee定义了3中角色:第一个是网络协调者,负责网络的建立,以及网络位置的分配;第二个是路由器,主要负责找寻、建立以及修复信息包的路由路径,并负责转送

信息包;第三个是末端装置,只能选择加入他人已经形成的网络,可以收发信息,但不能转发信息,不具备路由功能。在同一个WPAN上,可以存在65536个ZigBee 装置,彼此课通过多重调点的方式传递信息。为了在省电、复杂度、稳定性与实现难易度等因素上取得平衡,网络层采用的路由算法共有3种:以AODV算法建立随意网络的拓扑架构;以摩托罗拉Cluster-tree算法的方法建立星状的拓扑架构;以及利用广播的方式传递信息。因此,人们可根据具体应用需求,选择适合的网络架构。为了降低系统成本,IEEE定义了两种类型的装置:全功能装置(FFD)、简化功能装置(RFD),可构成多种网络拓扑结构。

ZigBee是应用于无线监测与控制应用的全球性无线通信标准,强调简单易用、近距离、低速率、低功耗(长电池寿命)且极廉价的市场定位,主要嵌入在消费性电子设备、家庭和建筑物自动化设备、工业控制装置、电脑外设、医用传感器、玩具和游戏机等设备中,支持小范围的基于无线通信的控制和自动化等。在工业控制、家庭自动化、医疗护理、智能农业、消费类电子和远程控制等领域,将拥有广阔的应用前景。

二、ZigBee技术的优点与不足

ZigBee的工作频率有下面三种标准:

(1)868 MHz 传输速率为20 kb/s,适用于欧洲;

(2)915 MHz 传输速率为40kb/s,适用于美国;

(3)2.4 GHz 传输速率为250kb/s,全球通用。

目前国内都在使用2.4GHz的工作频率,其带宽为5MHz,有16个信道。采用直接扩频(DSSS)方式的OQPSK调制技术。而基于IEEE 802.15.4的ZigBee 在室内通常能达到30-50m作用距离,在室外如果障碍物少,甚至可以达到100m 作用距离。

ZigBee技术的优势:

(1)功耗低。在低耗电待机模式下,两节普通5号干电池可使用6个月以上。这也是ZigBee的支持者所一直引以为豪的独特优势。

(2)成本低。因为ZigBee数据传输速率低,协议简单,所以大大降低了成本。

(3)网络容量大。每个ZigBee网络最多可支持65535个设备,也就是说每个ZigBee设备可以与另外254台设备相连接。

(4)时延短。针对时延敏感的应用做了优化,通信时延和从休眠状态激活的时延都非常短。

(5)可靠。采用了碰撞避免机制,同时为需要固定带宽的通信业务预留了专用时隙,避免了发送数据时的竞争和冲突。

(6)安全。ZigBee提供了数据完整性检查和鉴权功能,加密算法采用AES-128,同时各个应用可以灵活确定其安全属性。

ZigBee技术的不足:

ZigBee技术本身是一种为低速通信而设计的规范,它的最高通信速度只有250kb/s,对一些大数据量通信的场合它并不合适,但是这一特点会逐渐改变,一些厂商生产的ZigBee芯片目前也突破了这个限制,如CEL公司的ZICM2410,已经达到1MHz的传输速率。

三、各种短距离通信技术

从结构上来说,WLAN主要是一种服务器-客户端的结构,移动设备扮演的是客户端角色,而服务端是网络中心设备;蓝牙的实现可以使点到点或点到多点的结构;而IrDA技术书的两移动互联设备是点对点的结构。WLAN、UWB、ZigBee 技术等可以作为移动Ad hoc网络的底层技术。

UWB和ZigBee技术均可应用于无线数字家庭组网,两种技术优势互补:UWB 技术数据传输速率高,在无线数字家庭网络中主要用于传输大容量的影音节目信号;ZigBee技术具有低传输速率、低功耗和低成本的特点,主要用于控制家用电器的启动和关闭,而相对来说,Wi-Fi更多地是用于较大组网区域的接入部分,主要用于数据存取。

Bluetooth、UWB无线技术能够穿透实心物体;FNC、IrDA、ZigBee无法穿透实心物体,或受障碍物影响较大,因此传送距离和环境大大受限。

从速率上看,大致有:

UWB>WLAN>IrDA>蓝牙>RFID/NFC>ZigBee

从传输距离上看,大致有:

WLAN>ZigBee>UWB>蓝牙>IrDA>RFID/NFC

四、ZigBee的应用现状

ZigBee的出发点是希望能发展出一种易布建的低成本无线网络,同时期低耗电性将使产品的电池能维持6个月到数年的时间。ZigBee技术弥补了低成本,低功耗和低速率无线通信市场的空缺,其成功的关键在于丰富而便捷的应用,而不是技术本身。随着正式版本协议的公布,更多的注意力和研发力量将转到应用的设计和实现,互联互通测试和市场推广等方面。我们有理由相信在不远的将来,将有越来越多的内置ZigBee功能的设备进入生活,并极大地改善我们的生活方式和体验。

在国内,目前ZigBee网络的应用范围非常广泛,很多我们想象不到的地方也在使用ZigBee技术。例如,在工业领域,ZigBee技术不仅用来控制照明灯的开关,它还有一个用途是检查高速路上照明灯的工作情况。以前工程师要开车到高速路

上检查哪些照片灯已经坏掉了,需要维修,但因为车速较快,不能记下所有要检修灯的编号,但通过ZigBee网络,工程师只需坐在计算机,就可以很清楚地监测到整个高速路上照明灯的工作情况,这是目前的一个热点应用。再如,ZigBee技术用于进出的控制,可以记录汽车的进出,也可以在人员进出时用于传输相关指纹来识别数据,进行身份认证。此外,通过ZigBee网络的路由器功能,它还可以用来实时监控煤矿内各点的安全状况,防止事故的发生。在加油站,一些客户不希望布线,他们正在考虑采用ZigBee无线技术来传输相关数据。

在消费类电子方面,ZigBee技术可以替现在的红外遥控,于红外遥控相比,ZigBee的优势在于每一个操作都会有反馈信息,告诉他们是否实现了相关操作。现今我们也可以看到ZigBee用于家庭保安,消费者在家中的门和窗上都安装了ZigBee网络,当有人闯入时,ZigBee可以控制开启室内摄像装置,这些数据再通过Internet或WLAN网络反馈给主人,从而实现报警。当在家电产品如空调,热水器等安装ZigBee模块后,用户可以通过ZigBee无线网络来控制这些产品的开启。

在建筑智能化领域,各种灯光的控制,气体的感应与监测,如煤气泄漏的感应和报警都可以应用ZigBee技术。三表(电表,气表和水表)上采用ZigBee技术,相关管理部门不但可以实现自动抄表功能,还可以监控仪表如电表的状态,防止偷电事件的发生.

五、ZigBee技术的应用前景

ZigBee技术的应用前景被非常看好。ZigBee在未来的几年里将在工业控制,工业无线定位,家庭网络,汽车自动化,楼宇自动化,消费电子,医用设备控制等多个领域具有广泛的应用前景,特别是家庭自动化和工业控制,将成为今后ZigBee芯片的主要应用领域。

在工业领域,利用传感器和ZigBee网络,使得数据的自动采集,分析和处理变得更加容易,可以作为决策辅助系统的重要组成部分。在汽车领域,主要是传递信息的通用传感器。由于很多传感器只能内置在飞转的车轮或者发动机中,比如轮胎压力监测系统,这就要求内置无线通信设备使用的电池有较长的寿命,同时应该克服嘈杂的环境和金属结构对电磁波的屏蔽效应。

在精确农业领域,传统农业主要使用孤立的,没有通信能力的机械设备,主要是依靠人力监测作物的生产状况,采用了传感器和ZigBee网络后,农业将可以逐渐地转向以信息和软件为中心的生产模式,使用更多的自动化,网络化,职能化和远程控制的设备来耕种。

在家庭和楼宇自动化领域,家庭自动化系统作为电子技术的集成得以迅速扩展,易于进入,简单明了和廉价的安装成本等成了驱动自动化居家,建筑开发和应用无线技术的主要动因。

在医学领域,将借助于各种传感器和ZigBee网络准确而且实时地监测病人的血压,体温和心跳速度等信息,从而减轻医生的查房的工作负担,有助于医生做出快速的反应,特别是对重病和病危患者的监护和治疗。

在消费和家用自动化市场,可以联网的家用设备有电视,录像机,无线耳机,PC外设,运动与休闲器械,儿童玩具,游戏机,窗户和窗帘,照明设备,空调系统和其它家用电器。

ZigBee重要结构及表解释

ZigBee重要结构及表解释 ZigBee 2010-06-13 10:31:26 阅读103 评论0 字号:大中小订阅各表中的元素结构: 1、组表的元素结构aps_Group_t; typedef struct { uint16 ID; // 组ID uint8 name[APS_GROUP_NAME_LEN]; // 组名称 } aps_Group_t; 2、组列表的元素结构 typedef struct apsGroupItem { struct apsGroupItem *next; //指向下一个组表条目 uint8 endpoint; //此终端接收发送给组的信息 aps_Group_t group; //组ID和组名 } apsGroupItem_t; 3、路由表的元素结构rtgEntry_t; typedef struct { uint16 dstAddress; //目标地址 uint16 nextHopAddress; //单跳地址 byte expiryTime; //有效时间 byte status; //状态 } rtgEntry_t; 4、绑定表的元素结构BindingEntry_t; typedef struct

{ uint8 srcEP; // 没有源地址自从源地址一直是本地设备uint8 dstGroupMode; // 目标地址类型; 0 –正常地址, 1 –组地址 uint16 dstIdx; //在两种模式中(组或非组) 保存到NV 和RAM // dstGroupMode = 0 - Address Manager index // dstGroupMode = 1 –组地址 uint8 dstEP; //目标地址 uint8 numClusterIds; //簇个数 uint16 clusterIdList[MAX_BINDING_CLUSTER_IDS]; // Don't use MAX_BINDING_CLUSTERS_ID when // using the clusterIdList field. Use // gMAX_BINDING_CLUSTER_IDS } BindingEntry_t; 5、相邻表的元素结构neighborEntry_t; typedef struct { uint16 neighborAddress; //相邻地址 uint16 panId; //所属的PAN网络ID linkInfo_t linkInfo; //连接信息(包括发送/接收和安全帧计数) } neighborEntry_t; 6、路由发现表的元素结构rtDiscEntry_t; typedef struct { byte rreqId; //接收请求ID

ZigBee 协议架构

根据应用和市场需要定义了ZigBee 协议的分层架构,其协议的体系结构如图1 所示,其中物理层(physical layer,PHY)和媒介访问控制层(medium access control sub-layer,MAC)是由IEEE802.15.4-2003 标准定义的,在这个底层协议的基础上ZigBee 联盟定义了网络层(network layer,PHY)和应用层(application layer,APL)架构. 图1 zigbee协议栈体系结构 物理层规范 物理层定义了它与MAC 层之间的两个接口:数据服务接口PD-SAP 和管理服务接口PLME-SAP,其中PD-SAP 接口还为物理层提供了相应的数据服务,负责从无线物理信道上收发数据,而PLME-SAP 接口同时为物理层提供相应的管理服务,用于维护一个由物理层相关数据组成的数据库。物理层负责数据的调制、发送和接收、空闲信道评估(clear channel assessment,CCA)信道能量的监测(energy detect,ED)和链接质量指示(link quality indication,LQI)等。物理层帧结构由同步头、物理层帧头和物理层有效载荷三部分组成,如表1 所示。

同步头又包括32bit 的前同步码和8bit 的帧定界符,前同步码用来为数据收发提供码元或数据符号的同步;帧界定符用来标识同步域的结束及数据的开始。物理层帧头包括7bit 的帧长度和1bit 的预留位,帧长度定义了物理层净荷的字节数。物理层有效载荷就是MAC层的帧内容。 表一物理层帧格式 媒体接入控制层规范 MAC 层定义了它与网络层之间的接口,包括提供给网络层的数据服务接口MLDE-SAP 和管理服务接口MLME-SAP,同时提供了MAC 层数据服务和MAC 层管理服务。MAC层数据服务主要实现数据帧的传输;MAC 层管理服务主要负责媒介访问控制、差错控制等。 MAC 层主要功能包括以下几个方面: (1)ZigBee 协调器产生网络信标 (2)设备与信标同步 (3)支持节点加入或着退出操作 (4)信道接入方式采用免冲突载波检测多路访问(CSMA-CA)机制 (5)建立并维护保护时隙机制 (6)为设备提供安全支持 MAC 帧格式由三个基本部分组成:MAC 帧头、MAC 帧载荷和MAC 帧尾。不同类型的MAC 帧,其帧头和帧尾都是一样的,只是MAC 帧载荷有差别,通用MAC 帧格式如表2所示。 表二通用MAC帧格式 网络层规范 网络层定义了它与应用层之间的接口,包括提供给应用层的数据服务接口NLDE-SAP和管理服务接口NLME-SAP , 同时提供了网络层数据服务和网络层管理服务。网络层主要负责拓扑结构的建立和网络的维护,具体的功能如下:(1)初始化网络,即建立一个新的包含协调器、路由器和终端设备的网络(2)设备连接和断开时所采用的机制 (3)对一跳邻居节点的发现和相关节点信息的存储 (4)ZigBee 协调器和路由器为新加入节点分配短地址

Zigbee技术主流芯片比较 2概况

Zigbee技术主流芯片调研 1、Zigbee芯片调研 当今市场已有大量集成Zigbee协议和射频电路的芯片。以下是市场上主流的生成Zigbee的公司及其生产的典型Zigbee芯片。 公司TI FREESCALE ATMEL Nordic 芯片CC2530 MC1321 AT86RF230 nRF24E1/nRF9E5 MCU内核8051 HCS08 无(通过SPI接口由外 接MCU连接) 8051 通过在淘宝上的调查,TI公司的CC2530和FREESCALE的MC1321用户量比较大,有大量的公司提供基于这两款芯片的Zigbee模块,使用这些模块可以减少大量的硬件调试工作,而较容易的实现我们所需的传输功能。以下就这两类主流芯片进行详细介绍。 1.1 CC2530调研 CC2530是市场最主流的Zigbee芯片,TI公司推出的ZIGBEE网络处理器,将复杂的ZIGBEE网络协议栈,处理成了简单的用户接口命令,用户只要使用任何简单的单片机(微控制器),就可以容易的实现对ZIGBEE网络的控制;TI推出这个芯片的目的,就是希望ZIGBEE容易被使用。CC2530是TI公司推出的最新一代ZigBee标准芯片,适用于2.4GHz、IEEE802.15.4、ZigBee和 RF4CE应用。 CC2530包括了极好性能的一流RF收发器,工业标准增强性8051MCU,系统中可编程的闪存,8KB RAM以及许多其它功能强大的特性,可广泛应用在2.4-GHzIEEE802.15.4系统,RF4CE遥控制系统,ZigBee系统,家庭/建筑物自动化,照明系统,工业控制和监视,低功耗无线传感器网络,消费类电子和卫生保健。主要参数如下:

基于ZigBee的温度监控系统毕业设计

基于ZigBee的温度监控 系统毕业设计 一、zigbee应用 有了ZigBee的一些技术优势,也谈到了不足之处,目前有些说法把它跟其它他 的无线技术,如Wi-Fi、Bluetooth、RFID、NFC等等进行类比,说某种技术不如另 一种,甚至说某种技术要取代另一种,这样的说法是片面的。作为一种低速率的短距 离无线通信技术,ZigBee有其自身的特点,因此应该有为它量身定做的应用,尽管 在某些应用方面可能和其他技术重叠。下面就来简单看看ZigBee可能的一些应用, 包括智能家庭、工业控制、自动抄表、医疗监护、传感器网络应用和电信应用。 二、系统总体设计 1.系统总体方案 Zigbee的主要优势是低功耗和组网,网络的组建是zigbee不同于其他无线协议 的主要优势所在,一个网络的组建形式决定了整个系统能否畅通,顺利的工作,因此 选择合理的网络结构是非常重要的。 为了实现任意无线节点之间都可以传递信息的目标,在串状连接方式的基础上又 发展了网状连接方式。网状连接方式又称为点到点到点(point-to-point-topoint)方式,它与传统的点到多点连接方式最大的不同是,网状连接方式中的每一个节点都 有无线微处理器,所以无需无线路由器就可以实现与另一节点之间的互连。由于这个 新的网络特征,每个无线节点不仅可以收发信息,还可以自动转发信息到网络中的其 他任意节点。 由于网状连接方式中每个节点的智能化,所以,当网络中任一节点故障时,附近 的无线节点会代替该故障的节点,继续进行信息的传输和转发,从而大大提高了系统 可靠性。同时,由于任意无线节点之间通过无线连接就如接力赛跑一样,信息可以通 过无线节点组成的网络传输到更远的地方。 网状结构如下图

ZIGBEE无线定位技术

ZIGBEE无线定位技术 大多数无线传感器网络都要求具备一种确定网络节点位置的方法。因此在设备安装期间,需要弄清楚哪些节点相互之间直接进行数据交换,或者确定哪些节点直接与中央数据采集点进行数据交换。 当通过基于软件的计算方法来确定网络节点位置时,就需要考虑到市场化解决方案(market solution)。这些具体的计算方法是:节点首先读取计算节点位置的参数,然后将相关信息传送到中央数据采集点,对节点位置进行计算,最后,再将节点位置的相关参数传回至该节点。这就是典型的数据密集型计算,并且需要配置一台PC 或高性能的MCU。 这种计算节点位置的方法之所以只适用于小型的网络和有 限的节点数量,是因为进行相关计算所需的流量将随着节点数量的增加而呈指数级速度增加。因此,高流量负载加上带宽的不足限制了这种方法在电池供电网络中的应用。 针对上述问题,CC2431 采用了一种分布式定位计算方法。这种计算方法根据从距离最近的参考节点(其位置是已知的)接收到的信息,对节点进行本地计算,确定相关节点的位置。因此,网络流量的多少将由待测节点范围中节点的数量决定。另外,由于网络流量会随着待测节点数量的增加而成比例递增,因此,C C2431 还允许同一网络中存在大量的待测节点。 本文所提供的结果是根据对ZigBee 网络的测量得出的,然

而,这些测量结果同样适用于基于IEEE 802.15.4协议构建的更简单的网络。 定位引擎技术 定位引擎根据无线网络中临近射频的接收信号强度指示(R SSI),计算所需定位的位置。在不同的环境中,两个射频之间的RSSI 信号会发生明显的变化。例如,当两个射频之间有一位行人时,接收信号将会降低30dBm。为了补偿这种差异,以及出于对定位结果精确性的考虑,定位引擎将根据来自多达16 个射频的RSSI 值,进行相关的定位计算。其依据的理论是:当采用大量的节点后,RSSI 的变化最终将达到平均值。 在RF 网络中,具有已知位置的定位引擎射频称为参考节点,而需要计算定位位置的节点称为待测节点。 要求在参考节点和待测节点之间传输的唯一信息就是参考节点的X 和Y 坐标。定位引擎根据接收到的X 和Y 坐标,并结合根据参考节点的数据测量得出的RSSI 值,计算定位位置。 将定位技术纳入网络协议 一些采用定位引擎的应用可能要求放置若干个参考节点,以作为基础设施设置不可或缺的一部分。ZigBee 技术能够实现对家庭、办公以及工业等应用的无线控制。随着ZigBee 设备在楼宇基础设施中的安装数量不断增多,ZigBee 将会在家庭和办公自动化方面拥有更为广阔的应用前景。

ZigBEE RF4CE规范基本概念及配对详细讲解

一.节点的安装初始化 1.1建立网络的过程 (1)目标节点: 首先,扫描信道,对各个信道进行能量检测,选择可允许能量水平的信道进行操作。 然后,发送执行活动的扫描操作,识别其他在工作在所选信道上的属于其他PAN网络的identifiers,允许一个统一的PAN identifier接入它的网络。 最后,目标节点运行常规功能。 (2)控制节点: 接入网络之后,运行常规功能。 二.网络帧结构 Frame control:控制信息 Frame counter:技术,防止重复和延时攻击 Profile identifier:应用帧的传输格式 Vendor identifier:供应商标识符,允许商家进行扩展 Frame payload:传输的应用层数据 Message integrity code:进行认证(安全) 三.传输选项 四.发现(Discovery) 发现服务必须是在非节能模式下才能进行。节点通过执行发现服务,来寻找能够进行配对的节点;发现服务会在一个固定的期间内在三个PAN网络中重复的进行,直到收到所有的应答。 在此期间,设备之间会交换如下信息: Node capabilities:节点的类型(目标节点或控制节点),节点的供电类型,是否支持

安全性。 Vendor information:ZigBee RF4CE提供一个Vendor identifier或者vender string 来制定一个特定的供应商标识。 Application information:用户自定义一个字符串用来描述节点的应用功能(例如Lounge TV),一个设备类型列表可以制定哪些类型的设备室被支持的(例如一个综合性设备可能同时支持TV和DVD的功能),profile identifier列表制定该节点支持哪些类型的profiles。 Requested device type:discovery期间可以被请求的设备类型(比如一个多功能遥控器可能寻找TV的功能)。 五、频率捷变 (1)目标节点可以根据3个信道的变化,更换信道。 (2)控制节点会记录目标节点的信道,当目标节点信道发生改变时,控制节点会尝试从其他信道发送给目标节点,直到目标节点发送确认信息;之后,控制节点会记录上新的信道。 六、配对 在发现期间,当节点确定在它的通信范围有其他能够提供稳定服务的节点时,可以通过建立配对从而进行通信。在RC网络中在存在配对的发送端和接收端之间只能直接通信。 配对连接可以建立在应用层的要求上,通过交换类似于discovery期间交换的消息。目标节点可以选择是否接受配对并发送请求配对信息给源节点。 配对成功后,源节点和目标节点会在它们各自的配对表中存储配对链接。这个使得源节点可以和目标节点通信,目标节点也可以和源节点通信。在配对表中的实体包含网络层传输信息给目标节点的所有信息。这消除了寻址的负担,要实现和相应设备的通信,应用层可以简单的提供一个链接配对表的index。 配对表中的每个实体包含的信息如下: Pairing reference Source network address Destination logical channel Destination IEEE address Destination PAN identifier Destination network address Recipient nod capabilities Recipient frame counter Secutity link key

Zigbee协议栈原理基础

1Zigbee协议栈相关概念 1.1近距离通信技术比较: 近距离无线通信技术有wifi、蓝牙、红外、zigbee,在无线传感网络中需求的网络通信恰是近距离需求的,故,四者均可用做无线传感网络的通信技术。而,其中(1)红外(infrared):能够包含的信息过少;频率低波衍射性不好只能视距通信;要求位置固定;点对点传输无法组网。(2)蓝牙(bluetooth):可移动,手机支持;通信距离10m;芯片价格贵;高功耗(3)wifi:高带宽;覆盖半径100m;高功耗;不能自组网;(4)zigbee:价格便宜;低功耗;自组网规模大。?????WSN中zigbee通信技术是最佳方案,但它连接公网需要有专门的网关转换→进一步学习stm32。 1.2协议栈 协议栈是网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程:由上层协议到底层协议,再由底层协议到上层协议。 1.2.1Zigbee协议规范与zigbee协议栈 Zigbee各层协议中物理层(phy)、介质控制层(mac)规范由IEEE802.15.4规定,网络层(NWK)、应用层(apl)规范由zigbee联盟推出。Zigbee联盟推出的整套zigbee规范:2005年第一版ZigBeeSpecificationV1.0,zigbee2006,zigbee2007、zigbeepro zigbee协议栈:很多公司都有自主研发的协议栈,如TI公司的:RemoTI,Z-Stack,SimpliciTI、freakz、msstatePAN 等。 1.2.2z-stack协议栈与zigbee协议栈 z-stack协议栈与zigbee协议栈的关系:z-stack是zigbee协议栈的一种具体实现,或者说是TI公司读懂了zigbee 协议栈,自己用C语言编写了一个软件—---z-stack,是由全球几千名工程师共同开发的。ZStack-CC2530-2.3.1-1.4.0软件可与TI的SmartRF05平台协同工作,该平台包括MSP430超低功耗微控制器(MCU)、CC2520RF收发器以及CC2591距离扩展器,通信连接距离可达数公里。 Z-Stack中的很多关键的代码是以库文件的形式给出来,也就是我们只能用它们,而看不到它们的具体的实现。其中核心部分的代码都是编译好的,以库文件的形式给出的,比如安全模块,路由模块,和Mesh自组网模块。与z-stack 相比msstatePAN、freakz协议栈都是全部真正的开源的,它们的所有源代码我们都可以看到。但是由于它们没有大的商业公司的支持,开发升级方面,性能方面和z-stack相比差距很大,并没有实现商业应用,只是作为学术研究而已。 还可以配备TI的一个标准兼容或专有的网络协议栈(RemoTI,Z-Stack,或SimpliciTI)来简化开发,当网络节点要求不多在30个以内,通信距离500m-1000m时用simpliciti。 1.2.3IEEE802.15.4标准概述 IEEE802.15.4是一个低速率无线个人局域网(LowRateWirelessPersonalAreaNetworks,LR-WPAN)标准。定义了物理层(PHY)和介质访问控制层(MAC)。 LR-WPAN网络具有如下特点: ◆实现250kb/s,40kb/s,20kb/s三种传输速率。 ◆支持星型或者点对点两种网络拓扑结构。 ◆具有16位短地址或者64位扩展地址。 ◆支持冲突避免载波多路侦听技术(carriersensemultipleaccesswithcollisionavoidance,CSMA/CA)。(mac层) ◆用于可靠传输的全应答协议。(RTS-CTS) ◆低功耗。 ◆能量检测(EnergyDetection,ED)。 ◆链路质量指示(LinkQualityIndication,LQI)。 ◆在2.45GHz频带内定义了16个通道;在915MHz频带内定义了10个通道;在868MHz频带内定义了1个通道。 为了使供应商能够提供最低可能功耗的设备,IEEE(InstituteofElectricalandElectronicsEngineers,电气及电子工程师学会)定义了两种不同类型的设备:一种是完整功能设备(full.functionaldevice,FFD),另一种是简化功能设备

基于ZigBee技术的RFID空间定位系统

中图分类号:TP391 文献标识码:A 文章编号:1009-2552(2009)09-0102-04 基于ZigBee技术的RFID空间定位系统 房淑芬 (辽宁省铁岭师范高等专科学校,铁岭112001) 摘 要:通过ZigBee mote与RFID reader结合的方式应用随机数定位算法展示了一种低能耗的基于Zigbee技术的R FID空间定位系统,使得对佩带了Zigbee mote的人可以实时进行定位。在本系统中,通过使用基于取样的表示方法,定位算法能够表示任意分布。通过将系统实现的算法与算法原型比较,可以发现在Non-Line-Of-Sight(NLOS)场景下,本算法的定位错误(positioning er-r ors)有明显改进。 关键词:RFI D;ZigBee;空间定位算法 RFID space location system based on ZigBee technology FANG Shu-fen (Tieling Normal C ollege of Liaoning Province,Tieling112001,China) Abstract:This paper presented a low energy cost RFID space location system based on Zigbee technology by using the combination of ZigB ee mote and R FID reader,and random sa mpling algorithm,by which a person holding an Zigbee mote can be located in real time.In this system,by using the representation based on random sa mpling,the location algorithm can represent ar bitrar y distribution.According to the comparison of the algorithm implemented in this system and the prototype algorithm,we it is concluded that the location err ors in this algorithm have been distinctly impr oved under the scenario of Non-Line-Of-Sight(NL OS). Key words:RFID;ZigBee;space location algorithm 0 引言 移动计算设备、无线技术和Inter net的飞速发展,促使人们对位置感知的服务系统越来越感兴趣。在许多应用中,都需要知道一个物体的确切位置。其中,GPS[1]是最著名,也是应用最广泛的定位系统,它被用来对户外移动的物体进行定位。对于室内的定位机制,有红外线[2]、超声波[3]、RFID[4]等等。 上面介绍了三种基于网络的定位机制。它们的共同点是采用固定的接收装置来接收佩带在人或物体上的发射装置发出的信息并将这些信息通过有线网络转发到控制中心。这些机制经常在一些跟踪系统中被采用。 红外线机制为每一个物体附带一个标签,这些标签周期性地通过红外线发射器发射自己的唯一的ID,固定的接收装置接收这些信息并通过有线网络将这些信息传到控制中心,通过这种方式来实现对室内物体的识别、定位。但是,这种机制存在两个缺点,首先它要求发射装置跟接收装置之间的光线不能被阻隔,另外,它要求在一个建筑内布置一个有线的网络以进行数据的传输。 超声波机制与红外线机制的区别就是把红外线换成了超声波。但是,由于目前超声波装置结构比较复杂,使得它的成本过高,目前还很难让大多数用户接受。RFID定位的典型系统是LANDMARC(Location identification based on dynamic active RFID calibra-tion)[4],它使用tags和r eaders来实现定位。这一系统的精确度随着所部署的tag的密度的增加而增加。但是部署太多的ta g是不实际的。 收稿日期:2009-02-10 作者简介:房淑芬(1965-),女,副教授,本科,研究方向为电子测量技术。 — 102 —

zigbee,ha协议标准

竭诚为您提供优质文档/双击可除 zigbee,ha协议标准 篇一:zigbee3.0协议姗姗来迟,首批产品已经推出 zigbee3.0姗姗来迟,顶尖产品已经推出 zigbee联盟(zigbeealliance)今天宣布,将其市场领先的无线标准统一成名为zigbee3.0的单一标准。该标准将为最广泛的智能设备提供互操作性,让消费者和企业能获得可无缝协作并为人们日常生活带来便利的创新产品与服务。 当今有数以千万的设备采用了zigbee标准,为消费者 带来极大好处,zigbee3.0的发布让这些标准得以统一。zigbee3.0标准让用于家庭自动化、连接照明和节能等领域 的设备具备通信和互操作性,因此产品开发商和服务提供商可以打造出更加多样化、完全可互操作的解决方案。开发商可以用新标准来定义目前基于zigbeepRo标准的所有设备类型、命令和功能。 飞利浦(philips)互联照明部营销与合作关系主管Filipjandepauw表示:“让消费者满意是飞利浦hue智能照 明系统的核心驱动力。消费者希望他们的智能设备简单好用,因此我们会继续带来容易控制和创造的更加丰富的照明新

体验。zigbee协议是实现这一目标的关键推动力,覆盖更广泛的zigbee3.0标准进一步实现了不同设备间的无缝通信,从而使我们能够为用户提供更强大的功能。更广泛的互操作性让创造新的用例和提升消费者满意度变得更简单。” zigbee3.0覆盖了最广泛的设备类型,包括家庭自动化、照明、能源管理、智能家电、安全装置、传感器和医疗保健监控产品。它同时支持易于使用的diy设备以及专业安装系统。基于ieee802.15.4标准、工作频率为2.4ghz(全球通用频率)的zigbee3.0使用zigbeepRo网络,以便为最小、功耗最低的设备提供可靠通信。目前基于zigbeehomeautomation(家庭自动化)和zigbeelightlink的zigbeecertified认证产品可与zigbee3.0互操作。欲查看统一成zigbee3.0的标准的完整列表,请访问官网 /retype/zoom/1b4a9975eff9aef8941e06f5pn=2&x=0&y=126 8&raww=561&rawh=20&o=png_6_0_0_135_299_631_23_892.9 79_1262.879&type=pic&aimh=17.112299465240643&md5sum =0e396de6e9a428054feedca137422c24&sign=dc869e5ba0&z oom=&png=2119-5028&jpg=0-0"target="_blank">点此查看j.m.Richardson说:“zigbee联盟一直认为,真正的互操作性来自于各个级别尤其是跟用户关系最为密切的应用 级的标准。联盟成员在从全球产品销售中总结的经验教训让

zigbee各版本规范比较

ZigBee各版本规范比较 ZigBee是ZigBee联盟建立的技术标准,它是一种工作在900MHZ和2.4GHZ频段的新兴无线网络技术,具有中等通讯距离(10米到数百米),比较灵活经济的通讯速率(40Kbps到250Kbps),并且有星状,网状(MESH),树状等多种网络拓扑,低的功耗等特点,所以在当今无线通讯技术和无线网络技术领域中占有比较重要的地位。 第一个ZigBee协议栈规范于2004年12月正式生效,称为ZigBee 1.0或ZigBee 2004。 第二个ZigBee协议栈规范于2006年12月发布,称为ZigBee 2006规范,主要是用“群组库(cluster library)”替换了ZigBee 2004中的MSG/KVP结构。最为重要的新的ZigBee 2006协议栈将不兼容原来的ZigBee 2004技术规范,对于已经投入ZigBee 2004的厂商而言,这是一个大悲剧。例如Jennic 公司将ZigBee2004协议栈固化在ROM中(JN5121/JN5139)。将无法和ZigBee 2006以后的协议栈兼容。ZigBee 2006协议栈,将是ZigBee兼容的一个战略分水岭,从这里开始,ZigBee将实现完全向后兼容性。 2007年10月发布了ZigBee 2007规范,ZigBee 2007规范定于了两套高级的功能指令集(feature set):分别是ZigBee功能命令集和ZigBee Pro功能命令集。(ZigBee 2004和2006都不兼容这两套新的命令集)。ZigBee 2007包含两个协议栈模板(profile),一个是ZigBee协议栈模板(Stack Profile 1),它是2006年发布的,目标是消费电子产品和灯光商业应用环境,设计简单,使用在少于300个节点的网络中。另一个是ZigBee Pro协议栈模板 (Stack Profile 2),它是在2007年发布,目标是商业和工业环境,支持大型网络,1000个以上网络节点,相应更好的安全性。ZigBee Pro提供了更多的特性,比如:多播、多对一路由和SKKE(Symmetric-key key establishment)高安全,但ZigBee(协议栈模板1)在内存和flash中提供了一个比较小的区域。两者都提供了全网状网络与所有的ZigBee应用模板工作。 ZigBee 2007 是向后完全兼容ZigBee 2006设备。ZigBee 2007设备可以加入一个ZigBee 2006网络,并能再ZigBee 2006网络中运行,反之亦然。 由于路由选择不同,ZigBee Pro设备必须变成非路由ZigBee End-Devices(ZEDs)设备才可加入ZigBee 2006或ZigBee 2007网络。同样ZigBee 2006或ZigBee 2007设备必须变成ZEDs才可加入ZigBee Pro 网络。在这些设备上的应用程序工作是相同的,它们不管在这些设备上的协议栈模板。 下面的图表从高层次进行比较,列出2004、2006及2007/PRO ZigBee规范之间的异同。 比较图

基于Zigbee无线定位技术研究毕业论文

基于ZigBee的无线定位技术研究 摘要: 随着现代通信技术和无线网络的快速发展,人们对定位与导航的需求日益增大,尤其在复杂的室环境,但是受定位时间、定位精度以及复杂室环境等条件的限制,比较完善的封闭空间定位技术目前还无法很好地利用。本文的重点就在于设计并实现了一种低成本、实用的无线传感器定位系统。 本论文主要研究了基于ZigBee网络的室无线定位技术,它包括硬件平台、节点通信程序和上位机监测软件三部分。本文详细介绍了三部分的实现。其中,硬件平台以集成了射频与51微控制器的CC2430芯片为核心,该平台包括射频模块、辅助电路、功能指示电路等。 论文最后对定位系统进行了实际测试。测试表明:本系统达到了设计要求,是一个低成本、易实现的系统。 关键词:ZigBee 无线定位CC2430 Z-STACK

The Research Wireless localization Based on ZigBee Teacher:liu zhi (Changchun university of science and technology of electronic information engineering institute,060412225 wang meng) Abstract: With the rapid development of modern communication technology and wireless network,people's demand for positioning and navigation is increasing. Especially in complex indoor environments, but as the limitation of positioning time, positioning accuracy as well as the complexity of the indoor environment conditions, well-positioning technology is still unable to be used in an encloseure space. The combination of ZigBee technology and localization is one of the key researches. This paper, aiming at ZigBee network, investigates the indoor wireless location techniques and implements a real-time localization system. This paper achieves a localization system. three parts are included. They are hardware platform, communication program of nodes and PC monitor software. The achievement of every part is clear introduced in this paper. The core of hardware platform is CC2430 which is integrated by RF and 51 MCU, the localization nodes are designed and made. It includes RF module, auxiliary module and function indication circuits. In the end, practical test is implemented. This system is confirmed to be a

zigbee技术分析——经典

与蜂共舞—ZigBee技术一瞥 本文从ZigBee的发展历史入手,探讨了这种基于无线传感器技术的网络应用的协议栈、性能分析和各种应用领域,全面构建了完整的ZigBee技术应用与发展蓝图。 “ZigBee”是什么?从字面上猜像是一种蜜蜂。因为“ZigBee”这个词由“Zig”和“Bee”两部分组成,“Zig”取自英文单词“zigzag”,意思是走“之”字形,“bee”英文是蜜蜂的意思,所以“ZigBee”就是跳着“之”字形舞的蜜蜂。不过,ZigBee 并非是一种蜜蜂,事实上,它与蓝牙类似是一种新兴的短距离无线通信技术,国内也有人翻译成“紫蜂”。下面就让我们一起进入这只蜜蜂的世界,与蜂共舞吧! 这只蜜蜂的来头还是要从它的历史开始说起,早在上世纪末,就已经有人在考虑发展一种新的通信技术,用于传感控制应用(sensor and control),这个想法后来在IEEE 802.15工作组当中提出来,于是就成立了TG4工作组,并且制定了规范IEEE 802.15.4。但是IEEE 802的规范只专注于底层,要达到产品的互操作和兼容,还需要定义高层的规范,于是2002年ZigBee Alliance成立,正式有了“ZigBee”这个名词。两年之后,ZigBee的第一个规范ZigBee V1.0诞生,但这个规范推出的比较仓促,存在一些错误,并不实用。此后ZigBee Alliance又经过两年的努力,推出了新的规范ZigBee 2006,这是一个比较完善的规范。据联盟最新的消息,今年年底将会发布更新版本的规范ZigBee 2007,这个版本增加了一些新的特性。 从ZigBee的发展历史可以看到,它和IEEE 802.15.4有着密切的关系,事实上ZigBee的底层技术就是基于IEEE 802.15.4的,因此有一种说法认为ZigBee和IEEE 802.15.4是同一个东西,或者说“ZigBee”只是IEEE 802.15.4的名字而已,其实这是一种误解。实际上ZigBee和IEEE 802.15.4的关系,有点类似于WiMAX和IEEE 802.16,Wi-Fi和IEEE 802.11,Bluetooth和IEEE 802.15.1。“ZigBee”可以看作是一个商标,也可以看作是一种技术,当把它看作一种技术的时候,它表示一种高层的技术,而物理层和MAC层直接引用IEEE 802.15.4。事物是不断的发展变化的,尤其是通信技术,可以想象将来的ZigBee可能不会使用IEEE 802.15.4定义的底层,就跟蓝牙(Bluetooth)宣布下一代底层采用UWB技术一样,但是“ZigBee”这个商标以及高层的技术还会继续保留。 ZigBee协议栈速读 我们无法预料将来ZigBee会基于怎样的底层技术,只好从它现在的底层——IEEE 802.15.4开始了解,IEEE 802.15.4包括物理层和MAC层两部分。ZigBee工作在三种频带上,分别是用于欧洲的868MHz频带,用于美国的915MHz频带,以及全球通用的2.4GHz频带,但这三个频带的物理层并不相同,它们各自的信道带宽分别是0.6MHz, 2MHz和5MHz,分别有1个,10个和16个信道。不同频带的扩频和调制方式也有所区别,虽然都使用了直接序列扩频(DSSS)的方式,但从比特到码片的变换方式有比较大的差别;调制方面都使用了调相技术,但868MHz和915MHz频段采用的是BPSK,而2.4GHz频段采用的是OQPSK。我们可以以2.4GHz频段为例看看发射机基带部分的框图(如图1),可以看到物理层部分非常简单,而IEEE 802.15.4芯片的低价格正是得益于底层的简单性。可能我们会担心它的性能,但我们可以再看看它和Bluetooth/IEEE 802.15.1以及WiFi/IEEE 802.11的性能比较(如图2),

zigbee解决方案比较

Zigbee 解决方案总结 一.非开源协议栈 1.freescale 解决方案 协议栈种类: 1.1 80 2.15.4标准mac 1.2 SMAC 1.3 SynkroRF 1.4 ZigBee RF4CE 1.5 ZigBee 2007 最简单的就是SMAC,是面向最简单的点对点应用的,不涉及网络的概念; 其次是IEEE802.15.4,一般用来组建简单的星型网络,而且提供了源代码,可以清楚地看到网络连接的每个步骤,分别调用了哪些函数; BeeStack(符合zigbee 2007)是提供的最复杂的协议栈,但是看不到代码,它提供给你一些封装好的函数,比如创建网络函数,你直接调用它,协调器就把网络创建好了,终端节点调用它则寻找可以加入的ZigBee网络并尝试加入。 其中硬件平台可以为下面中的任一种: MC13202 (2.4 GHz射频收发器) MC13213 (2.4 GHz射频收发器和带60K闪存的8位MCU)MC13224V (2.4 GHz平台级封装(PIP) –带有128KB闪存、96KB RAM、80KB ROM的32位TDMI ARM7处理器) MC13233 (带有HCS08 MCU的2.4 GHz片上系统) MC13202没有自带mcu,在做应用时,需要用户在自己的扩展板上加上mcu,既需要实现对外围设备的底层控制,也需要实现

协议栈。下面的几种均有自带mcu,协议栈的实现在自带的mcu 上实现,功能较简单的可直接使用片上的mcu资源进行控制;功能复杂的应用,最好协议栈实现与外围控制分开,大多数应用都选择arm芯片作为控制芯片; 详细信息可以查看https://www.360docs.net/doc/d01271839.html,/products/rf/ZigBee.asp 2.microchip 解决方案 协议栈种类: ZigBee? Smart Energy Profile (SEP) Suite ZigBee? PRO ZigBee? RF4CE 均是一整套的协议集,价格不菲; 硬件平台: Pic18(mcu)+MRF24J40(2.4GHZ 射频收发器)+天线 与freescale 的mc13202相似,MRF24J40也只是射频收发器,不包含mcu,协议栈的实现需要借助于外围的mcu,当然微芯公司选择的是pic18及以上的芯片作为其主控mcu,通过spi接口与MRF24J40通信,查询其寄存器的状态,实现协议栈功能。 详见:https://www.360docs.net/doc/d01271839.html,/ 3.ST 意法半导体解决方案 协议栈: EMZNET ZigBee? protocol stack 硬件平台:

Zigbee网关通信协议

Z i g b e e网关通信协议 Prepared on 24 November 2020

无线传感器网络(Zigbee)网关的的通信协议网关是通过串口与PC 机相连的。PC 机可以通过串口发送采集命令和收集采集数据,为了能有效管理这些数据,需要执行统一的数据通信格式。 下面介绍该系统中所使用的通用数据格式。 每一帧数据都采用相同的帧长度,且都带有帧头、数据和帧尾。具体格式如下: 如上所示,每一帧数据的长度都是32字节。除帧头和帧尾,每一帧数据都由命令头、发送地址、有效数据和校验和组成。 命令头:所执行的命令。 地址:所访问模块的长(前8字节)/短地址(后2字节)。 数据:传送各个参数、变量与返回值及各种需要突发发送的数据。校验和:从命令头到数据尾的加和校验,用于确定数据正确与否。注:命令头、地址的长地址部分和数据都采用ASCII码。 这个系统的命令分为3种,分别为 读命令R(ead):包括读各个传感器或网络状态命令。 测试命令T(est):测试LED、BEEP或电池寿命命令。 扩展板命令E(xtend):控制和读扩展板命令。 下面介绍具体命令格式。 1.读命令 1) RAS RAS(ReadallSensor):读传感器。

RAS具体格式如下: 需要加入地址和数据——地址:传感器模块地址;数 据:GM***/WD***。 传感器种类包括光敏:GM;温度:WD;可调电位器:AD。 (1)读取成功返回格式如下: 地址:加入传感器模块地址。 数据:传感器+ 测量值(ASSII码)。其中光敏:GM+ * * * (3 字节ASII码);温度:WD +***(3字节ASII码);可调电位器:AD+*** (3字节ASII码)。 (2)读取失败返回格式如下: 2) RND RND:无线网络发现。 RND 具体格式如下: 需要加入地址和数据———地址:无;数据:无,只需要命令头。(1)读取成功返回格式如下: 返回网络中节点的性质:RFD(终端节点)/ROU(路由器)+地址+第几个。 例如:如果返回第1个RFD 节点,则数据段为RFD01。具体格式如下: (2)读取成功结束格式如下: 2.测试命令 1) TLD

相关文档
最新文档