遥感专题讲座——影像信息提取(六、土地利用类型转换混淆矩阵)

遥感专题讲座——影像信息提取(六、土地利用类型转换混淆矩阵)
遥感专题讲座——影像信息提取(六、土地利用类型转换混淆矩阵)

土地利用类型转换(变化)混淆矩阵

查阅相关的资料,也没有得到土地利用类型转换矩阵确切的定义,我理解为不同时间段内同一区域内土地利用类型的相互转换关系,一般用二维表来表达,从二维表中可以快速查看各个地类间相互转化的具体情况。比如某一类别的土地有百分之多少(或者面积)分别转化成了其他的土地类型,现在某类型的土地分别是由过去的哪些类别转化而来的等等。还可以生成变化统计栅格图(掩膜图像),它描述了前后两幅土地分类图之间的地类发生转变的位置和类别。

土地利用类型转换矩阵可以从两幅栅格图中计算得到,也可以从两个矢量文件中计算获得。下面介绍在ENVI 下从两幅分类结果的栅格图中计算土地利用类型转换矩阵。

1、准备数据

两个时相的土地利用分类结果,它是单波段、专题类型的伪彩色图像(ENVI Classification)。

2、计算转换矩阵

打开两个土地利用分类结果。

(1)在主菜单中,选择Basic Tools → Change Detection → Change Detection Statistics。

(2)分别在Initial State对话框和final state对话框中选择前一时相和后一时相的土地利用结果。

(3)在Define Equivalent Classes对话框中(图1),如果两个土地利用分类名称一致,系统自动将Initial State Class和Final State Class对应,否则手动选择,单击Add Pair按钮选择。

(4)选择对应的地物类型之后,单击OK按钮,出现图2对话框。选择生成图表表示单位(Report Type):像素(Pixels)、百分比(Percent)和面积(Area)。选择Output Classification Mask Images?为YES,输出掩膜图像,选择输入路径及文件名。

(5)单击OK,执行土地利用类型转换矩阵计算过程。

图1 Define Equivalent Classes对话框

图2 选择数据参数

3、查看结果

(1)如图3为得到的土地利用类型转换矩阵结果。横字段表示前一时间段(Initial State)的土地利用类别,纵字段为后一时间段(Final State)的土地利用类别。横字段和纵字段交叉处表示变化值,如有2520900平方米林地用地变化为草地。

图3 土地利用类型转换矩阵

(2)还可以为每一个地类生成一个变换掩膜图像,图4所示为其中一个地类的掩膜图像。掩膜图像的灰度值表示变化类型,如这里的2{草地}表示林地变化为草地的像元。

图4 变化掩膜图像

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

生成土地利用变化转移矩阵的方法

生成土地利用变化转移矩阵的方法 这里是网上搜到的生成土地利用变化转移矩阵的几种方法,以飨来者: A 栅格数据做转移矩阵 B 矢量数据做转移矩阵 1 来源: https://www.360docs.net/doc/d014207419.html,/benben-sky/blog/static/24530388200811100256763/作者DAHONGME 根据你的数据类型选用不同的数据生成方法 若你的数据是Raster格式:则有如下方法

1 Erdas Imagine----Interpreter---Gis Analysis---Matrix,输入两个时相的Raster 数据即可 做这一步之前记得先对两时相的数据进行重编码(nterpreter---Gis Analysis---Recode) 一般运行如果出现错误肯定是重编码没做好,请继续查证。 2 先在Erdas中利用Modeler 计算如下公式 NC(I,J)=NC(I)*10+NC(J),(J>I) 其中:NC(I,J)表示i,j 两年份的土地利用变化图;NC(i)表示i年份遥感分类影像;NC(j)表示j年份的遥感分类影像。 在此计算的基础上,将以上变化影像图转化为BIL格式,再利用ARC/INFO GRID模块将影像转为GRID格式,然后利用GRID模块中的属性表(vat)查看命令对影像灰度值进行统计,最后得出土地利用转化举证。(注:此方法本人尚未实现过,不知可行否)。 若数据是Vector格式 1 Erdas Imagine----Interpreter---Gis Analysis---Matrix,输入两个时相的Vector 数据即可 此时注意输出栅格大小不应设的太小要不一运行就会提示你的空间不足 做这一步之前,请做好前期的地理编码。 2 ArcView3.3加载spatial analysis模块 把两时相的Vector图转成grid格式(当然中间有一些单位的设置根据你做的图的分辨率来设置即可)analysis---mapcaculate 直接计算即可。 3 把两期解译完的Vector文件在arctoolbox——overlay——union中叠加,注意:两个文件不能用同一个字段名,比如一个用93Type,另一个时相则用 00Type 叠加后的文件在Arcmap中打开,选中文件,然后点右键——Property——空间查询,输入条件语句,比如:93Type=…1?And 00Type=…2?;查询结果即为第一种类型转化为第二种类型的图形,可以另建一图层比如:12,把查询结果复制到12图层上。统计出面积,依进行,就可以得到土地利用类型转移矩阵。 最后输出土地利用变化图,如下图所示:

遥感影像处理步骤

3.2.3 遥感影像数据的获取 目前世界上用于民用的卫星很多,最常用于作物长势监测的是美国发射的一系列陆地卫星。本文使用的是2013年2月11日,NASA发射的Landsat 8卫星数据,Landsat 8上携带有两个主要载荷:OLI(陆地成像仪)和TIRS(热红外传感器)。OLI包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185×185 km。OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825 μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band1:0.433–0.453 μm)主要应用海岸带观测,短波红外波段(band9:1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。 表3-2 Landsat8各波段的名称与用途 Table 3-2 The name and purpose of each band of Landsat8 (引自:张玉君,国土资源遥感,2013) 波段No 波段名称波长范围/nm 数据用途GSD地面 采样距离 /nm 辐射率/ (W·m-2sr-1u m-1)典型 SNR (典型) 1 NewDeep Blue 433-453 海岸区气溶胶30 40 130 2 Blue 450-515 基色/散射/海岸30 40 130 3 Green 525-600 基色/海岸30 30 100 4 Red 630-680 基色/海岸30 22 90 5 NIR 845-885 植物/海岸30 14 90 6 SWIR2 1560-1660 植物30 4.0 100 7 SWIR3 2100-2300 矿物/干草/无散射30 1.7 100 8 PAN 500-680 图像锐化15 23 80 9 SWIR 1360-1390 卷云测定30 6.0 130 10 TIR 10300-11300 地表温度100 11 TIR 11500-12500 地表温度100 本实验获取条带号和行编号为143/029,选取棉花蕾期、花铃期、吐絮期内无云、质量较好的影像数据,过境时间分别为2013年6月25日,8月5日,8月29日。 3.2.4 卫星影像处理 地面目标是个复杂的多维模型,具有一定的空间位置、形状、大小和相互关

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

土地利用转移矩阵

土地利用转移矩阵 现有ABCD...期等土地利用数据: 1)矢量操作:使用union或intersect,将A期和B期的矢量图层进行叠加,然后数据库操作-> 字段计算器-> “新字段= A期.土地利用类型字段*100+B期.土地利用类型字段”-> 然后根据“新字段提供的信息”进行面积统计等后期操作。 注:*100 是为了区分AB两期的土地利用类型,一位的土地利用类型分类可以*10、100..., 两位的分类可以*100、*1000...,但不要超过10000,因为太大了就变成连续型栅格了; union 相当于集合操作的并集,两期图层取并集; intersect 相当于集合操作的交集,两期图层取交集; 当各期的图层的范围相同时两者都一样,图层范围不相同时,请仔细选择使用; 面积统计:在字段计算器中完成。 2)栅格操作:在空间分析模块中-> 栅格计算器-> 输入:[A期] * 100 + [B期] -> 生成新的栅格图层-> 然后再根据“新生成的栅格图层”进行面积统计等后期操作。 注:预处理:若是“连续栅格”,通过->空间分析模块的重分类-> 转成“唯一值的栅格”-> 再进行计算; *100 (同上); [A期]、[B期]...是栅格图层名; 某种土地利用类型的面积=某种土地利用类型的栅格数量* (栅格分辨率* 栅格分辨率)。 3)A -> B的土地利用变化: 101 A期类型1 -> B期类型1(没变化) 102 A期类型1 -> B期类型2(变化) 103 A期类型1 -> B期类型3(变化) ... 201 A期类型2 -> B期类型1(变化) 202 A期类型2 -> B期类型2(没变化) 203 A期类型2 -> B期类型3(变化) ... n0n A期类型n -> B期类型n(???) 或 n00n A期类型n -> B期类型n

(完整版)卫星图像处理流程

卫星图像处理流程 一.图像预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 图1 消除噪声前

图2 消除噪声后 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。 图3 去条纹前

图4 去条纹后 图5 去条带前

图6 去条带后 2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正 通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。(1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

遥感技术在土地利用分类中的应用

遥感技术在土地利用分类中的应用 ——以秦皇岛为例 摘要:以LANDSAT TM遥感影像为数据源,经过波段选择、色彩合成、拼接裁剪、遥感图像增强和人机交互解译等步骤,将秦皇岛市土地利用类型分为耕地、林地、草地、水域湿地、建设用地和未利用土地等6类,绘制出秦皇岛市土地利用现状图。 关键字:遥感;土地利用;秦皇岛;土地分类 前言 土地是人类赖以生存和发展的物质基础,是社会生产的劳动资料,是农业生产的基本生产资料,是一切生产和一切存在的源泉[1]。土地是一种不可再生资源,且资源的数量是相对有限的,土地的利用是否合理直接关系着社会经济的未来发展。因此如何合理的配置现有的土地资源,使其不断满足经济、社会、环境等各方面的需求,逐渐成为学者们研究的焦点。 遥感技术具有高光谱分辨率、高空间分辨率、实时观测、重访周期短等特点,在土地利用中显示出明显的优势,在国内外得到了广泛应用[2]。本文以秦皇岛市为例,介绍遥感技术在土地利用分类中的应用。 1研究区域自然经济概况 秦皇岛市位于河北省东部沿海,处于北纬39o24'-40o37',东经118o34'-119o51'。东邻辽宁、西接唐山、北靠燕山、南临渤海。西南距省会石家庄483km,西距首都北京280km,距天津220km。现辖海港区、山海关区、北戴河区3区和昌黎县、抚宁县、卢龙县、青龙满族自治县四县,为我国重要的综合性港口城市,著名的旅游城市。 随着秦皇岛市人口的增加和社会经济的发展,人类加大了对土地资源开发的力度,引起土地利用景观格局发生变化。对土地资源的过度和无序利用,导致秦皇岛市生态环境恶化,产生了土地退化、水土流失等严重威胁生存安全的生态问题。

2014年沈阳市遥感图像土地利用分类解析

《地理信息系统应用》 GIS软件应用项目综合研究 《2014年沈阳市土地利用分类》 班级:621202 学号:62120211 姓名:田博

前言 ?根据2005年土地利用现状变更调查,全市土地总面积为1288088公顷,其中农用地面积989964公顷,占土地总面积的76.86%;建设用地面积195853公顷,占土地总面积 15.20%,未利用地面积102271公顷,占土地总面积的 7.94%。 ?进行图例利用分类分析,围绕全面建设小康社会、实现老工业基地振兴、建设国家生态城市和东北地区中心城市的经济社会发展目标,全面实施严格保护耕地特别是基本农田战略、土地科学调控和城乡统筹发展战略、土地节约集约用地战略、中心城区土地利用结构和布局优化战略、协调土地利用与生态建设战略。 ?为了深入贯彻科学发展观和老工业基地振兴战略,切实落实“十分珍惜、合理利用土地和切实保护耕地”的基本国策,节约集约利用土地,统筹安排各类各区域用地,根据有关法律法规进行研究城市的土地利用变化,能够发现城市化发展的一些问题,有利于土地资源的合理配置。同时更好地统筹土地资源的开发、利用和保护,促进国民经济又好又快发展。 ?充分利用沈阳经济区核心城市的区位优势,建立与沈阳中心城市和现代化大都市地位相适应的土地利用结构和空间布局模式。保障科学发展用地、保护和合理利用农用地、节约集约利用建设用地、协调土地利用与生态建设、统筹安排各类各区域用地,构建资源节约、环境友好、和谐发展的土地利用模式。

①项目需求分析: 以邓小平理论和“三个代表”重要思想为指导,全面贯彻落实科学发展观,坚持节约资源和保护环境的基本国策,坚持最严格的耕地保护制度和节约集约用地制度,围绕全面建设小康社会、振兴东北老工业基地和建设东北地区中心城市的目标,优化土地利用结构、统筹各类各区域用地,为经济持续快速健康发展提供用地保障和服务,促进经济社会与环境的全面、协调、可持续发展。故进行土地利用分析是必不可少的。 ②项目研究内容、方法与技术方案: 1.项目研究内容: 对目前2014年5月份沈阳市的landsat遥感图像进行处理出图,继而进行土地利用分类统计分析。 2.研究方法: 利用ENVI5.0软件对数据进行叠合,镶嵌,裁剪,继而进行监督分类,在监督分类中用到了最小距离和马氏距离分类的方法,整理感兴趣区后进行数据矢量化为能够在Arcgis软件中打开文件,最后出图,导出地图。 3.技术方案: 查找下载沈阳市2014年原始遥感数据→整理数据(遥感图像叠合,镶嵌,裁剪)→监督分类(建立感兴趣区)→数据图像矢量化→导出地图。 ④数据来源与处理过程: 数据来源: 中科院遥感所,地理空间数据云。 处理过程: 1.查找下载沈阳市2014年原始遥感数据:

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

ArcGIS土地利用转移矩阵

一、数据准备(图1) 准备两幅不同时相的土地利用现状图(shp格式),每幅图的属性表都要有一个表示土地利用类型的字段,并且要使用不同的名称加以区分,如Type1995,Type2000。土地利用类型名称必须统一,并且完整,如都使用“城镇用地”、“有林地”等。 二、数据融合(图2) 在ArcMap里分别打开两个时相的图层,打开ArcToolbox,选择Data Management Tools | Generalization | Dissolve工具。Input Feature选择要融合的图层,Output Feature Class选择输出结果存储的位置及名称,Dissolve Field(s)选择土地利用类型字段(如Type1995),然后勾选Creat multipart features选项,点击OK完成。重复此过程,对另一时相数据进行融合。此步骤使相同利用类型的记录融合为一个记录,以提高后面步骤的计算速度。 三、叠置分析(图3) 在ArcMap中打开两个时相融合后的数据,在ArcToolbox中选择Analysis Tools | Overlay | Intersect工具,Input Features选择两个时相的图层,Output Feature Class 选择叠加结果存储的位置及名称,其余选项可以忽略,单击【OK】完成。 四、计算面积并导出属性表(图4-6) 在ArcMap中打开叠加后的图层数据,在该图层上右键打开属性表,选择Option | Add field… 新建一个字段,命名为NewArea。 在Editer工具条中选择Editer | Start Editing,然后在属性表中NewArea字段上单击右键选择Calculate Geometry… ,在打开的Calculate Geometry对话框中,Property选择Area,Units选择要使用的面积单位,单击【OK】完成图斑面积计算。依次选择Editer | Save Edits / End Editing保存和退出编辑状态。 在属性表中选择Option | Export… 将属性表保存为dbf文件。 五、制作转移矩阵(图7-10)(以Excel2007为例) 在Excel中打开上一步保存的dbf,另存为Excel格式并打开。在Excel中选中所有数据(不要点左上角,只选择有效数据),点击【插入】选项卡,选择【数据透视表】|【数据透视表】,点击【确定】。 在打开的数据透视表中按图示将字段拖入相应区域。 Excel自动计算矩阵,将该表稍事整饰就得到美观的土地利用转移矩阵。矩阵中 r(I, j)就表示i类型向j类型转移的土地面积,空值表示i类型向j类型没有转移。 阅读全文(131) / 评论 / 扔小纸条 / 给曾经善良过留言 收藏: QQ书签 https://www.360docs.net/doc/d014207419.html, / 订阅: Google 抓虾

谈遥感技术在土地利用调查中应用

谈遥感技术在土地利用调查中应用 摘要:遥感技术在各个领域的应用越来越广,遥感技术在土地利用现状更新调查中也得到了应用。对于具体应用方式做了分析 关键词:遥感技术;土地利用 一、引言 遥感定义。从广义来讲,就是指遥远的感知,非接触远距离的探测技术。从狭义来讲,指借助于专门的探测仪器(传感器),把遥远的物体所辐射(或反射)的电磁波信号接收记录下来,再经过加工处理,变成人眼可以直接识别的图像,从而揭示出所探测物体的性质及其变化规律。遥感技术指从高空到地面各种对地球观测的综合性技术系统总称。它由遥感平台、探测传感器以及信息接受、处理与分析应用系统等组成,周期性地提供监测对象数据和动态情报。 主要的遥感软件 ENVI——美国Research System INC公司开发,1995年引入,适普代理,目前最高版本ENVI 3.7。 ERDAS Imagine——美国ERDASLLC公司开发。2003年6月在全球40多个遥感软件评比中,11个应用功能中的9个获得第一。蓝赛特阿波罗等都代理,目前最高版本ERDASImagine 8.6。 PCI Geomatica——加拿大PCI公司开发。加拿大阿波罗等都代理,目前最高版本PCI Geomatica 8.2。 IRSA—国家遥感应用技术研究中心CASM ImageInfo—中国测科院&四维公司。 二、遥感技术在土地利用现状更新调查中应用 1982年至1993年6月,全国采用大比例尺图件(包括航片和地形图),完成了土地利用现状调查。这项工作历时10余年,耗资数十亿元,投入专业人员达50多万人次,堪称中华民族历史上前所未有的伟业。我国对土地遥感工作极其重视。《中华人民共和国土地管理法》第三十条规定:国家建立全国土地管理信息系统,对土地利用现状进行动态监测。朱总理明确指出:要采取最先进的技术手段,24小时监测土地动态变化情况,及时通报情况,确保我国耕地保护目标的实现。 三、遥感技术在土地利用现状更新调查中应用步骤 资料准备

遥感实习2卫星数据的预处理流程

数据预处理的一般过程包括几何校正、图像镶嵌与裁剪、辐射定标与大气校正等环节。

图1 数据预处理一般流程 通常我们直接从数据提供商获取未定标的DN 图像,然后定标为辐射亮度图像,对辐射率亮度图像进行大气校正得到地表反射率图像。 一、辐射定标与大气校正 1、辐射定标Radiometric calibration :将记录的原始DN 值转换为大气外层表面反射率(或称为辐射亮度值)。 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值 方法:实验室定标、机上/星上定标、场地定标 不同的传感器,其辐射定标公式不同。L=gain*DN+Bias 在ENVI 中,定标模块:Basic Tools>Preprocessing>Calibration Utilities>模块 2、大气校正Atmospheric correction :将辐射亮度或者表面反射率转换为地表实际反射率 目的:消除大气散射、吸收、反射引起的误差。 分类:统计型和物理型 目前遥感图像的大气校正方法按照校正后的结果可以分为2种: 1) 绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。包括:基于辐射传输模型、基于简化辐射传输模型的黑暗像元法、基于统计学模型的反射率反演 2) 相对大气校正方法:校正后得到的图像,相同的DN 值表示相同的地物反射率,其结果不考虑地物的实际反射率。包括:基于统计的不变目标法、直方图匹配法等。 方法的选择问题,一般而言: 1) 如果是精细定量研究,那么选择基于辐射传输模型的大气校正方法。 2) 如果是做动态监测,那么可选择相对大气校正或者较简单的方法。 3) 如果参数缺少,没办法了只能选择较简单的方法了。 在ENVI 中,Basic tools>preprocessing>calibration utilities>FLAASH 二、数字图像镶嵌与裁剪 1、镶嵌 当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形成一幅或一系列覆盖全区的较大的图像。 在进行图像的镶嵌时,需要确定一幅参考影像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。镶嵌得两幅或多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。但接边色调相差太大时,可以利 Digital Numbers Radiance TOA Reflectance Geometric correction Step 1 Step 2 Surface Reflectance Step 3 Step 4 Analysis

遥感影像土地利用分类方法研究进展

遥感影像土地利用分类方法研究进展 摘要: 为了研究遥感影像土地利用分类的方法,综述了国内外近10年的遥感图像分类研究。在分析当前主要遥感影像分类方法的基础上,从传统的分类方法和传统分类方法的改进两个方面,对遥感影像土地利用分类方法研究进展进行了阐述。本研究还存在不足,今后还需进一步研究利用各种遥感影像分类方法相互结合的应用。 关键词: 遥感影像;土地利用;分类方法 引言 土地利用变化研究是全球变化及其区域响应研究的核心领域,研究土地利用变化及其生态环境效应有助于提高人们对区域生态环境问题的认识,并可为有关部门的土地利用规划、管理与决策提供科学依据[1]。目前,利用遥感图像分类获得土地利用信息已经成为土地利用变化研究必不可少的一步。遥感图像分类就是把图像中的每一个像元或区域划分为若干类别中的一种,即通过对各类地物的光谱特征分析来选择特征参数,将特征空间划分为互不重叠的子空间,然后将影像内各个像元划分到各子空间中去,从而实现分类。由于新的分类方法的大量涌现,遥感图像分类方法出现了很多问题。因此,本研究在分析当前主要遥感图像分类方法的基础上,将遥感图像分类方法划分为传统的分类方法、传统分类方法的改进两大类,从这两个方面对遥感图像土地利用分类方法的研究进展进行了阐述。 1 传统分类方法 1.1目视解译 目视解译是根据确定的分类系统和解译标志以及解译经验,对图像进行判读等方法来获取土地利用的分类,这种方法目前仍被广泛使用。它是人们通过遥感技术获取目标信息最直接、最基本的方法。李秀梅提出对于数据精度产生的尺度效应研究过程中,通常采用目视解译并依据转换误差最小原则栅格化矢量数据,以保障数据精度,这是一种比较成功的分类方法,具有简单易操作,利于空间信息提取,灵活性强等优点,但解译中显示尺度越小,带状、面积小和边界曲折的景观要素类型损失越严重,会影响数据精度[2]。由于解译人员的专业知识水平以及解译经验的限制,解译结果会存在差异,此方法受个人主观因素影响大。 1.2 基于统计分析的分类方法 基于统计的分类方法是在数理统计的基础上,进行遥感图像的自动分类,因而又称为计算机自动分类方法。它主要包括监督分类和非监督分类。 1.2.1 监督分类 监督分类,是指通过选择具有代表已知地面覆盖类型的训练样本区,用训练样本区中已知地面各类地物样本的光谱特性来训练计算机,获得识别各类地物的判别函数或模式,并以此对未知地区的像元进行分类处理,分别归入到已知具有最大相似度的类别中。监督分类的主要方法有最小距离法、最大似然法、神经元网络分类法、马氏距离法等。其中,最大似然法是监督分类中最常用的方法。章恒等利用多源遥感影像对红树林信息提取方法进行比较,得出最大似然法与影像的特征光谱信息量相关性较强的结论[3]。孙琳等在对太湖流域HJ-1B影像分类过程中提出最大似然法的分类结果存在较严重的“椒盐噪声”现象,分类图像较破碎,而且从图像上能直观地发现林地分类误差[4]。对比改进后的传统分类方法,最大似然法在分类结果的精度上略显不足。 1.2.2非监督分类

ArcGIS土地利用转移矩阵

一、数据准备(图1) 准备两幅不同时相得土地利用现状图(shp格式),每幅图得属性表都要有一个表示土地利用类型得字段,并且要使用不同得名称加以区分,如Type1995,Type2000。土地利用类型名称必须统一,并且完整,如都使用“城镇用地”、“有林地”等。 二、数据融合(图2) 在ArcMap里分别打开两个时相得图层,打开ArcToolbox,选择Data Management Tools | Generalization | Dissolve工具。Input Feature选择要融合得图层,Output Feature Class选择输出结果存储得位置及名称,Dissolve Field(s)选择土地利用类型字段(如Type1995),然后勾选Creat multipart features选项,点击OK完成。重复此过程,对另一时相数据进行融合。此步骤使相同利用类型得记录融合为一个记录,以提高后面步骤得计算速度。

三、叠置分析(图3) 在ArcMap中打开两个时相融合后得数据,在ArcToolbox中选择Analysis Tools | Overlay | Intersect工具,Input Features选择两个时相得图层,Output Feature Class 选择叠加结果存储得位置及名称,其余选项可以忽略,单击【OK】完成。 四、计算面积并导出属性表(图4-6) 在ArcMap中打开叠加后得图层数据,在该图层上右键打开属性表,选择Option | Add

field… 新建一个字段,命名为NewArea。 在Editer工具条中选择Editer | Start Editing,然后在属性表中NewArea字段上单击右键选择Calculate Geometry… ,在打开得Calculate Geometry对话框中,Property 选择Area,Units选择要使用得面积单位,单击【OK】完成图斑面积计算。依次选择Editer | Save Edits / End Editing保存与退出编辑状态。

卫星遥感数据处理规范流程

北京揽宇方圆信息技术有限公司遥感卫星影像图像数据处理介绍 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 优势: 1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。 2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。 3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。 5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。 6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。 7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。 8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。 技术能力说明 北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。 一.图像预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

相关文档
最新文档