罗克韦尔自动化 基于EtherNet/IP的集成运动控制解决方案

罗克韦尔自动化 基于EtherNet/IP的集成运动控制解决方案

运动控制系统基本要求

11级电气工程与自动化专业《运动控制系统》基本要求(2014-05-23) 第一章 绪论 了解本课程的研究内容。 第二章 (转速单)闭环控制的直流调速系统 1、 了解V (SCR )--M 、PWM--M 两种主电路方案及其特点(2.1节、P16、P97--98、笔记); 2、 他励(或永磁)直流电动机三种数学模型及转换,解耦模型中I do ~U d 环节的处理(P27--28、笔记); 3、 稳态性能指标中D 、S 间关系及适用范围(2.2.1节、P29--30、笔记); 4、 转速单闭环直流调速系统组成原理、特点及适用范围(P2 5、笔记); 5、 带电流截至负反馈的转速单闭环直流调速系统的组成原理、特点(笔记、2.5.2节)。 第三章 转速、电流反馈控制的直流调速系统 1、 双闭环直流调速系统的组成原理(主要指:V —M 不可逆调速系统、PWM-M 调速系统)、特点,符合实际的系统数学模型,静(稳)态参数的整定及计算(P60、P59--6 2、笔记); 2、 ASR 、ACR 的作用(P65); 3、 典1、典2系统的特点、适用范围、参数整定依据(3.3.2节、笔记); 4、 基于工程设计法的ASR 、ACR 调节器参数整定方法(P77--78、3.3.3节、例3-1、3-2、笔记); 5、 理解ASR 退饱和时的(阶跃响应)转速超调量等时域指标算式(P86--88、笔记); 6、 系统分别在正常恒流动态、稳态阶段,及机械堵转故障、转速反馈断开故障下的(新稳态)物理量计算; 7、 M 、T 、M/T 三种数字测速方法及特点(2.4.2节、笔记); 8、 了解了解M/T 数字测速的技术实现方法、系统控制器的技术实现方法(P82-85、笔记)。 第四章 可逆控制和弱磁控制的直流调速系统 1、 PWM--M 可逆直流调速系统组成原理及特点(4.1节,笔记) 2、 V (SCR )--M 可逆主电路中的环流概念、类型、特点(P103--104、笔记); 3、 常用的晶闸管-直流电动机可逆调速系统组成原理及特点(4.2.2节,图4-1 4、图4-1 5、4.2.3节)。 第五章 基于稳态模型的异步电动机调速系统 1、 异步电动机定子调压调速的机械特性簇与特点,转速闭环调压调速系统组成原理及适用范围(5.1--5.2节); 2、 软起动器的作用及适用条件(5.2.4节); 3、 异步电动机变压变频调速的基本协调控制关系(一点两段)及其依据(5.3.1节); 4、 异步电动机四种协调控制的特点,各自的机械特性簇、特点及比较(5.3.2节--5.3.3节、笔记); 5、 SPWM 、CFPWM 、SVPWM 变频调速器组成原理与特点,及其中各环节的作用(5.4节); 6、 了解基于转差频率控制的转速闭环变频变压调速系统的基本原理(5.6节)。 第六章 基于动态模型的异步电动机调速系统 1、 交流电动机坐标变换的作用,矢量控制(VC )的基本思想、特点(6.6、6.7、笔记); 2、 异步电动机VC 系统的一般组成原理(图6-20); 3、 了解各种具体的VC 系统组成方案,理解转子磁链直接与间接定向控制的区别(6.6. 4、6.6.6节、笔记); 4、 异步电动机直接转矩控制(DTC )系统的基本原理及特点(6.7.3节),DTC 与VC 的比较(6.8节)。 第七章 绕线转子异步电动机双馈调速系统 1、 绕线转子异步电动机次同步串级调速主电路及其工作原理,()S f β=公式及特点(7.2.1节、笔记); 2、 绕线转子异步电动机双闭环次同步串级调速系统组成原理;起动、停车操作步骤;(7.5、7.6、7.4.3节、笔记)。 第八章 同步电动机变压变频调速系统 1、 正弦波永磁同步电动机(PMSM )矢量控制系统组成原理,0sd i =时的转矩公式(8.4.3节); 2、 具有位置、速度闭环的正弦波永磁同步电动机(伺服)矢量控制系统组成原理(图8-26、27扩展、笔记)。 第九章 伺服系统 1、 位置伺服系统的典型结构(开环、半闭环、闭环、混合闭环)及特点(笔记、9.1.2); 2、 位置伺服系统的三种运行方式、位置伺服系统的三种方案;(笔记、9.3.2--9.3.4) 3、 数字伺服系统中电子齿轮的作用(笔记); 4、 数字式位置、速度伺服系统的指令形式(笔记)。 *** 考试须知---要点提示: (1)无证件者不能考试;(2)未交卷者中途不得离场;(3)严禁带手机到座位,操作手机者按作弊论处。 附:答疑地点(2-216)、时间:(1)2014-6-6,13:00--15:00;(2)2014-6-7,8:00--11:00,13:00--15:00。

电力传动控制系统——运动控制系统

电力传动控制系统——运动控制系统 (习题解答) 第 1 章电力传动控制系统的基本结构与组成.......... 第 2 章电力传动系统的模型................. 第 3 章直流传动控制系统................... 第 4 章交流传动控制系统................... 第 5 章电力传动控制系统的分析与设计* ............ 错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签

第1章电力传动控制系统的基本结构与组成 1.根据电力传动控制系统的基本结构,简述电力传动控制系统的基本原理和共性问题。 答:电力传动是以电动机作为原动机拖动生产机械运动的一种传动方式,由于电力传输和变换的便利,使电力传动成为现代生产机械的主要动力装置。电力传动控制系统的基本结构如图1-1所示,一般由电源、变流器、电动机、控制器、传感器和生产机械(负载)组成。 控制指令 图1-1电力传动控制系统的基本结构 电力传动控制系统的基本工作原理是,根据输入的控制指令(比如:速度或位置指令),与传感器采集的系统检测信号(速度、位置、电流和电压等),经过一定的处理给出相应的反馈控制信号,控制器按一定的控制算法或策略输出相应的控制信号,控制变流器改变输入到电动机的电源电压、频率等,使电动机改变转速或位置,再由电动机驱动生产机械按照相应的控制要求运动,故又称为运动控制系统。 虽然电力传动控制系统种类繁多,但根据图1-1所示的系统基本结构,可以归纳出研发或应用电力传动控制系统所需解决的共性问题: 1)电动机的选择。电力传动系统能否经济可靠地运行,正确选择驱动生产 机械运动的电动机至关重要。应根据生产工艺和设备对驱动的要求,选择合适的电动机的种类及额定参数、绝缘等级等,然后通过分析电动机的发热和冷却、工作制、过载能力等进行电动机容量的校验。 2)变流技术研究。电动机的控制是通过改变其供电电源来实现的,如直流 电动机的正反转控制需要改变其电枢电压或励磁电压的方向,而调速需要改变电 枢电压或励磁电流的大小;交流电动机的调速需要改变其电源的电压和频率等,因此,变流技术是实现电力传动系统的核心技术之一。 3)系统的状态检测方法。状态检测是构成系统反馈的关键,根据反馈控制 原理,需要实时检测电力传动控制系统的各种状态,如电压、电流、频率、相位、 磁链、转矩、转速或位置等。因此,研究系统状态检测和观测方法是提高其控制

国产MCT8000系列开放式运动控制器

如果您想开发具有自主知识产权,物美价廉的数控系统或者运动控制系统,请您不妨关注一下国产MCT8000系列开放式运动控制器。 1. 它可以让您快速的构造基于PC的运动控制(数控)系统。2. 可以控制各种伺服、步进电机,实现开,闭环控制。 3. 可以进行网络控制。4. 提供二维、三维圆弧和直线插补。5. 最小伺服更新周期可以达到0.2毫秒!摩信MCT8000系列开放式运动控制器简介MCT8000系列开放式运动控制器是目前市场上开放性最好的运动控制器,可以控制步进电机和交、直流伺服电机。下位机采用标准C语言编程,提供超级开放的底层软硬件接口。用户可以在此基础上构造自己的闭环控制算法以及各种硬件插补算法。控制器的CPU采用美国TI TMS320C31 40MHz DSP,主控机与控制器之间采用双向高速FIFO 进行通讯,可提供1~16轴高速步进电机系统控制。主控机可选用任何带有ISA 插槽PC系列微机。MCT8000系列产品在设计上采用了先进的软硬件重构技术。我们能够根据每一客户每一个不同的要求,对控制器的硬件模块进行最佳调整,配以摩信科技的基本输入输出系统BIOS、基本运动控制函数库BMCL、主机C语言函数库MCTHOST.LIB和动态连接库MCTHOSTDLL.DLL以及浮动网际在线控制界面WMOCI,使提供给客户的MCT8000运动控制器具有最佳性能价格比。特有性能* 网际浮动式操作界面,方便远程在线、多系统协调作业,支持远程调试和故障诊断功能。* 开放式结构,可随意增加外部传感器,扩展系统功能。* 高伺服更新速度,每轴最小10μs,可直接控制DD (Direct Drive)臂机器人和高速直线电机;* 高可靠性双CPU结构,下位机可脱离上位机工作。* 优良的软硬件重构特性,便于技术升级和维护。* 兼容性好,配备摩信科技的运动控制模块,可以控制多种机器人、数控机床以及其他过程控制系统。基本应用领域* 直流和交流伺服电机系统* 步进电机系统* 机器人控制系统* 数控机床控制系统* 直线驱动器控制系统* 主动振动控制系统* 传感器融合控制系统* 演示系统,如倒立摆* 液压伺服系统* 飞行模拟器控制系统* 信号采集和处理系统* 网络监控系统运动控制及其它控制功能* 梯形,双S,双抛物线插补方式。* 1~3维PTP和CP直线-直线,直线-圆弧,圆弧-圆弧轨迹控制方式。* 内置标准的PID控制算法。* 自动PID参数整定功能。* 远程诊断和监控功能。* 自动搜索INDEX信号。技术参数* CPU采用美国Texas Instruments公司TMS320C31 40MHz DSP。* 128K/512K/640K×32位12ns高速静态RAM。* 2M 位90ns 闪速(FLASH)内存。* 4~8通道12位模拟量输出,-10V~+10V输出范围,工作频率100KHz。* 4~8通道0~2MHz的正负差动步进脉冲输出,正负差动方向控制信号。* 6~12通道12位模拟量输入,-10V~+10V输入范围,625KHz采样频率。* 4~8通道光电编码器接口,24位计数器,计数频率4.25MHz,差动或单端输入,Index信号,内部数字滤波。* 16位可编程数字输入/输出接口,TTL电平。* 32~64路光电隔离数字输出接口。* 32~64路光电隔离数字输入接口。* 与主机连接方式:标准ISA总线接口。* 支持单主机多块控制板同时工作。* 操作系统:Windows 95/98/NT/2000。软件包(软件包资料详见软件产品说明书)MCT-BIOS * 对主控板MCT8000所有可用I/O口进行直接操作的各种函数;* 主控机与主控板的通讯内核;* TI (Texas Instruments) 的C编译和连接器;* 摩信科技的应用程序下载器。MCT-BMCL * 提供1~3维空间连续轨迹的运动插补和控制函数库。MCT-WMOCL 提供基于网络技术和Windows 的开发平台。深圳市摩信科技有限公司Shenzhen Motion Control Technology Co.,Ltd 杨先生张先生地址(Address):中国,广东,深圳市南山区科技园虚拟大学园A510 邮政编码(ZIP):518057 手机(Mobile):86-135******** 电话(Telephone):86-755-26712039 / 26712011 FAX:86-755-26712040 Email:Thudy@https://www.360docs.net/doc/d017417023.html, https://www.360docs.net/doc/d017417023.html,

罗克韦尔自动化运动控制系统常见问题解答

罗克韦尔自动化罗克韦尔自动化运动控制系统运动控制系统 常见问题解答

1.什么是实轴 什么是实轴??什么是虚轴 什么是虚轴?? 答:实轴可以理解为实际存在的想要控制的电机,一台电机或者一台执行器(电动缸,直线电机)可以理解为一根实轴。虚轴则是相对于实轴而言的,它是仅存在与控制器内部的一个数据对象,没有物理上的器件(电机或执行器)和它对应,虚轴通常在程序起到参考同步信号或标准位置信号来使用。 2.Kinetix 2000,6000,7000驱动器 驱动器和和Ultra3000,5000等系列驱动器之间主要区别在哪里 等系列驱动器之间主要区别在哪里??答:Kinetix系列和Ultra系列驱动器都是由罗克韦尔自动化有限公司生产的伺服驱动器产品,从运动控制功能上来说,都可以满足各类从简单到复杂的运动控制应用。但两类产品又各有其特点和区别。 驱动器Kinetix 2000,6000 Ultra 3000,5000 架构共直流母线设计,共用整流单元,安装空间小,接线数量少,更节能。结合 Logix5000软件可以很方便的开发出从中 小型到大型设备的控制程序。 适用于大中型运动控制架构。 轴数较多情况下成本低于ultra系列。 7000系列由于功率较大,虽然同列入 kinetix系列,单外观上仍为单体型。传统单体型设计,每台驱动器具有各自的整流单元,接线数量多于kinetix系列,适用于中小型架构。Ultra5000较特殊,具有支持高级语言C开发程序功能,客户可在驱动器内部编制并固化自己控制程序并自动运行。称为智能化驱动器。 网络只支持Sercos网络。 将来会推出支持以太网CIP协议的驱动器支持Sercos,DeviceNet。 脱离网络可使用Ultraware预配置运行。 安全功能所有6000系列和部分2000系列已经支持 安全扭矩关断功能。不久将来,可以脱 离安全继电器和控制器实现安全速度, 安全门开关控制能安全功能。 尚不支持安全关断功能 3.在Sercos架构的网络中 架构的网络中,,每块PLC最多可以控制多少个伺服轴 最多可以控制多少个伺服轴?? 答:对于罗克韦尔自动化不同产品线的PAC可以控制的伺服轴数量限制是不同的。具体限制如下: PAC 实轴虚轴 1768-L43 4 4 1768-L45 8 4 1756-L61,63,65 32 需要注意的是,对于1768系列驱动器支持的实轴虚轴数为分开计数的,对于1756系列驱动器以想要个使用的实轴和虚轴总和为计数来衡量。 4.kinetix 系列一块底板最多可以安装多少个驱动器 系列一块底板最多可以安装多少个驱动器?? 答:这个需要看情况而定。对于罗克韦尔kinetix驱动器而言,最长的底板为8槽底板。伺服驱动器模块的宽度按照功率来分有两种,一种为单宽度,一种为双倍宽度。所以对于一块8槽底板来说,最多可以安装8个单宽度的驱动器。但是如果选用了双宽度的驱动器模块的话,一块底板上可以安装的驱动器数量是要相应减少的,在配置中需要注意这点。驱动器宽度整理如下: 驱动器产品线单宽度双宽度 Kinetix2000 2093-AC05-MP1 2093-AC05-MP2 2093-AC05-MP5 2093-AMP1 2093-AM01 2093-AM02

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

基于ROS的智能代步车嵌入式运动控制系统

基于ROS的智能代步车嵌入式运动控制系统 摘要:针对目前智能代步车运动控制系统功耗高、体积大和开发成本高和工作量大等不足,提出一种基于机器人操作系统(Robot Operating System,ROS)的智能代步车嵌入式运动控制系统。该运动控制系统将ROS移植到arm嵌入式板卡,将arm作为中央处理器,运用ROS中的导航功能包实现智能代步车的地图建立、路径 规划、室内外自主导航、运动控制等功能,最后通过仿真实验验证了该运动控制系统的可行性。 关键词:机器人操作系统;智能代步车;嵌入式运功控制系统 中图分类号:TP311 文献标识码:A 文章编号:2096-1472(2016)-06-48-03 Abstract:In view of some outstanding problems of intelligent electronic scooters,such as the high power consumption,the huge size,the high development costs and heavy workload,the paper proposes an embedded motion control system based on the Robot Operating System(ROS)for intelligent electronic scooters the ROS was ported to the arm embedded board which is used as the central processor in the embedded motion control system.Functions like map building, route planning,indoor and outdoor autonomous navigation and motion control are implemented through the ROS navigation function package.At the end of the paper,the feasibility of the motion control system is verified through the simulation experiments. Keywords:ROS;intelligent electronic scooters;embedded motion control systems

几种运动控制系统的比较

运动控制的实现方法 1、以模拟电路硬接线方式建立的运动控制系统 早起的运动控制系统一般采用运算放大器等分离器件以硬接线的方式构成,这种系统的优点: (1)通过对输入信号的实时处理,可实现系统的高速控制。 (2)由于采用硬接线方式可以实现无限的采样频率,因此,控制器的精度较高并且具有较大的带宽。 然而,与数字化系统相比,模拟系统的缺陷也是很明显的: (1)老化与环境温度的变化对构成系统的元器件的参数影响很大。 (2)构成系统所需的元器件较多,从而增加了系统的复杂性,也使得系统最终的可靠性降低。 (3)由于系统设计采用的是硬接线的方式,当系统设计完成之后,升级或者功能修改几乎是不可能的事情。 (4)受最终系统规模的限制,很难实现运算量大、精度高、性能更加先进的复杂控制算法。 模糊控制系统的上述缺陷使它很难用于一些功能要求比较高的场合。然而,作为控制系统最早期的一种实现方式,它仍然在一些早期的系统中发挥作用; 另外,对于一些功能简单的电动机控制系统,仍然可以采用分立元件构成。 2、以微处理器为核心的运动控制系统 微处理器主要是指以MCS-51、MCS-96等为代表的8位或16位单片机。采用微处理器取代模拟电路作为电动机的控制器,所构成的系统具有以下的优点:(1)使电路更加简单。模拟电路为了实现逻辑控制需要很多的元器件,从而使电路变得复杂。采用微处理器以后,大多数控制逻辑可以采用软 件实现。 (2)可以实现复杂的控制算法。微处理器具有较强的逻辑功能,运算速度快、精度高、具有大容量的存储器,因此有能力实现较复杂的控制算 法。 (3)灵活性和适应性强。微处理器的控制方式主要是由软件实现,如果需要修改控制规律,一般不需要修改系统德硬件电路,只需要对系统的

运动控制新技术及其应用

运动控制的发展,前景,及其应用 运动控制技术的产生与发展现状 早期的运动控制技术主要是伴随着数控技术(CNC)、机器人技术(Robotics)和工厂自动化技术的发展而发展的。最初的运动控制器实际上是可以独立运行的专用控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行(Stand-alone)的运动控制器,主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC方式传输到控制器,控制器即可完成相关的动作。但这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。通用运动控制器的发展成为市场的必然需求。1987年,美国政府组织开放式运动控制系统的研究,即下一代控制器(NGC)研究计划。该计划首先提出了开放体系结构控制器的概念,制定了/开放系统体系结构标准规格(OSACA)0。自1996年开始,美国几个大的科研机构对NGC计划分别发表了相应的研究成果,如美国国际标准研究院研制的/增强型机床控制器(EMC)0。美国通用、福特和克莱斯勒三大汽车公司研制的/开放式、模块化体系结构控制器(OMAC)0,其目的是用更加开放、更加模块化的控制结构使制造系统更加柔性、更加敏捷。近年来,随着运动控制技术的不断进步和完善,运动控制器作为一个独立的工业自动化控制类产品,已经被越来越多的产业领域接受,并且已经达到一个引人瞩目的市场规模。我国在运动控制器产品开发方面相对滞后, 1999年固高科技有限公司开始开发、生产开放式运动控制器,随后,国内又有其他几家公司进入该领域,但实际上,其大多是在国内推广国外生产的运动控制器产品,真正进行自主开发的公司较少。本文主要介绍了全闭环交流伺服驱动技术(Full Closed AC Servo)、直线电机驱动技术(Linear Motor Driving)、可编程序计算机控制器(Programmable Computer Controller,PCC)和运动控制卡(Motion Controlling Board)等几项具有代表性的新技术。 1 全闭环交流伺服驱动技术 在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(Digital Signal Processor, DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。 该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控

运动控制基础教学大纲2017版

《运动控制基础》课程教学大纲 课程代码:060131004 课程英文名称:Moving-Control Foundation 课程总学时:40 讲课:36 实验:4 上机:0 适用专业:自动化专业 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是高等工业学校自动化专业开设的一门专业基础课。课程主要讲授运动控制系统的动力学基础;直流运动控制系统基础;交流运动控制系统基础。 本课程的教学目的是使学生掌握运动控制系统的组成、功能及分析运动控制系统的知识;掌握电动机起动、制动、调速的实现方法:掌握直流运动控制系统、交流运动控制系统静态特性、动态特性的分析方法。为学习后续课程打下基础。 (二)知识、能力及技能方面的基本要求 通过本门课程学习,要求学生掌握运动控制系统的基本知识,并具备一定的实际工作能力。 本课程理论严谨,系统性强,教学过程中培养学生的思维能力,以及严谨的科学学风。 在本课程的教学过程中,应注意运用启发式教学,注意阐述各种分析方法的横向联系,以培养分析,归纳与总结的能力。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本设计方法和解题思路的讲解; 采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;讲课要联系实际并注重培养学生的创新能力。 2.教学内容:在运动控制系统动力学基础部分,着重介绍:运动方程式,多轴运动控制系统等效为单轴运动控制系统的折算原则,并在此基础上讲解各量折算式。 在直流运动控制系统基础部分,着重介绍:直流电动机机械特性,直流电动机起动、制动的实现方法及静态特性,调速的基本原理、性能指标及调速方法。 在交流运动控制系统基础部分,着重介绍:三相异步电动机的机械特性,三相异步电动机起动、制动的实现方法及静态特性,三相异步电动机调速的基本原理及调速方法。 3.教学手段:本课程属于专业基础课,在教学中采用多媒体教学先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行,本课程的主要先修课程有电路及电机学等。 (五)对习题课、实践环节的要求 1.对重点、难点章节应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。因此,要求学生按时完成作业,并将作业内容带到实践环节去验证. 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及计算方面的内容,作业要能起到巩固理论,掌握计算方法和技巧,提高分析问题、解决问题能力,熟悉标准、规范等的作用,对作业中的重点、难点,课上应做必要的提示,并适当安排课内讲评作业。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。 3.每个学生要完成大纲中规定的必修实验,要求学生在做实验前,充分阅读实验指导书,以免实验时不知所措;要求每个学生亲自动手,通过实验,独立思考,加强对运动控制原理的理

运动控制系统课后答案

习题解答(供参考) 习题二 2.2 系统的调速范围是1000~100min r ,要求静差率s=2%,那么系统允许的静差转速降是多少? 解:10000.02(100.98) 2.04(1)n n s n rpm D s ?==??=- 系统允许的静态速降为2.04rpm 。 2.3 某一调速系统,在额定负载下,最高转速特性为0max 1500min n r =,最低转速特性为 0min 150min n r =,带额定负载时的速度降落 15min N n r ?=,且在不同转速下额定速降 不变, 统允许的静差率是多少? 解:1)调速范围 max min D n n =(均指额定负载情况下) max 0max 1500151485N n n n =-?=-= min 0min 15015135N n n n =-?=-= max min 148513511 D n n === 2) 静差率 01515010%N s n n =?==

2.4 直流电动机为P N =74kW,UN=220V ,I N =378A ,n N =1430r/min ,Ra=0.023Ω。相控整流器内阻Rrec=0.022Ω。采用降压调速。当生产机械要求s=20%时,求系统的调速范围。如果s=30%时,则系统的调速范围又为多少?? 解:()(2203780.023)14300.1478N N a N Ce U I R n V rpm =-=-?= 378(0.0230.022)0.1478115N n I R rpm ?==?+= [(1)]14300.2[115(10.2)] 3.1N D n S n s =?-=??-= [(1)]14300.3[115(10.3)] 5.33N D n S n s =?-=??-= 2.5 某龙门刨床工作台采用V-M 调速系统。已知直流电动机,主电路总电阻R=0.18Ω,Ce=0.2V ?min/r,求: (1)当电流连续时,在额定负载下的转速降落N n ?为多少? (2)开环系统机械特性连续段在额定转速时的静差率N S 多少? (3)若要满足D=20,s ≤5%的要求,额定负载下的转速降落N n ?又为多少? 解:(1)3050.180.2274.5/min N N n I R Ce r ?=?=?=

运动控制系统心得

电力拖动自动控制系统 -运动控制系统 系名:物电系 班级:电气工程及其自动化(1)班:昊哲 学号:201214240136

电力拖动自动控制系统 -运动控制系统 大三第二学期我接触到了一门很重要的专业课《电力拖动自动控制系统》,通过对这门课的学习使我对运动控制系统有了更深刻的理解。现代运动控制已成为电机学,电力电子技术,微电子技术,计算机控制技术,控制理论,信号检测与处理技术等多门学科相互交叉的综合性学科。文中简单介绍了运动控制及其相关学科的关系,随着其他相关学科的不断发展,运动控制系统也在不断发展,不断提高系统的安全性,可靠性。文中最后简述了其发展历程及其未来发展的展望。 电力拖动实现了电能与机械能之间的能量转换,而电力拖动自动控制系统—运动控制系统的任务是通过控制电动机电压、电流、频率等输入量,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。工业生产和科学的发展,对运动控制系统提出新的更为复杂的要求,同时也为研制和生产各类新型控制系统提供可能。 运动控制系统分为两大部分的学习,第一部分为直流调速系统,第二部分为交流调速系统,其中第一部分为整本书重要掌握的容。 第一部分分为转速反馈控制的直流调速系统,转速、电流反馈的直流调速系统,可逆控制和弱磁控制的直流调速系统。第一部分中主要介绍直流调速系统,调节直流电动机的转速有三种方法:改变电枢

回路电阻,减弱磁通调速法,调节电枢电压调速法。 变压调速是是直流调速系统的主要方法,系统的硬件结构至少包含了两部分:能够调节直流电动机电枢电压的直流电源和产生被调节转速的直流电动机。随着电力电子技术的发展,可控直流电源主要有两大类,一类是相控整流器,它把交流电源直接转换成可控直流电源;另一类是直流脉宽变换器,它先把交流电整流成不可控的直流电,然后用PWM方式调节输出直流电压。本章说明了两类直流电源的特性和数学模型。当用可控直流电源和直流电动机组成一个直流调速系统时,它们所表现车来的性能指标和人们的期望值必然存在一个不小的差距,并做出了分析。开环控制系统无法满足人们期望的性能指标,本章就闭环控制的直流调速系统展开分析和讨论。论述哦了转速单闭环直流调速系统的控制规律,分析了系统的静差率,介绍了PI调节器和P调节器的控制作用。转速单闭环直流调速系统能够提高调速系统的稳态性能,但动态性能仍不理想,转速,电流双闭环直流调速系统是静动态性能良好,应用最广的直流调速系统;还介绍了转速,电流双闭环系统的组成及其静特性,数学模型,并对双闭环直流调速系统的动态特性进行了详细分析。本章对直流调速系统的数字实现进行了讨论,论述了与调速系统紧密关联的数字测速方法和数字PI调节器的实现方法,并用MATLAB仿真软件对转速,电流双闭环调速系统进行了仿真。 第二部分主要介绍交流调速系统。交流调速系统有异步电动机和同步电动机两大类。异步电动机调速系统分为3类:转差功率消耗型

运动控制的基础

运动控制的基础 概观本教程是在NI测量基础系列的一部分。每个在这个系列的教程,教你一个常用的测量应用的特定主题的解释理论概念,并提供实际的例子。在本教程中,学习运动控制系统的基础知识,包括软件,运动控制器,驱动器,电机,反馈装置,I / O。您还可以查看交互式演示,通过本教程的材料在自己的步伐。有关更多信息,返回到NI测量基础主页。目录运动控制系统的组成部分软件配置,原型设计,开发运动控制器移动类型电机放大器和驱动器汽车和机械要素反馈装置和运动的I / O NI相关产品运动控制系统的组成部分图1显示了一个运动控制系统的不同组件。图1。运动控制系统组件应用软件-您可以使用应用软件,以命令的目标位置和运动控制型材。运动控制器-运动控制系统的大脑作用到所需的目标位置和运动轨迹,并建立电机的轨迹遵循,但输出±10 V的伺服电机或步进和方向脉冲信号,步进电机。 放大器或放大器(也称为驱动器)驱动器-从控制器的命令和需要开车或关闭电机的电流产生。电机-电机机械能变成电能和生产所需的目标位置移动到所需的扭矩。机械部件-电机的设计提供一些力学的扭矩。这些措施包括线性滑轨,机械手臂,和特殊的驱动器。反馈装置或位置传

感器-位置反馈装置是不是需要一些运动控制应用(如步进电机控制),但重要的是为伺服电机。反馈装置,通常是一个正交编码器,感应电机的位置和结果报告控制器,从而结束循环的运动控制器。软件配置,原型设计,开发应用软件分为三大类:配置,原型和应用程序开发环境(ADE)。图2说明了运动控制系统的编程过程和相应的NI产品设计过程:图2。运动控制系统开发过程组态 做的第一件事情之一,是您的系统配置。为此,美国国家仪器公司提供测量与自动化浏览器(MAX),不仅运动控制,但所有其他NI硬件配置的交互式工具。对于运动控制,MAX 提供交互式的测试和调整面板,帮助您验证系统功能之前,你的程序。图3 NI MAX是一个交互式工具,用于配置和调整您的运动控制系统。 应用笔记 了解伺服调谐 使用1D互动的环境测试电机功能 轴运动控制器的配置 轴运动控制器设置 运动控制器的编码器设置 运动控制器的参考设置 数字运动控制器的I / O设置原型 当你配置你的系统,你可以开始原型和开发应用程序。在

运动控制系统基本架构及控制轨迹要点简述

运动控制系统基本架构及控制轨迹要点简述 运动控制起源于早期的伺服控制。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC方式传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。 运动控制的定义 运动控制(MC)是自动化的一个分支,它使用通称为伺服机构的一些设备如液压泵,线性执行机或者是电机来控制机器的位置和/或速度。运动控制在机器人和数控机床的领域内的应用要比在专用机器中的应用更复杂,因为后者运动形式更简单,通常被称为通用运动控制(GMC)。运动控制被广泛应用在包装、印刷、纺织和装配工业中。 运动控制系统的基本架构组成 一个运动控制器用以生成轨迹点(期望输出)和闭合位置反馈环。许多控制器也可以在内部闭合一个速度环。 一个驱动或放大器用以将来自运动控制器的控制信号(通常是速度或扭矩信号)转换为更高功率的电流或电压信号。更为先进的智能化驱动可以自身闭合位置环和速度环,以获得更精确的控制。 一个执行器如液压泵、气缸、线性执行机或电机用以输出运动。

运动控制器的应用现状及其发展趋势【不可外传】

运动控制器的应用现状及其发展趋势 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1运动控制器的应用现状 运动控制器越来越广泛地应用于各个行业的自动化设备,如数控机床、雕刻机、切割机、钻孔机、印刷机、冲孔机、激光雕刻、激光切割、包装机、纺织机、食品加工、绘图机、点胶机、焊接机、电子装配白动检测等,甚至在航空航天和国防领域也得到广泛应用。根据所用的CPU不同,运动控制器产品主要有以下五种类型: (1)以单片机(MCU)为核心的运动控制器,低端采用8位或16位的单片机作为处理器,其主要优点是价格比较低廉,缺点是运行速度较慢,控制精度较低。因此这种运动控制器适用于一些低速或运动控制精度要求不高的点位运动或轮廓运动控制的自动化设备。 (2)以专用芯片为核心的运动控制器,美国国家半导体公司生产的LM628和LM629专用运动控制芯片,日本的NOVA生产的MCX304、MCX501等运动控制芯片是专门为精密控制步进电机和伺服电机而设计的专用处理器,产品应用于数控机床、雕刻机、工业机器人、医用设备、绕线机、自动仓库、绘图仪、点胶机、IC制造设备等领域。 (3)以数字信号处理器(DS)为核心的运动控制器,美国DeltaTau公司生产的PMAC 运动控制器,采用Motorola的DSP56003作为处理器。国内的基于DSP的运动控制器,通常以美国TI公司推出的C2000系列,例如TMS320F2812和TMS320F28335作为运动控制器的核心芯片。

运动控制系统_课后习题答案

运动控制系统 课后习题答案 2.2 系统的调速围是1000~100min r ,要求静差率s=2%,那么系统允许的静差转速降是多少? 解:10000.02(100.98) 2.04(1) n n s n rpm D s ?==??=- 系统允许的静态速降为2.04rpm 2.3 某一调速系统,在额定负载下,最高转速特性为0max 1500min n r =,最低转速特性为 0min 150min n r =,带额定负载时的速度降落15min N n r ?=,且在不同转速下额定速降 不变, 试问系统能够达到的调速围有多大?系统允许的静差率是多少? 解:1)调速围 max min D n n =(均指额定负载情况下) max 0max 1500151485N n n n =-?=-= min 0min 15015135N n n n =-?=-= max min 148513511D n n === 2) 静差率 01515010%N s n n =?== 2.4 直流电动机为P N =74kW,UN=220V ,I N =378A ,n N =1430r/min ,Ra=0.023Ω。相控整流器阻Rrec=0.022Ω。采用降压调速。当生产机械要求s=20%时,求系统的调速围。如果s=30%时,则系统的调速围又为多少?? 解:()(2203780.023)14300.1478N N a N Ce U I R n V rpm =-=-?= 378(0.0230.022)0.1478115N n I R rpm ?==?+= [(1)]14300.2[115(10.2)] 3.1N D n S n s =?-=??-= [(1)]14300.3[115(10.3)] 5.33N D n S n s =?-=??-= 2.5 某龙门刨床工作台采用 V-M 调速系统。已知直流电动机

运动控制系统-上海交通大学自动化系

《运动控制系统》课程教学大纲 课程代码:AU310 开课学期:第6学期 学分/学时:3/48 (理论学时:40; 实验和课程设计学时:8) 课程类别:专业基础必修课 先修课程:自动控制原理、计算机控制、电力电子技术 后修课程:无 开课单位:电子信息与电气工程学院 课程团队负责人:赵群飞 责任教授:赵群飞 大纲执笔: 赵群飞 教授 审核:周越 教学副主任 一、课程学习目标及其与指标点的关系 《运动控制系统》是一门讲授交、直流电动机控制理论和控制规律,以提高电能利用效率及运动控制系统性能的一门专业主干课程,是自动化专业的一门必修课。本课程秉承理论与实际相结合的理念,使学生了解并掌握各类交、直流电动机控制系统的基本结构、工作原理和性能指标,掌握先进的运动控制理论和系统设计方法,具备以下综合分析能力和工程设计能力: 1.掌握直流电动机调速系统结构特点、调速原理和数学模型;理解速度反馈控 制原理、熟练掌握调速系统静态和动态性能指标。(支撑毕业要求1-3和5-3) 2.掌握闭环系统静特性与开环系统机械特性的关系,理解转速反馈控制作用,掌 握数字测速方法和数字PID算法。掌握转速、电流双闭环反馈控制直流调速

系统的数学模型与动态过程分析,控制系统的动态性能指标和调速系统中调节器的工程设计方法。(支撑毕业要求2-1和3-2) 3.掌握交流异步电动机调速时转差功率变化规律和处理方法,交流异步电动机 稳态模型和调速方法;掌握异步电动机变压变频调速基本原理及机械特性,交流异步电动机动态数学模型的基本性质和坐标变换方法,理解掌握矢量控制系统和直接转矩控制系统工作原理和控制系统结构。理解掌握同步电动机的稳态模型与调速方法,熟悉、了解同步电动机的矩角特性和变压变频调速原理。 (支撑毕业要求2-1) 4.掌握调速系统、伺服系统控制器的数字化和嵌入式实现,熟练利用MatLab、 LabView等工具进行系统仿真和验证。(支撑毕业要求5-3) 5.通过分组进行的直流双闭环调速系统实验、交流电动机矢量控制和变频控制 实验以及课程设计,进一步了解系统的负载特性和抗干扰能力,控制器各参数对静态特性、动态特性、稳态指标、动态指标的影响和工程设计方法。(支撑毕业要求9-2和10-3) 二、课程学习目标与教学内容和方法的对应关系

相关文档
最新文档