邻硝基甲苯分离精馏塔的设计

邻硝基甲苯分离精馏塔的设计
邻硝基甲苯分离精馏塔的设计

邻硝基甲苯分离精馏塔的设计

5.精馏工段设计

5.1.塔的选择

我选择的是填料塔。传统的设计中,蒸馏过程多选用板式塔。近年来,随着塔设备设计水平的提高及新型塔构件的出现,填料塔在精馏过程中的应用已非常普遍。

填料塔有以下优点:

1)填料塔的生产能力高;

2)填料塔具有较高的分离效率;

3)填料塔操作费用低,节约能耗;

4)易发泡物系,宜选用填料塔;

5)对于热敏系物系的分离,宜选用填料塔。

5.2.设计方案

对于邻硝基甲苯—对硝基甲苯,属二元混合物的分离,应采用连精馏流程。采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。对硝基甲苯的沸点为238.5℃,邻硝基甲苯的沸点为221.7℃,故采用减压操作。采取减压精馏,系统为负压操作,一般真空度控制在

4kPa= 30mmHg此时对应邻硝基甲苯的沸点是125℃,对硝基甲苯的沸点是140℃,本设计取工作温度130℃。塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经冷凝冷却器冷却后送至储槽。该物系属难分离物系,故操作回流选择最小回流比的2倍,塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

5.3.精馏塔的物料衡算

5.3.1.原料液及塔顶、塔底产品的摩尔分数

对硝基甲苯的摩尔质量:

=137.14kg /kmol

邻硝基甲苯的摩尔质量:

=137.14kg /kmol

由上步计算知邻硝基甲苯含量为0.67,对硝基甲苯为0.33(质量分数),取塔顶邻硝基甲苯占产物的95%,塔底对硝基甲苯占产物的95%;

==0.67

==0.95

==0.05

5.3.2.原料液及塔顶、塔底产品的平均摩尔质量

原料液的平均摩尔质量:

=0.60×137.14+(1-0.60)×137.14=137.14kg /kmol 塔顶产品的平均摩尔质量:

=0.95×137.14+(1-0.95)×137.14=137.14kg/kmol 塔底产品的平均摩尔质量:

=0.05×137.14+(1-0.05)×137.14=137.14kg /kmol 5.3.3.物料衡算

总物料F的处理量为14579.67吨/年,每年按300个工作日计算。原料处理量:

全塔物料衡算:

14.77=D+W (b)

14.77×0.67=0.95×D+0.05×W (c)

联立两式解得:

D=9.08kmol/h

W=5.69kmol/h

塔顶产品的质量流量:

=137.14×9.08=1245.23kg/h

塔釜产品质量流量:

=137.14×5.69=780.33kg/h

料衡算结果表3

塔顶出料塔底出料进料

质量流量/(kg/h)1245.23780.332029.95质量分数/%61.4838.5267

摩尔流量/(kmol/h)9.08 5.6914.77摩尔分数/%95567

5.4. 精馏塔的模拟计算

系统为负压操作,一般真空度控制在4kPa= 30mmHg此时对应邻硝基甲苯的沸点是125℃,对硝基甲苯的沸点是140℃,本设计取工作温度130℃。

假设该组分是理想溶液,理想溶液中组分的相对挥发度等于同温度下两纯组分的饱和蒸气压之比。由于PA°和PB°均随温度沿相同方向

变化,因而两者的比值变化不大,故一般可视α为常数,计算时可取操作温度范围内的平均值。

在143℃下,邻硝基甲苯的饱和蒸气压约是10 kPa,对硝基甲苯的饱和蒸气压约是7kPa。

故相对挥发度α= PA°/ PB°=1.43

5.5. 材料的类型与选择

5.5.1. 填料的类型

填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。规整填料具有比表面积大,结构规则,空隙率、流通量大,压降小,操作弹性大等优点。随着填料塔塔径的增大,人们对于优化填料结构,开发多种规格和材质的具有高效率、低压降、大通量的填料,塔填料与塔内件的优化匹配,以及填料层内液体的流动与分布的研究更加重视。20世纪60年代以后开发出来的丝网波纹填料和板波纹填料是目前使用比较广泛的规整填料。近年来,随着精细化工,石油化工,化肥等行业的蓬勃发展,各种新型塔填料的研究工作引起了人们的重视。高效填料的开发与工业应用表明,规整填料,尤其是波纹填料具有明显的优越性,在取代原有填料及部分板式塔的技术改造中效果显著。新型填料的开发及大规模工业应用是当前国际上塔器研究与应用的一项重要成就。其特点如下:

(1)规整填料压降显著低由于规整填料中气一液两相呈膜式接触,不同于筛板塔中两相的鼓泡接触,因此填料塔的压降只有筛板塔的1/4~1/6。如规整填料上塔的操作阻力为3.5~4.2kPa,底部的操作压力仅为35~45kPa,下塔一般仍采用筛板塔,操作阻力亦未改变,因此下塔的操作压力相应下降了0.05~0.06MPa,一般为0.44~0.48MPa,这样空压机的轴功率可降低5%~7%(2)规整填料分离效率高上塔的操作压力越低,就大大有利于氧、氮、氩的分离,尤其

是氧和氩的分离,一般氧的提取率可以提高1%~3%、氩的提取率可以提高5%~10%,实践证明,空分设备氧的提取率已达到99%以上,氩的提取率已达到80%以上。精馏塔的提取率在很大程度上还取决于进上塔的膨胀空气量大小,尤其对氩的提取率影响甚大,因此不断提高透平膨胀机的等熵效率和增压机的增压比,是提高精馏塔提取率的关键。

(3)规整填料持液量少

规整填料塔持液量一般仅为塔容积的1%~6%,而筛板塔的持液量为塔容积的8%~10%。持液量少,意味着液体在塔内停留时间短,操作压降小,有利于变工况操作。规整填料塔设计范围可达40%~120%。上钢五厂12000m3/h空分设备规整填料上塔氧气产量可在9000~14000mm3/h范围内调整,操作负荷范围仅为75%~117%。

(4)规整填料空隙大规整填料的空隙率达95%以上。在筛板塔中孔板面积占塔截面的80%,而开孔率均为8%~12%,均远远少于填料层的空隙率。对同一负荷而言,填料塔的塔经比筛板塔小;一般情况下

其截面积只有筛板塔的70%左右,这对于大型空分设备来说,塔经缩小有利于运输。规整填料是按一定的几何图形排列,整齐堆砌的填料。规整填料种类很多,根据其几何结构可分为格栅填料、波纹填料、脉冲填料等。工业上应用的规整填料绝大部分为波纹填料。波纹填料按结构分为网波纹填料和板波纹填料两大类,可用陶瓷、金属、塑料等材质制造。加工中,波纹与塔轴的倾角有30°和45°两种,倾角为30°以代号BX(或X)表示,倾角为45°以代号CY(或Y)表示。

金属板波纹填料是板波纹填料的主要形式。该填料的波纹板上冲压有许多4φmm~φ6mm的小孔,可起到粗分配板片上的液体,加强横向混合的作用。波纹板片上轧成细小沟纹,可起到细节分配板上的液体,增强表面润湿性能的作用。金属孔板波纹填料强度高,耐腐蚀性强,特别适用于大直径塔及气液负荷较大的场合。

波纹填料的优点是结构紧凑,阻力小,分离效率高,处理能力大,比表面积大。其缺点是不适合处理黏度大,易聚合或有悬浮物的物料,且装卸、清理困难,造价高[3]。

5.5.2.填料材质的类型

金属填料可用多种材质制成。其材质的选择主要根据物系的腐蚀性和金属材质的耐腐蚀性来综合考虑。碳钢填料造价低,且具有良好的表面润湿性能,对于无腐蚀或低腐蚀物系应优先考虑使用;不锈钢填料耐腐蚀性强,一般能耐除Cl以外常见物系的腐蚀,但其造价较高;钛

材,特种合金钢等材质制成的填料造价极高,一般只在某些腐蚀性极强的物系下使用[4]。

金属填料可制成薄壁结构(0.2mm~0.1mm),与同种类型,同种规格的陶瓷、塑料填料相比,他的通量大,气体阻力小,且具有很高的抗冲击性能,能在高温、高压、高冲击强度下使用,工业应用主要以金属填料为主。

金属孔板波纹填料也称“Mellapak”填料,在不锈钢波纹片上钻有许多5mm左右的小孔。该填料与同质材质的死网填料相比,虽然效率和通量低于波纹填料,但因造价低、强度高、抗腐蚀性能强,特别适用于大直径蒸馏塔,大有扩大应用的趋势[5]。

因邻硝基甲苯和混合物物系的分离较难,设计中选用350Y金属孔板波纹填料。

5.6.理论板数的计算

5.6.1. 回流比的计算

因为是饱和液体进料,所以X F=X q,泡点进料:q=1.

相对挥发度α=1.43

X F=0.67

X D=0.95

X W=0.05

2.79

在精馏塔设计中,根据经验,通常操作回流比可取最小回流比的1.1—2 倍,故取R=1.5=1.5×2.79=4.19

5.6.2. 简捷法计算

由芬斯克方程:

=15.47

由吉利兰图知

解得 N= 29块(不包括再沸器)

精馏段理论板层数的计算

由芬斯克方程式知:

=0.3628

前面已知(N-Nmin)/(N+2) =0.42,解之得

N =2.74(不包括再沸器)

故加料板为从塔顶往下的第3层理论板。

5.7.相关数据计算

5.7.1.塔顶第一块板的有关数据

根据 4.19=R=L/D V=L+D D=9.08kmol/h,得:

气相流量:V=47.13 kmol/h

液相流量:L=38.05 kmol/h

气相平均摩尔质量:= 0.95×137.14+ (1-0.95)×137.14 =137.14kg/kmol

液相平均摩尔质量:= =137.14kg/kmol

液相密度:L=1163 kg/m(由于邻硝基甲苯的含量很高,可按纯物质计算。温度的变又因为密度随温化不大,故可按温度25℃时算其密度) 5.7.2. 进料板有关数据

根据=V =L+V V=47.13kmol/h L=38.05kmol/h F =14.77kmol/h得

气相流量:=47.13kmol/h

液相流量:=L+F=52.82kmol/h(饱和液体进料)

液相组成:=0.67

运用气液平衡方程得

气相组成:y=0.74

气相平均摩尔质量:=( 137.14×0.74+ (1-0.74)×137.14

=137.14kg/kmol

液相平均摩尔质量: =137.14kg/kmol

气相密度:根据附表查得每块理论板压降为0.3 mmHg,所以进料板压强大约为P=30+2×0.3=30.6mmHg=4080Pa

=1142.86kg/m

5.8.塔径的计算

精馏塔的直径可由塔内上升蒸汽的体积流量及其通过横截面积的孔塔速度求得,即

—式中 D精馏塔的内径,m;

u—空塔速度,m/s;

—塔内上升蒸汽的体积流量,.

5.8.1.精馏段塔径计算

液相质量流量为:

气相质量流量为:

查图波纹填料的最大负荷因子图得:=0.15

精馏段塔径为:

5.8.2.提馏段塔径计算

提馏段塔径按进料版(第3块板)的数据近似计算。

液相质量流量为:

kg/h

气相质量流量为:

kg/h

0.015

查图波纹填料的最大负荷因子图得:C smax=0.13

提馏段塔径为:

比较精馏段与提馏段的计算结果,两者相差不大。

圆整塔径,取D=1300mm。

5.9.液体喷淋密度及空塔气速核算

精馏段液体的喷淋密度为:

精馏段空塔气速为:

m/s

提馏段喷淋密度为:

提馏段空塔气速为:

5.10.填料层高度计算

填料层高度计算采用理论板当量高度法。

对于350Y金属孔板波纹填料,查《化工单元操作课程设计》附录6得,每米填料理论板数为3.5~4块,取n t=4。则

知:N精= 2 N提=27

由Z=N T HETP得:

精馏段的填料层高度:

提馏段填料层高度为:

采用上述方法计算出填料层高度后,还应留出一定的安全系数。根据设计经验,填料层的实际高度一般为

=(1.2~1.5)Z

取安全系数为1.2则:

设计取精馏段填料层高度为0.6m,提馏段填料层高度为9m。

规整填料分段高度可用下式计算:

h=(15~20)HETP

故提馏段需分为3段,每段高度为3m,精馏段不需分段。

5.11.填料层压降计算

对于350Y金属孔板波纹填料,查《化工单元操作课程设计》附录6得,每米填料层压降为:

精馏段填料层压降为:

=3.5××0.6=2.1×10-4

提馏段填料层压降为:

=3.5×10-4×9=31.5×10-4

填料层总压降为:

==2.1×10-4+31.5×10-4=33.6×10-4

5.12.填料精馏塔的内件类型

填料塔的内件主要有填料支撑装置、填料压紧装置、液体分布装置、液体收集再分布装置等。合理地选择和设计内件,对保证填料塔的正常操作及优良的分离性能十分重要。

5.12.1. 填料支撑装置

填料支撑装置的作用是支撑塔内的填料。常用的填料支撑装置有栅板型、孔管型、驼峰型等。对于散装填料,通常选用孔管型、驼峰型支撑装置;对于规整填料,通常选用栅板型支撑装置。设计中,为防止在填料支撑装置处压降过大甚至发生液泛,要求填料支撑装置的自由截面积应大于75%[8]。

5.12.2.填料压紧装置

为防止在上升气流的作用下填料床层发生松动或跳动,需在填料层上方设置填料压紧装置。填料压紧装置有压紧栅板、压紧网板、金属紧压器等不同的类型。对于散装填料,可选用压紧网板,也可选用压紧栅板,在其下方,根据填料的规格敷设一层金属网,并将其与压紧栅板固定;对于规整填料,通常选用压紧栅板。设计中,为防止在填料压紧装置处压降过大甚至发生液泛,要求填料压紧装置的自由截面积应大于70%[9]。

为了便于安装和检修,填料压紧装置不能与塔壁采用连续固定方式,对于小塔可用螺钉固定于塔壁,而大塔则用支耳固定。

5.12.3. 液体分布装置

液体分布装置的种类多样,有喷头式、盘式、管式、槽式及槽盘式等。工业应用以管式、槽式及槽盘式为主。

管式分布器由不同结构形式的开孔管制成。其突出的特点是结构简单,供气体流过的自由截面积大,阻力小。但小孔易堵塞,操作弹性一般较小。设计中通常用管式液体分布器。

6.填料精馏塔设计计算结果

表2

序号项目数据

1原料处理量14.77kmol/h 2塔顶产品流量9.08kmol/h

3塔底产品流量 5.69kmol/h

4相对挥发度 1.43

5最小回流比 2.79

6操作回流比 4.19

7理论板数29

8进料序号3

9塔顶温度125℃

10塔釜温度140℃

11操作压力4kPa

12精馏段塔径0.91m

13提馏段塔径 1.262m

14精馏段空塔气速8.261m/s

15提馏段空塔气速8.111m/s

16精馏段液体喷淋密度 3.382m3/(m2﹒h) 17提馏段液体喷淋密度 5.320m3/(m2﹒h) 18精馏段填料层高度0.6m

19提馏段填料层高度8.1m

20精馏塔总压降33.6×10-4Mpa 21圆整塔径 1.3m

22填料层高度8.7m

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

苯-甲苯体系板式精馏塔设计

化工原理课程设计 设计题目:苯-甲苯体系板式精馏塔设计 化工原理课程设计任务书 ?设计任务 分离含苯35% ,甲苯65%的二元均相混合液,要求所得单体溶液的浓度不低于97% 。(以上均为质量分率) 物料处理量:20000吨/年。(按300天/年计) 物料温度为常温(可按20℃计)。 ?设计内容 设计一常压下连续操作的板式精镏塔,设计内容应包含: 方案选择和流程设计; 工艺计算(物料、热量衡算,操作方式和条件确定等),主要设备的工艺尺寸计算(塔高、塔径); 主体设备设计,塔板选型和布置,流体力学性能校核,操作负荷性能图,附属设备选型; 绘制工艺流程示意图、塔体结构示意图、塔板布置图; (设计图纸可手工绘制或CAD绘图) ?计算机辅助计算要求 物性计算 ①编制计算二元理想混合物在任意温度下热容的通用程序;

②编制计算二元理想混合物在沸腾时的汽化潜热的通用程序。 气液相平衡计算 ①编制计算二元理想混合物在任意温度下泡点、露点的通用程序; ②编制计算二元理想混合物在给定温度、任意组成下气液分率及组成的通用程序。 精馏塔计算 ①编制计算分离二元理想混合液最小回流比的通用程序; ②编制分离二元理想混合液精馏塔理论塔板逐板计算的通用程序。 采用上述程序对设计题目进行计算 ?报告要求 设计结束,每人需提交设计说明书(报告)一份,说明书格式应符合毕业论文撰写规范,其内容应包括:设计任务书、前言、章节内容,对所编程序应提供计算模型、程序框图、计算示例以及文字说明,必要时可附程序清单;说明书中各种表格一律采用三线表,若需图线一律采用坐标纸(或计算机)绘制;引用数据和计算公式须注明出处(加引文号),并附参考文献表。说明书前后应有目录、符号表;说明书可作封面设计,版本一律为十六开(或 A4幅面)。 摘要 化工生产和现在生活密切相关,人类的生活离不开各色各样的化工产品。设计化工单元操作,一方面综合了化学,物理,化工原理等相关理论知识,根据课程任务设计优化流程和工艺,另一方面也要结合计算机等辅助设备和机械制图等软件对数据和图形进行处理。 本次设计旨在分离苯和甲苯混合物,苯和甲苯化学性质相同,可按理想物系处理。通过所学的化工原理理论知识,根据物系物理化学特性及热力学参数,对精馏装置进行选型和优化,对于设备的直径,高度,操作条件(温度、压力、流量、组成等)对其生产效果,如产量、质量、消耗、操作费用

年处理量18万吨苯—甲苯混合液的连续精馏塔的设计

BeiJing JiaoTong University HaiBin College 化工原理课程设计 说明书 题目:年处理量18万吨苯—甲苯混合液的连续 精馏塔的设计 院(系、部):化学工程系 姓名: 班级: 学号: 指导教师签名: 2015 年4 月12 日

摘要 目前用于气液分离的传质设备主要采用板式塔,对于二元混合物的分离,应采用连续精馏过程。浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面都比较优越。其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平进入塔板上液层进行两相接触,浮阀可根据气体流量的大小上下浮动,自行调节。其中精馏塔的工艺设计计算包括塔高、塔径、塔板各部分尺寸的设计计算,塔板的布置,塔板流体力学性能的校核及绘出塔板的性能负荷图。 关键词:气液传质分离;精馏;浮阀塔

ABSTRACT Currently,the main transferring equipment that used for gas-liquid separation is tray column. For the separation of binary, we should use a continuous process. The advantages of the float value tower lie in the flexibility of operation, efficiency of the operation, pressure drop, producing capacity, and equipment costs. Its main feature is that there is a floating valve on the hole of the plate, then the air can come into the tray plate at a steady rate and make contract with the level of liquid, so that the flow valve can fluctuate and control itself according to the size of the air. The calculations of the distillation designing include the calculation of the tower height, the tower diameter, the size of various parts of the tray and the arrangement of the tray, and the check of the hydrodynamics performance of the tray. And then draw the dray load map. Key words:gas-liquid mass transfer;rectification;valve tower

最新分离苯甲苯混合液的筛板精馏塔化工原理课程设计

分离苯甲苯混合液的筛板精馏塔化工原理 课程设计

设计题目:分离苯-甲苯混合液的筛板精馏塔 学院:化学化工学院 专业班级:工艺104 设计者:冀东瑛(1004500446) 指导老师:葛元元 设计时间:2013年7月12日-16日 仅供学习与交流,如有侵权请联系网站删除谢谢54

前言 不知不觉大三最后一个学期即将结束。经过三年的学习,我们已经系统掌握了关于化工专业各方面的基础知识及专业知识;其中包括有机、无机、分析、物理化学四大化学、CAD机械工程绘图、化工仪表、化工设备基础、化工热力学、化工原理等课程。可以说知识越学越系统,越来越接近实际工程应用。 如今,在老师的指导下,我们进行了关于化工原理的课程设计。本次设计的目的是为了把我们大学里所学过的理论知识连串起来,并将它们运用到实际应用中,加深对知识的理解及应用能力。 本次设计的任务是设计用于分离苯-甲苯混合液的筛板式精馏塔。设计过程中,我们认真分析研究,考虑到实际生产中的经济效益问题及绿色环保问题,经过大量的工艺计算及理论确定,最终选用了筛板式精馏塔,并于常压下用直接蒸汽加热法进行分离操作;设计出了一套比较接近实际的精馏塔装置。 在设计过程中,由于我们所掌握的知识比较有限,且时间比较紧迫,所以设计方案及方法难免有些缺陷,在此我们恳请老师给予理解及指导,以使我们更早更快掌握解决实际工程问题的捷径! 仅供学习与交流,如有侵权请联系网站删除谢谢54

目录 第一章设计任务 (4) 1.1.2 设计条件 (4) 1.1.3 设计任务 (5) 1.2 设计方案的确定 (6) 1.2.1 选择塔型 (6) 1.2.2 精馏方式 (6) 1.2.3 操作压力 (6) 1.2.4 加热方式 (6) 1.2.5 工艺流程 (7) 第二章筛板式精馏塔的工艺设计 (8) 2.1 精馏塔的工艺计算 (8) 2.1.1 苯和甲苯的汽液平衡组成 (8) 2.1.2.精馏塔的物料衡算 (9) 2.2回流比及理论塔板的确定 (9) 2.3板效率及实际塔板数的确定 (12) 2.4操作方程的确定 (12) 2.5 精馏段物性数据计算 (13) 2.5.1.定性组成 (15) 2.5.2.平均分子量 (16) 2.5.3.平均密度 (16) 2.5.4. 精馏段液体表面张力 (17) 2.5.5. 液体平均粘度 (17) 2.5.6. 气液体积流率的计算 (18) 2.6 提留段物性数据计算 (18) 2.6.1.定性组成 (18) 2.6.2.平均分子量 (18) 2.6.3.平均密度 (19) 2.6.4.提馏段液体表面张力 (20) 2.6.5.液体平均粘度 (20) 2.6.6. 气液体积流率的计算 (21) 第三章塔和塔板主要工艺尺寸计算 (21) 3.1 塔板横截面的布置计算 (21) 仅供学习与交流,如有侵权请联系网站删除谢谢54

case_12吸附法分离混合二甲苯

分离工程工业应用实例: 吸附法分离混合二甲苯 1. 工业上二甲苯的来源 工业上混合二甲苯的来源主要有四种,即:催化重整油、蒸气裂解油、甲苯歧化和煤焦油。前三种来源于石油化工,而后一种则来源于煤化工。二甲苯有四种异构体;邻、间、对二甲苯和乙苯。由于它们都含8个碳原子,故又称C8芳烃。 表1 不同来源混合二甲苯异构体的组成 2. 混合二甲苯的用途及性质 混合C8芳烃中各同分异构体都是重要的工业原料,可广泛应用于合成各种有重要用途的医药产品、农药产品及特殊材料。 间二甲苯(MX)是C8芳烃中含量最多的组分,约占45%-50%,主要用途是通过异构化反应增产对二甲苯(PX)、邻二甲苯(OX),作为聚酷和苯配的原料。70年代以后,间二甲苯的直接化工利用得到了发展,如间二甲苯经氨氧化制间苯二睛(MPDN)等。 对二甲苯在C8组分中含量约占15%-20%,是合成聚酷树脂的主要原料。随着聚酷工业的发展,对二甲苯的生产将迅速增长,预计年增长率在5.6%左右。 邻二甲苯在C8组分中含量也大约占15%-20%,是生产苯配的主要原料。 乙苯在C8组分中含量很低,其用途大多作为溶剂。 表2 C8芳烃各组分物理性质 从表2可知,就沸点而言,邻二甲苯沸点最高,且与其它组分差距比较大(5.3-8.2 oC ),故采用精馏方法即可将其分离,乙苯与对、间二甲苯沸点也相差2 oC以上,故用精密精馏方法也可将其分离。唯有对、间二甲苯沸点相差很小,用精馏法甚至精密精馏法均需很高的塔板数,在能量消耗和设备费用上均为不利因素。从相对碱度来看,间/对=100,相差很大,这样可考虑利用它们碱度上的差别来分离此两种异构体。 3. 吸附分离 吸附分离法是近三十年才发展起来的一项技术,但己被各国普遍采用。此法最先用于分离对二甲苯,代表性工艺为UOP(美国环球油品公司)的Parex工艺和日本Toray公司的Aromax 工艺。因为混合二甲苯中对二甲苯的特殊对称性结构,使得其分子动力学直径相比其它异构体要小一些,这样就可被很多吸附剂选择吸附,从而达到分离的目的。经过吸附、洗脱、精馏洗脱液等工序可分离提纯对二甲苯且有很好的收率和纯度。但现在UOP公司己开发出吸附分离间二甲苯的Sorbex工艺。美国环球油品公司UOP,于20世纪60年代推出了Parex 工艺。该工艺由高选择性的吸附剂、脱附剂和模拟移动床分离技术组成/吸附剂采用八面沸石型分子筛。利用分子筛内1nm左右的微孔通道对C8各异构体进行吸附,而微孔对于对二甲苯的吸附能力最强。脱附剂一般采用对二乙苯或甲苯,它们不仅与原料中各个组份互溶,而且与C8芳烃中各组份的沸点相差较大,易于回收利用。模拟移动床技术是Parex工艺的核心,吸附塔进出物料的周期性分配全部通过UOP的专利技术即24通旋转分配阀实现。

苯-甲苯板式精馏塔的课程设计

目录 板式精馏塔设计任务书 (3) 设计题目: (3) 二、设计任务及操作条件 (3) 三、设计内容: (3) 一.概述 (5) 1.1 精馏塔简介 (5) 1.2 苯-甲苯混合物简介 (5) 1.3 设计依据 (5) 1.4 技术来源 (6) 1.5 设计任务和要求 (6) 二.设计方案选择 (6) 2.1 塔形的选择 (6) 2.2 操作条件的选择 (6) 2.2.1 操作压力 (6) 2.2.2 进料状态 (6) 2.2.3 加热方式的选择 (7) 三.计算过程 (7) 3.1 相关工艺的计算 (7) 3.1.1 原料液及塔顶、塔底产品的摩尔分率 (7) 3.1.2 物料衡算 (8) 3.1.3 最小回流比及操作回流比的确定 (8) 3.1.4精馏塔的气、液相负荷和操作线方程 (9) 3.1.5逐板法求理论塔板数 (10) 3.1.6 全塔效率的估算 (11) 3.1.7 实际板数的求取 (13) 3.2 精馏塔的主题尺寸的计算 (13) 3.2.1 精馏塔的物性计算 (13) 3.2.2 塔径的计算 (15) 3.2.3 精馏塔高度的计算 (17) 3.3 塔板结构尺寸的计算 (18) 3.3.1 溢流装置计算 (18) 3.3.2塔板布置 (19) 3.4 筛板的流体力学验算 (21) 3.4.1 塔板压降 (21)

3.4.2液面落差 (22) 3.4.3液沫夹带 (22) 3.4.4漏液 (22) 3.4.5 液泛 (23) 3.5 塔板负荷性能图 (23) 3.5.1漏夜线 (23) 3.5.2 液泛夹带线 (24) 3.5.3 液相负荷下限线 (25) 3.5.4 液相负荷上限线 (25) 3.5.5 液泛线 (26) 3.6 各接管尺寸的确定 (29) 3.6.1 进料管 (29) 3.6.2 釜残液出料管 (29) 3.6.3 回流液管 (30) 3.6.4塔顶上升蒸汽管 (30) 四.符号说明 (30) 五.总结和设计评述 (31)

化工原理课程设计 苯-甲苯浮阀精馏塔共19页

3.课程设计报告内容 3.1 流程示意图 冷凝器→塔顶产品冷却器→苯的储罐→苯 ↑↓回流 原料→原料罐→原料预热器→精馏塔 ↑回流↓ 再沸器← → 塔底产品冷却器→甲苯的储罐→甲苯 3.2 流程和方案的说明及论证 3.2.1 流程的说明 首先,苯和甲苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。因为被加热到泡点,混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下降。气相混合物上升到塔顶上方的冷凝器中,这些气相混合物被降温到泡点,其中的液态部分进入到塔顶产品冷却器中,停留一定的时间然后进入苯的储罐,而其中的气态部分重新回到精馏塔中,这个过程就叫做回流。液相混合物就从塔底一部分进入到塔底产品冷却器中,一部分进入再沸器,在再沸器中被加热到泡点温度重新回到精馏塔。塔里的混合物不断重复前面所说的过程,而进料口不断有新鲜原料的加入。最终,完成苯与甲苯的分离。 3.2.2 方案的说明和论证

本方案主要是采用浮阀塔。 精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下: 一:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流 动。 二:效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。 三:流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。 四:有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。 五:结构简单,造价低,安装检修方便。 六:能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。而浮阀塔的优点正是: 而浮阀塔的优点正是: 1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%~40%,与筛板塔接近。 2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。

对二甲苯的分离

分离工程期末论文 对二甲苯的分离 The Separation of Para-xylene 学院:化学工程学院 专业班级:化学工程与工艺化工081 学生姓名:孙真学号: 050811107 指导教师:戴卫东(副教授) 2011年6月

1 前言 对二甲苯是一种重要的有机化工原料,主要用于合成对苯二甲酸或对苯二甲酸二甲酯;对苯二甲酸与乙二醇反应得到的聚酯性能优异,广泛应用于纤维、胶片和树脂的制备,是一种十分重要的合成纤维和塑料的原料。随着全球聚酯需求的猛增,对二甲苯的生产将迅速增长,根据英国Tec-non咨询公司1999年12月的预测结果,在2001~2007年期间全球对二甲苯需求量的绝对增长值为704.2万t,预计年增长率在5.6%左右。分离混合二甲苯是制备对二甲苯的主要方法。混合二甲苯是由对二甲苯、间二甲苯、邻二甲苯等二甲异构体和乙苯组成的混合物(简称C馏分),各组份密度接近且沸点差较小,如对二甲苯与乙苯的沸点差是2.18℃,对二甲苯与间二甲苯的沸点差只有0.75℃,难以用传统精馏的办法分离。目前分离C8馏分的方法主要有吸附法、络合萃取法、冷冻结晶法和新开发的吸附-结晶集成分离法等。 2 吸附分离法 吸附分离法是目前分离混合二甲苯的主要方法,它利用固体吸附剂对各二甲苯异构体的不同吸附能力而实现各组份的分离。美国环球油品公司(UOP)的Parex 法[1-2]和日本东丽公司( Toray)的Aromax法[3-4]是吸附分离法的两大主流技术。 美国环球油品公司(UOP)于20世纪60年代推出了Parex工艺,该工艺由高选择性的吸附剂、脱附剂和模拟移动床分离技术组成。吸附剂采用八面沸石型分子筛,利用分子筛内1nm左右的微孔通道对C8各异构体进行吸附,而微孔对于对二甲苯的吸附能力最强;脱附剂一般采用对二乙苯或甲苯,它们不仅与原料中各个组份互溶,而且与C8芳烃中各组份的沸点相差较大,易于回收利用;模拟移动床技术是Parex工艺的核心,吸附塔进出物料的周期性分配全部通过UOP的专利技术即24通旋转分配阀实现。Aromax吸附分离法由日本东丽(Toray)公司开发,与Parex 法极为相似,唯一不同的是吸附器为卧式,由许多分割的小室组成,每个小室都设计有进出口阀门,操作过程中物料与吸附剂在各个小室陆续接触,从而实现了连续的吸附分离。此外,日本的旭化成公司利用置换色谱原理,用改进的沸石固体吸附剂和特殊的脱附剂开发出能同时分离对二甲苯和乙苯的Asahi法[5],并已经应用于中试装置。 我国从20世纪70年代开始从C8馏分中吸附分离对二甲苯的研究,石油化工科学研究院采用多柱串联流程进行气相吸附分离,已完成中试。据统计,到1992年为止,世界上已有56套Parex工艺装置投入运转,占全世界对二甲苯生产总能力的60%左右;而采用Aromax吸附分离工艺的对二甲苯装置的生产能力也在

苯甲苯精馏塔课程设计说明书

西北师大学 化工原理课程设计 学院: 化学化工学院 专业: 化学工程与工艺年级:2011 题目: 苯—甲苯精馏塔设计

前言 课程设计是化工原理课程的一个重要的实践教学容,是在学习过基础课程和化工原理理论与实践后,进一步学习化工设计的基础知识、培养化工设计能力的重要环节。通过该设计可初步掌握化工单元操作设计的基本程序和方法、得到化工设计能力的基本锻炼,更能从实践中培养工程意识、健全合理的知识结构。 此次化工原理设计是精馏塔的设计。精馏塔是化工生产中十分重要的设备,它是利用两组分挥发度的差异实现连续的高纯度分离。在精馏塔中,料液自塔的中部某适当位置连续的加入塔,塔顶设有冷凝器将塔顶蒸汽冷凝为液体。冷凝液的一部分(称回流液)回入塔顶,其余作为塔顶产品(称馏出液)连续排出。塔釜产生的蒸汽沿塔板上升,来自塔顶冷凝器的回流液从塔顶逐渐下降,气液两相在塔实现多次接触,进行传质传热过程,使混合物达到一定程度的分离。精馏塔的分离程度不仅与精馏塔的塔板数及其设备的结构形式有关,还与物料的性质、操作条件、气液流动情况等有关。该过程是同时进行传热、传质的过程。为实现精馏过程,必须为该过程提供物流的贮存、输送、传热、分离、控制等的设备、仪表。由这些设备、仪表等构成精馏过程的生产系统,即本次所设计的精馏装置。 课程设计是让同学们理论联系实践的重要教学环节,是对我们进行的一次综合性设计训练。通过课程设计能使我们进一步巩固和加强所学的专业理论知识,还能培养我们独立分析和解决实际问题的能力。更能培养我们的创新意识、严谨认真的学习态度。当代大学生应具有较高的综合能力,特别是作为一名工科学生,还应当具备解决实际生产问题的能力。课程设计是一次让我们接触实际生产的良好机会,我们应充分利用这样的时机认真去对待每一项任务,为毕业论文等奠定基础。更为将来打下一个稳固的基础。 虽然为此付出了很多,但在平常的化工原理课程学习中总是只针对局部进行计算,而对参数之间的相互关联缺乏认识,所以难免有不妥之处,望垂阅者提出意见,在此表示深切的意。 作者 2013年12月

苯与甲苯精馏塔课程设计

《化工原理课程设计》报告 年处理5.4万吨苯-甲苯精馏装置设计 学院:化学化工学院 班级:应用化学101班 姓名:董煌杰 学号:10114308(14) 指导教师:陈建辉 完成日期:2013年1月17日

序言 化工原理课程设计是化学工程与工艺类相关专业学生学习化工原理课程必 修的三大环节之一,起着培养学生运用综合基础知识解决工程问题和独立工作能力的重要作用。 综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

目录 一、化工原理课程设计任书 (1) 二、设计计算 (3) 1)设计方案的选定及基础数据的搜集 (3) 2) 精馏塔的物料衡算 (7) 3) 塔板数的确定 (9) 4) 精馏塔的工艺条件及有关物性数据的计算 (15) 5) 精馏塔的塔体工艺尺寸计算 (21) 6) 塔板主要工艺尺寸的计算 (23) 7) 塔板负荷性能图 (27) 三、个人总结 (36) 四、参考书目 (37)

乙苯与三种二甲苯的分离

乙苯与三种二甲苯的分离 邻二甲苯、间二甲苯、对二甲苯是三种反应共生产品,而在工业生产中对二甲苯是主要原料,如何分离三种二甲苯:邻二甲苯(1)、间二甲苯(2)、对二甲苯(3)、乙苯(4):

T-T b4=3.68*10-4*(P s4- P) 根据邻二甲苯与对二甲苯的沸点差按照黄金分割,设定T=413.901,而P=101.3KPa,求得相对挥发度(注解1) α21=1.1354;α31=1.1606;α41=1.226; α32=1.022;α42=1.079;α43=1.056 从相对挥发度分析,邻二甲苯与其它三种物质可以通过减压精馏,塔釜取得纯净的邻二甲苯。 第二步,利用乙苯、间二甲苯、对二甲苯具有较大的凝固点差异,可采取熔融结晶法,先行分离乙苯,再进一步采用结晶法分离间二甲苯和对二甲苯;或者在分离乙苯后,利用间二甲苯与对二甲苯的偶极矩的差异(极性差异),利用分子筛进行吸附分离。 (2)间二甲苯沸点138.8 对二甲苯沸点:138.4℃ 间二甲苯与对二甲苯为同分异构体。异构体挥发度相差较小,不能用精馏的方法分离,这两种物质熔点相差较大,所以工业上用熔融结晶和吸附分离两种物质。

注解1.相对挥发度:习惯上将溶液中易挥发组分的挥发度对难挥发组分的挥发度之比,称为相对挥发度。以α表示。 α=(yA/yB)/(xA/xB), yA——气相中易挥发组分的摩尔分数;yB——气相中难挥发组分的摩尔分数; xA——液相中易挥发组分的摩尔分数;xB——液相中难挥发组分的摩尔分数。 液体混合物中两组分的相平衡比的比值。组分A对组分B的相对挥发度xAB可表示为:αAB=KA/KB(1) 式中KA和KB分别为组分A和B的相平衡比。同一混合液中,挥发性大的组分,一般相平衡比大,故易挥发组分对难挥发组分的相对挥发度大于1;反之则小于1。对于由组分A和B组成的双组分混合液,yA=1-yB,xA=1-xB。据此可以导得:公式.(3)式表明:如果αAB大于1,则yA大于xA,即汽相中组分A得以增浓,A为易挥发组分。αAB比1大得愈多,则yA 比xA也大得愈多;如αAB小于1,则yA小于xA,也即组分B在汽相得到增浓,B为易挥发组分。αA 公式3B比1小得愈多,则B在汽相中的增浓愈显著。当αAB等于1时,则yA等于xA,这表明用蒸馏方法不能分离此混合液。因此αAB与1偏离的程度是蒸馏操作分离液体混合物难易程度的标志。 当混合物中液相为理想溶液且汽相为理想气体时,应用拉乌尔定律和道尔顿分压定律,可导出:αAB =p2/p1 式中p1和p2分别为组分A和B的饱合蒸气压。此时相对挥发度为两组分的饱和蒸气压(纯组分挥发性的一种度量)之比。对于理想系统,相对挥发度与混合液的组成和温度关系很小,工程上可视为常数。但强非理想系统的浓度对相对挥发度有较大的影响。此外,在工业上有时还在混合液中加入某种添加物来增大待分离组分间的相对挥发度,使难以用普通蒸馏分离的混合液变得易于进行分离。这就是萃取精馏、恒沸精馏和加盐精馏等特殊精馏的基本依据。

化工原理课程设计苯-甲苯板式精馏塔设计

化工原理课程设计------------苯-甲苯连续精馏板式塔的设计专业年级:11级化工本2 姓名:申涛 指导老师:代宏哲 2014年7月

目录 一序言 (3) 二板式精馏塔设计任务书 (4) 三设计计算 (5) 1.1 设计方案的选定及基础数据的搜集 (5) 1.2 精馏塔的物料衡算 (8) 1.3 精馏塔的工艺条件及有关物性数据的计算 (12) 1.4 精馏塔的塔体工艺尺寸计算 (17) 1.5 塔板主要工艺尺寸的计算 (18) 1.6 筛板的流体力学验算 (21) 1.7 塔板负荷性能图 (24) 四设计结果一览表 (30) 五板式塔得结构与附属设备 (31) 5.1附件的计算 (31) 5.1.1接管 (31) 5.1.2冷凝器 (33) 5.1.3 再沸器 (33) 5.2 板式塔结构 (34) 六参考书目 (36) 七设计心得体会 (36) 八附录......................................................................................... 错误!未定义书签。

一序言 化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

苯-甲苯连续精馏浮阀塔课程设计

设计任务书 设计题目: 苯-甲苯连续精馏浮阀塔设计 设计条件: 常压: 1p atm = 处理量: 100Kmol h 进料组成: 0.45f x = 馏出液组成: 98.0=d x 釜液组成: 02.0=w x (以上均为摩尔分率) 塔顶全凝器: 泡点回流 回流比: min (1.1 2.0)R R =- 加料状态: 0.96q = 单板压降: 0.7a kp ≤ 设 计 要 求 : (1) 完成该精馏塔的工艺设计(包括物料衡算、热量衡算、筛板塔的设计算)。 (2) 画出带控制点的工艺流程图、塔板负荷性能图、精馏塔工艺条件图。 (3) 写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。

目录 摘要 ........................................................................................................................................................................... I 绪论 (1) 设计方案的选择和论证 (3) 第一章塔板的工艺计算 (5) 1.1基础物性数据 (5) 1.2精馏塔全塔物料衡算 (5) 1.2.1已知条件 (5) 1.2.2物料衡算 (5) 1.2.3平衡线方程的确定 (6) 1.2.4求精馏塔的气液相负荷 (7) 1.2.5操作线方程 (7) 1.2.6用逐板法算理论板数 (7) 1.2.7实际板数的求取 (8) 1.3精馏塔的工艺条件及有关物性数据的计算 (9) 1.3.1进料温度的计算 (9) 1.3.2操作压力的计算 ................................................................................................ 错误!未定义书签。 1.3.3平均摩尔质量的计算 (9) 1.3.4平均密度计算 (10) 1.3.5液体平均表面张力计算 (11) 1.3.6液体平均粘度计算 (12) 1.4 精馏塔工艺尺寸的计算 (12) 1.4.1塔径的计算 (12) 1.4.2精馏塔有效高度的计算 (14) 1.5 塔板主要工艺尺寸的计算 (14) 1.5.1溢流装置计算 (14) 1.6浮阀数目、浮阀排列及塔板布置 (15) 1.7塔板流体力学验算 (16) 1.7.1计算气相通过浮阀塔板的静压头降h f (16) 1.7.2计算降液管中清夜层高度Hd (17) 1.7.3计算雾沫夹带量e V (18) 1.8塔板负荷性能图 (19) 1.8.1雾沫夹带线 (19) 1.8.2液泛线 (19) 1.8.3 液相负荷上限线 (21) 1.8.4漏液线 (21) 1.8.5液相负荷下限线 (21) 1.9小结 (22) 第二章热量衡算 (23) 2.1相关介质的选择 (23) 2.1.1加热介质的选择 (23) 2.1.2冷凝剂 (23) 2.2热量衡算 (23) 第三章辅助设备 (28)

高效液相色谱分离苯、二甲苯

高效液相色谱法分离苯、甲苯 实验目的: 1. 了解高效液相色谱仪器的组成部分。 2. 掌握高效液相色谱仪器的使用方法及软件操作方法。 3. 掌握分离样品的流动相的配置方法。 实验仪器介绍: 高效液相色谱仪的组成如下图: A 色谱泵:本实验室色谱泵型号:Waters 1525 Binary HPLC Pump 其组成部分如下图: B 进样器:本实验室进样器型号:Waters 2707 Autosampler 其组成部分如下图:

侧面图如下: 自动进样器有三种进样模式: 充满定量环:具有最高的进样体积精度 不充满定量环针头溢出:具有最大的灵活性不充满定量环:具有零样品的损失

使用过程:

C 检测器型号:Atltech ELS D 2000 ES 其组成部分如下图: 蒸发光散射检测器的原理:首先将柱洗脱雾化形成气溶胶,然后在加热的漂移管中将溶剂蒸发,最后余下的不挥发性溶质颗粒在光散射监测池中得到监测。

1.LCD(液晶显示):在仪器使用中液晶显示的主窗口为操作窗口。操作窗口列出了仪器 的状态和参数,如方法的名称,漂移管温度,气体流量,撞击器位置,增益,信号输出,满量程输出设置,和操作错误总数(如发生)。液晶屏也显示所有相关的子窗口:方法窗口,参数设置窗口,和诊断窗口。 2.数字键盘:触摸键盘提供0-9 数字,“*”,和“Enter ”键调整仪器参数。 3.窗口键:前面板上有四个圆形触摸窗口键。每个窗口键的功能是基于屏幕。如果该键在 当前窗口中是可执行的,当前的功能会显示在该键上方的窗口屏幕上。 液相色谱法分离苯与甲苯 原理:试样中苯、甲苯用甲醇溶解,以甲醇+水为流动相,使用C18柱为填充的不锈钢柱和紫外检测器,对试样中的苯、甲苯进行高效液相色谱分离和外标法定量。 试剂和溶液 苯、甲苯(色谱纯) 甲醇(色谱纯) 水(新蒸二次蒸馏水) 仪器 高效液相色谱仪:具有可变波长紫外检测器 色谱柱:250 mm * 4.6 mm(id),不锈钢柱,内装C18 填料,粒径 5 μm 超声波清洗器 微孔过滤器:滤膜孔径为0.45 μm 分析步骤 高效液相色谱操作条件 流动相:甲醇+水=70+30(V / V ),使用前经0.45 μm 滤膜并超声脱气。 柱温:室温。 流速:1.0 ml/min 检测波长:254 nm 进样量:10 μL 标准溶液配制 称取色谱纯苯、甲苯各0.05g(精确至0.0001 g)于50 ml 容量瓶中,此溶液质量浓度C(苯、甲苯)为1.00 mg/ml,用甲醇溶液溶解并稀释至刻度,摇匀备用。标准曲线的制备 分别吸取苯、甲苯标准溶液0.5、1.00、1.50、2.00、2.50、3.00 ml,置于50 ml 容量瓶中,用甲醇稀释至刻度,摇匀,配置成分别含苯、甲苯10.00 μg/ml、20.00 μg/ml、30.00 μg/ml、40.00μg/ml、50.00μg/ml、60.00μg/ml的标准溶液,用0.45μm 滤膜过滤,滤液待用。 在上述色谱条件下,待仪器基线稳定后注入标准系列溶液,记录色谱峰面积,以苯、甲苯的质量浓度(μg/ml)为横坐标,相应的色谱峰面积为纵坐标,绘制标准曲线。 试验的测定 在与测定标准系列溶液相同的条件下注入待测溶液,根据色谱峰的保留时间定性,记录色谱峰面积,并从标准曲线查的苯、甲苯的浓度。 结果的表示 苯、甲苯质量分数X(%)按下式计算:

苯-甲苯精馏塔设计

西北师范大学 化工原理课程设计 学院: 化学化工学院 专业: 化学工程与工艺年级:2011 题目: 苯—甲苯精馏塔设计 学生姓名: 卢东升 学号: 201173020228 2014年1月3日

前言 课程设计是化工原理课程的一个重要的实践教学内容,是在学习过基础课程和化工原理理论与实践后,进一步学习化工设计的基础知识、培养化工设计能力的重要环节。通过该设计可初步掌握化工单元操作设计的基本程序和方法、得到化工设计能力的基本锻炼,更能从实践中培养工程意识、健全合理的知识结构。 此次化工原理设计是精馏塔的设计。精馏塔是化工生产中十分重要的设备,它是利用两组分挥发度的差异实现连续的高纯度分离。在精馏塔中,料液自塔的中部某适当位置连续的加入塔内,塔顶设有冷凝器将塔顶蒸汽冷凝为液体。冷凝液的一部分(称回流液)回入塔顶,其余作为塔顶产品(称馏出液)连续排出。塔釜产生的蒸汽沿塔板上升,来自塔顶冷凝器的回流液从塔顶逐渐下降,气液两相在塔内实现多次接触,进行传质传热过程,使混合物达到一定程度的分离。精馏塔的分离程度不仅与精馏塔的塔板数及其设备的结构形式有关,还与物料的性质、操作条件、气液流动情况等有关。该过程是同时进行传热、传质的过程。为实现精馏过程,必须为该过程提供物流的贮存、输送、传热、分离、控制等的设备、仪表。由这些设备、仪表等构成精馏过程的生产系统,即本次所设计的精馏装置。 课程设计是让同学们理论联系实践的重要教学环节,是对我们进行的一次综合性设计训练。通过课程设计能使我们进一步巩固和加强所学的专业理论知识,还能培养我们独立分析和解决实际问题的能力。更能培养我们的创新意识、严谨认真的学习态度。当代大学生应具有较高的综合能力,特别是作为一名工科学生,还应当具备解决实际生产问题的能力。课程设计是一次让我们接触实际生产的良好机会,我们应充分利用这样的时机认真去对待每一项任务,为毕业论文等奠定基础。更为将来打下一个稳固的基础。 虽然为此付出了很多,但在平常的化工原理课程学习中总是只针对局部进行计算,而对参数之间的相互关联缺乏认识,所以难免有不妥之处,望垂阅者提出意见,在此表示深切的谢意。 作者 2013年12月

苯甲苯二甲苯三元模拟物系分离(proII软件)

吉林化工学院 PROII上机练习 题目:三苯精馏过程模拟计算 教学院石油化工学院 专业班级化工1204班 学生学号 12110432 学生姓名常月 指导教师刘艳杰 2015 年5月24日

任务: 1、处理量:13万吨混合芳烃/年 2、生产方法:精馏 3、生产时间:330天/年 4、原料组成见右表 5、饱和液体进料,塔顶采用全凝器 6、各塔产品质量指标 T0201(苯塔):99.9%(苯); T0202(甲苯塔):99.5%(甲苯) 7、操作压力: T0201:171kPa T0202:191kPa 8、组分及原料组成(质量分数):苯:45.5 甲苯:24.3二甲苯:30.2 要求: 1、完成全流程的简捷模拟计算; 2、完成全流程的严格模拟计算; 3、优化各塔进料位置,核算各塔的分离要求; 4、计算T0201塔塔顶冷凝器和再沸器公用工程的消耗量。

根据已知数据计算得出:F=(13×104×103)/(330×24)=16414.14kg/hr 双击图标启动软件,点击确认 新建文件后开始计算: 一、简捷计算: 1、选择单位: 点击:选择SI-SET1(国际单位制),并将温度从开尔文(K)改为摄氏度(℃): 2、添加组分: 选择Most Commonly Used,选择Chemical Formula,并分别输入:C6H6、C7H8、C8H10,然后选添加: 3、热力学方程选择: 选择常用里的SRK方程

3、画流程图: 4、输入F物流数据: 点击Flowrate and Composition后,如下图: 首先将光标放在Total Fluid Flowrate框内,点击把mole单位改为mass单位,然后输入

相关文档
最新文档