(整理)传感器敏感材料及器件复习提纲

(整理)传感器敏感材料及器件复习提纲
(整理)传感器敏感材料及器件复习提纲

《传感器敏感材料及器件》课程主要内容

1.传感器与检测技术的发展趋势;

2.霍尔效应定义,霍尔电势,霍尔式位移传感器的工作原理图,霍尔式转速传感器原理图及测量原理;

置于磁场中的静止载流导体, 当它的电流方向与磁场方向不一致时, 载流导体上平行于电流和磁场方向上的两个面之间产生电动势, 这种现象称霍尔效应。该电势称霍尔电势。

图(a )是磁场强度相同的两块永久磁铁,同极性相对地放置,霍尔元件处在两块磁铁的中间。由于磁铁中间的磁感应强度B=0,因此霍尔元件输出的霍尔电势U H 也等于零,此时位移Δx=0。若霍尔元件在两磁铁中产生相对位移,霍尔元件感受到的磁感应强度也随之改变,这时U H 不为零,其量值大小反映出霍尔元件与磁铁之间相对位置的变化量

磁性转盘的输入轴与被测转轴相连,当被测转轴转动时,磁性转盘随之转动,固定在磁性转盘附近的霍尔传感器便可在每一个小磁铁通过时产生一个相应的脉冲,检测出单位时间的脉冲数,便可知被测转速。

3.磁阻效应定义,半导体InSb磁敏无接触电位器原理图及测量原理;

磁阻效应

若给通以电流的金属或半导体材料的薄片加以与电流垂直或平行的外磁场,则其电阻值就增加。称此种现象为磁致电阻变化效应,简称为磁阻效应。

半导体InSb磁敏无接触电位器是基于半导体InSb磁阻效应原理,由半导体InSb 磁敏电阻元件和偏置磁钢组成;其结构与普通电位器相似。由于无电刷接触,故称无接触电位器。

该电位器的核心是差分型结构的两个半圆形磁敏电阻;它们被安装在同一旋转轴

上的半园形永磁钢上,其面积恰好覆盖其中一个磁敏电阻;随着旋转轴的转动,磁钢覆盖于磁阻元件的面积发生变化,引起磁敏电阻值发生变化,旋转转轴,即能调节其阻值。其工作原理和输出电压随旋转角度变化的关系曲线如图所示。

4.磁敏二极管的结构和工作原理;磁敏三极管的结构和工作原理;

结构

磁敏二极管的P型和N型电极由高阻材料制成,在P、N之间有一个较长的本征区I,本征区I的一面磨成光滑的低复合表面(为I区),另一面打毛,设置成高复合区(为r区),其目的是因为电子—空穴对易于在粗糙表面复合而消失。当通过正向电流后就会在P、I、N 结之间形成电流。由此可知,磁敏二极管是PIN型的。

?当磁敏二极管未受到外界磁场作用时,外加正偏压(P区为正),则有大量的空穴从P区通过i区进入N区,同时也有大量电子注入P区,这样形成电流,只有少量电子和空穴在i区复合掉。

?当磁敏二极管受到如下图(b)所示的外界磁场H+(正向磁场)作用时,则电子和空穴受到洛仑兹力的作用而向r区偏转,由于r区的电子和空穴复合速度比光滑面I区快,空穴和电子一旦复合就失去导电作用,意味着基区的等效电阻增大,电流减小。磁场强度越强,电子和空穴受到洛仑兹力就越大,单位时间内进入由于r区而复合的电子和空穴数量就越多,载流子减少,外电路的电流越小。

?当磁敏二极管受到如右图(c)所示的外界磁场片H-(反向磁场)作用时,则电子和空穴受到洛仑兹力作用而向I区偏移,由于电子、空穴复合率明显变小,i区的等效电阻减小,则外电路的电流变大。

?若在磁敏二极管上加反向偏压(P区的负),则仅有很微小的电流流过,并且几乎与磁场无关。

?因此,该器件仅能在正向偏压下工作。利用磁敏二极管的正向导通电流随磁场强度的变化而变化的特性,即可实现磁电转换。

磁敏三极管的结构

在弱P型或弱N型本征半导体上用合金法或扩散法形成发射极、基极和集电极。其最大特点是基区较长,基区结构类似磁敏二极管,也有高复合速率的r区和本征I区。长基区分为输运基区和复合基区。

磁敏三极管的工作原理

当磁敏三极管未受到磁场作用时,由于基区宽度大于载流子有效扩散长度,大部分载流子通过e-I-b,形成基极电流;少数载流子输入到c极,因而基极电流大于集电极电流。

当受到正向磁场(H +)作用时,由于磁场的作用,洛仑兹力使载流子向复合区偏转,导致集电极电流显著下降;当反向磁场(H -)作用时,载流子向集电极一侧偏转,使集电极电流增大。由此可知,磁敏三极管在正、反向磁场作用下,其集电极电流出现明显变化。

5.输入电阻和输出电阻;额定激励电流和最大允许激励电流;不等位电势和不等位电阻;寄生直流电势;霍尔电势温度系数;

输入电阻和输出电阻

激励电极间的电阻值称为输入电阻。

霍尔电极输出电势对外电路来说相当于一个电压源, 其电源内阻即为输出电阻。以上电阻值是在磁感应强度为零且环境温度在20℃±5℃时确定的。

当霍尔元件自身温升10℃时所流过的激励电流称为额定激励电流。

以元件允许最大温升为限制所对应的激励电流称为最大允许激励电流。

因霍尔电势随激励电流增加而线性增加,所以,使用中希望选用尽可能大的激励电流,因而需要知道元件的最大允许激励电流,改善霍尔元件的散

热条件,可以使激励电流增加。

当霍尔元件的激励电流为I时,若元件所处位置磁感应强度为零,则它的霍尔电势应该为零,但实际不为零。这时测得的空载霍尔电势称不等位电势。

不等位电势也可用不等位电阻表示

寄生直流电势

在外加磁场为零,霍尔元件用交流激励时,霍尔电极输出除了交流不等位电势外,还有一直流电势,该直流电势称寄生直流电势。

霍尔电势温度系数

在一定磁感应强度和激励电流下, 温度每变化1℃时, 霍尔电势变化的百分率称霍尔电势温度系数。它同时也是霍尔系数的温度系数。

6.应变式加速度传感器原理图及测量原理;

图示应变式电阻加速度传感器由基座(用来固定在被测物体上)、等截面悬臂梁、质量块和4个电阻应变片组成,以等截面悬臂梁为弹性敏感元件。

加速度传感器

l一基座;2一质量块;3一应变片;4一悬臂梁

测量时,根据所物体加速度的方向,把传感器固定在被测部位,当弹性元件感受到加速度时,其表面产生应变,粘贴在表面的电阻应变片的阻值会随着弹性元件的应变发生相应变化。

7.压阻效应定义,压电效应定义,正压电效应(顺压电效应)定义,逆压电效应(电致伸缩效应)定义;

压阻效应

单晶硅材料在受到应力作用后,其电阻率发生明显变化,这种现象被称为压阻效应。

压电效应

正压电效应(顺压电效应):某些电介质,当沿着一定方向对其施力而使它变形

时,内部就产生极化现象,同时在它的一定表面上产生电荷,当外力去掉后,又重新恢复不带电状态的现象。当作用力方向改变时,电荷极性也随着改变。

逆压电效应(电致伸缩效应):当在电介质的极化方向施加电场,这些电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失的现象。

8.压电式单向力传感器原理图及测量原理;

9.纵向效应型加速度传感器原理图及测量原理;

纵向效应是最常见的,如图。压电陶瓷4和质量块2为环型,通过螺母3对质量块预先加载,使之压紧在压电陶瓷上。测量时将传感器基座5与被测对象牢牢

地紧固在一起。输出信号由电极1引出。

当传感器感受振动时,因为质量块相对被测体质量较小,因此质量块感受与传感器基座相同的振动,并受到与加速度方向相反的惯性力,此力F=ma。同时惯性力作用在压电陶瓷片上产生电荷为

q=d33F=d33ma

10.压电式传感器表面粗糙度测试原理图及测量原理;

图示为压电式传感器在轮廓仪上应用时的结构示意图。传感器由驱动箱拖动使其触针在工件表面以恒速滑行。工件表面的起伏不平使触针上下运动,通过针杆使压电晶体随之变形,这样,在压电晶体表面就产生电荷,由引线输出与触针位移成正比的电信号。

11.光学敏感材料的换能机理:能够结合原理图描述四种光电效应的基本原理;

第一次小作业

12.半导体光敏感材料:Si与Ge晶体结构类型及其主要应用领域;Ge折射率的测量方法及影响因素;Si与Ge相比,特点?GaAs吸收系数的影响因素;ZnS 折射率与温度的关系;CdS的折射率变化特点;

书195-212

13.聚合物光折变材料:聚合物掺杂体系和全功能聚合物体系的结构特点;

P219-220

14.结型光电器件:PN结内电流方程及其物理意义;硅光电池的分类及工作原理;硅光电二极管和光电池比较;硅光二极管与硅光三极管的比较;

P222-238

15.光电导器件:光敏电阻的特点、分类、工作原理及常用结构;相关物理概念:光电导增益、量子效率、响应时间、上升响应时间、下降时间、前历效应;

P239-250

16.真空光电器件:光电阴极的主要指标参数;光电管和光电倍增管的构成;光电倍增管的应用;相关物理概念:光电发射体、光电阴极的光谱响应曲线;

P251-263

17.湿度测量:湿度测量常用方法;相关物理概念:湿度、绝对湿度和相对湿度、霜点温度、湿滞、温度系数;

P35-37

18.能够结合原理图说明下列光纤湿度传感器的传感原理:法布里-珀罗(F-P)腔湿度传感器;光纤渐逝波耦合器湿度传感器;长周期光纤光栅湿度传感器;光纤布拉格光栅(FBG)湿度传感器;

P53-56

19.光纤的结构及普通通信光纤的参数;

P305

20.光纤光栅的概念、特性、传感原理;

P315、318 光谱特性传输与调制特性…..

21.光纤传感器的优点;

P57

22.反射式强度调制型光纤传感器的结构、原理和位移测量特性曲线;

P310 位移测量特性曲线:大物实验之光纤传感器

23.双金属结构的光纤布拉格光栅高温传感器结构及原理;

P324

24.光子晶体的定义及结构特点;光子晶体的特性;

P325-326

25.光子晶体光纤的概念及结构特点;光子晶体光纤的导光机理;

P333

26.磁流体的组成;磁流体的所有光学特性。

P351 P357-359

给出磁阻效应的定义,并画出一种基于磁阻效应的传感系统的原理图,说明其工作原理。P152 P159

采油工程知识点整理

第一章油井流入动态 IPR曲线:表示产量与流压关系曲线。 表皮效应:由于钻井、完井、作业或采取增产措施,使井底附近地层的渗透率变差或变好,引起附加流动压力的效应。 表皮系数:描述油从地层向井筒流动渗流情况的参数,与油井完成方式、井底污染或增产措施有关,可由压力恢复曲线求得。 井底流动压力:简称井底流压、流动压力或流压。是油、气井生产时的井底压力。.它表示油、气从地层流到井底后剩余的压力,对自喷井来讲,也是油气从井底流到地面的起点压力。 流压:原油从油层流到井底后具有的压力。既是油藏流体流到井底后的剩余压力,也是原油沿井筒向上流动的动力。 流型:流动过程中油、气的分布状态。 采油指数:是一个反映油层性质、厚度、流体参数、完井条件与渗油面积与产量之间的关系的综合指标。可定义为产油量与生产压差之比,即单位生产压差下的油井产油量;也可定义为每增加单位生产压差时,油井产量的增加值;或IPR曲线的负倒数。 产液指数:指单位生产压差下的生产液量。 油井流入动态:在一定地层压力下油井产量和井底流压的关系,反应了油藏向该井供液能力。 气液滑脱现象:在气液两相流中,由于气体和液体间的密度差而产生气体超越液体流动的现象。 滑脱损失:因滑脱而产生的附加压力损失。 流动效率:油井在同一产量下,该井的理想生产压差与实际生产压差之比,表示实际油井完善程度。 持液率:在气液两相管流中,单位管长内液相体积与单位管长的总体积之比。 Vogel 方法(1968) ①假设条件: a.圆形封闭油藏,油井位于中心;溶解气驱油藏。 b.均质油层,含水饱和度恒定; c.忽略重力影响; d.忽略岩石和水的压缩性; e.油、气组成及平衡不变; f.油、气两相的压力相同; g.拟稳态下流动,在给定的某一瞬间,各点的脱气原油流量相同。 ②Vogel方程

传感器以及敏感元件

传感器以及敏感元件 什么叫传感器?从广义上讲,传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。所以它由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为①物理类,基于力、热、光、电、磁和声等物理效应。 ②化学类,基于化学反应的原理。③生物类,基于酶、抗体、和激素等分子识别功能。通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将传感器分46类)。下面对常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍如下。 一温度传感器及热敏元件 温度传感器主要由热敏元件组成。热敏元件品种教多,市场上销售的有双金属片、铜热电阻、铂热电阻、热电偶及半导体热敏电阻等。以半导体热敏电阻为探测元件的温度传感器应用广泛,这是因为在元件允许工作条件范围内,半导体热敏电阻器具有体积小、灵敏度高、精度高的特点,而且制造工艺简单、价格低廉。 1半导体热敏电阻的工作原理 按温度特性热敏电阻可分为两类,随温度上升电阻增加的为正温度系数热敏电阻,反之为负温度系数热敏电阻。 ⑴正温度系数热敏电阻的工作原理 此种热敏电阻以钛酸钡(BaTio3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结尔成。纯钛酸钡是一种绝缘材料,但掺入适量的稀土元素如镧(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。当温度低时,由于半导体化钛酸钡内电场的作用,导电电子可以很容易越过位垒,所以电阻值较小;当温度升高到居里点温度(即临界温度,此元件的…温度控制点?一般钛酸钡的居里点为120℃)时,内电场受到破坏,不能帮助导电电子越过位垒,所以表现为电阻值的急剧增加。因为这种元件具有未达居里点前电阻随温度变化非常缓慢,具有恒温、调温和自动控温的功能,只发热,不发红,无明火,不易燃烧,电压交、直流3~440V均可,使用寿命长,非常适用于电动机等电器装置的过热探测。 ⑵负温度系数热敏电阻的工作原理 负温度系数热敏电阻是以氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成。这些金属氧化物材料都具有半导体性质,完全类似于锗、硅晶体材料,体内的载流子(电子和空穴)数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。负温度系数热敏电阻类型很多,使用区分低温(-60~300℃)、中温(300~600℃)、高温(>600℃)三种,有灵敏度高、稳定性好、响应快、寿命长、价格低等优点,广泛应用于需要定点测温的温度自动控制电路,如冰箱、空调、温室等的温控系统。 热敏电阻与简单的放大电路结合,就可检测千分之一度的温度变化,所以和电子仪表组成测温计,能完成高精度的温度测量。普通用途热敏电阻工作温度为-55℃~+315℃,特殊低温热敏电阻的工作温度低于-55℃,可达-273℃。 2热敏电阻的型号 我国产热敏电阻是按部颁标准SJ1155-82来制定型号,由四部分组成。 第一部分:主称,用字母…M?表示敏感元件。 第二部分:类别,用字母…Z?表示正温度系数热敏电阻器,或者用字母…F?表示负温度系数热敏电阻器。 第三部分:用途或特征,用一位数字(0-9)表示。一般数字…1?表示普通用途,…2?表示稳压用途(负

给排水工程结构总复习

《给排水工程结构》复习提纲 第一章 1.钢筋的主要力学性能。 钢筋的强度:屈服强度:比例极限A、屈服上限B`、屈服下限B(屈服强度)、屈服台阶BC、强化阶段CD、极限抗拉强度D(极限载荷)、颈缩现象 钢筋的变形:伸长率:一定标距长度的钢筋试件在拉断后所残留的塑性应变称为钢筋的伸长率;冷弯性能:冷弯是将钢筋在常温下围绕一个规定直径为D的辊轴弯转,要求在达到规定的冷弯角度时,钢筋受弯部位表面不发生裂纹。 2.混凝土的强度 (一)混凝土的抗压强度f cu:在一定范围内,高宽比越大,中部自由变形区高度也就越大, 因此测得的受压强度也将随高宽比增大而减小。 1混凝土的立方体抗压强度和强度等级:14个强度等级,其中C30表示立方体抗压强度标准值为30N/mm2 2混凝土的轴心抗压强度f c:f ck=0.88αc1αc2f cu,k (二)混凝土的轴心抗拉强度:很低。 3.混凝土的变形 (一)混凝土在荷载作用下的变形 1混凝土在短期一次加荷时的应力-应变关系:P15

2 混凝土在荷载长期作用下的变形性能:在荷载的长期作用下,即荷载保持不变,混凝土的变形随时间而增长的现象称为徐变 (二)与荷载无关的混凝土体积变形 1混凝土的收缩和膨胀:在空气中结硬收缩,在水中结硬膨胀 2混凝土的温度和湿度变形:热胀冷缩和湿涨干缩 4.混凝土的弹性模量和变形模量 变形模量:混凝土应力应变曲线上任一点所对应的应力应变之比称为混凝土的变形模量弹性模量:混凝土的应力与相应的弹性应变之比定义为混凝土的弹性模量 5.钢筋与混凝土共同作用的基本条件 三个条件:1.混凝土在结硬过程中能与埋在其中的钢筋粘结在一起 2.混凝土与钢筋具有大致相同的线膨胀系数 3.混凝土包裹着钢筋,由于混凝土具有弱碱性,故可以保护钢筋不受侵蚀6.钢筋与混凝土之间粘结力的组成 (1)水泥胶使钢筋和混凝土在接触面上产生的胶结力 (2)由于混凝土凝固时收缩,在发生相互滑动时产生的摩阻力 (3)钢筋表面粗糙不平或变形钢筋凸起的肋纹与混凝土的咬合力 平均粘合强度:τu=F/πdl

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参

数的测量。

3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光

角度传感器的参数的计算

假设机器人有两个角度传感器,通过传动链将每一个角感连接到主动轮上。轮子的直径为D,R为角感的分辨率,G为编码器与轮子的传动比,你 能得到一个转换系数F,它将角度传感器的每一个单位转换成响应的运动距离: F = (D x π) / ( G x R) 这个比的分子是D x π,表示轮子的圆周长,它刚好等于轮子转动一周运动的距离。这个比的分母是G x R,定义编码器计数的增量刚好等于轮子的一转。F就表示每跳动一下移动的单位距离。 机器人使用最大的轮子,它的直径是81.6mm。角度传感器每一转有16的分辨率,她与轮子的传动比是1;5(轮子转动一圈,角度传感器转动5圈)。结果是: F = 81.6 mm x 3.1416 / (5 x 16 ticks) 3.2 mm/tick 就是说每次传感器计数一次,轮子就会运动3.2mm。在任何给定的时间间隔,左轮运动的距离TL等于角度传感器计数的增量IL乘以系数F TL = IL x F 同样,对右轮: TR = IR x F 机器人的中心点,就是在连接两轮的的中线上的一点,它移动的距离是TC TC = (TR + TL) / 2 为了计算方向ΔO的变化你需知道机器人的另一个参数,轮子间的距离B,或更精确一点,轮子与地接触的那两点间的距离。 ΔO = (TR – TL) / B 这个公式返回的值ΔO是弧度,使用下面的关系式将弧度转变为角度。 ΔODegrees = ΔORadians x 180 /π 你现在可以计算机器人的相对方位,在I时刻的新方位ΔO是建立在I-1时刻的方位变化ΔO O是机器人所指的方位,为ΔO选择同样的单位的结果是: Oi = Oi-1 + ΔO 同样的,新的中心点卡迪尔坐标是根据前一中心点移动距离的增量:

一建机电工程实务知识点整理必过经验(全面)

一建机电实务核心知识点整理 1 机电工程项目常用材料 机电工程项目常用材料有金属材料、非金属材料和电工线材。掌握机电工程项目常用金属材料的类型及应用 金属材料分黑色金属和有色金属两大类。 一、黑色金属材料的类型及应用 (一)碳素结构钢(普碳钢) 按照其屈服强度的下限值分为4个级别,其钢号对应为Ql95、Q215、Q235和Q275,其中Q代表屈服强度,数字为屈服强度的下限值。 碳素结构钢具有良好的塑性和韧性,易于成形和焊接,常以热轧态供货,一般不再进行热处理。如常见的各种型钢、钢筋、钢丝等,优质碳素钢还可以制成钢丝、钢绞线、圆钢、高强度螺栓及预应力锚具等。 (二)低合金结构钢 也称低合金高强度钢,根据屈服强度划分共有Q345、Q390、Q420、Q460、Q500、Q550、Q620和Q690八个等级。 低合金结构钢是在普通钢中加入微量合金元素,而具有较好的综合力学性能。主要适用于锅炉汽包、压力容器、压力管道、桥梁、重轨和轻轨等制造。 例如:某600MW超超临界电站锅炉汽包使用的就是Q460型钢;机电工程施工中使用的起重机就是Q345型钢制造的。 (三)特殊性能低合金高强度钢(也称特殊钢) 工程结构用特殊钢包括:耐候钢、耐海水腐蚀钢、表面处理钢材、汽车冲压钢板、石油及天然气管线钢、工程机械用钢与可焊接高强度钢、钢筋钢、低温用钢以及钢轨钢等。 1.耐候钢:具有良好的焊接性能。 在钢中加入少量合金元素,如Cu、Cr、Ni、P等,使其在金属基体表面形成保护层,提高钢材的耐候性能,同时保持钢材具有良好的焊接性能,主要用于车辆、桥梁、房屋、集装箱等钢结构中。 2.石油及天然气管线钢:主要是为石油和天然气管道制造所使用的钢。通常包括高强度管线管和耐腐蚀的低合金高强度管线管。 3.钢筋钢:(属于建筑结构用钢) 有热轧光圆钢筋、热轧带肋钢筋和冷轧带肋钢筋、余热处理钢筋以及预应力混凝土用钢丝等。 (四)钢材的类型及应用 1.型钢 机电工程中常用型钢主要有:圆钢、方钢、扁钢、H型钢、工字钢、T形钢、角钢、槽钢、钢轨等。 例如:电站锅炉钢架的立柱通常采用宽翼缘H型钢(HK300b);为确保炉膛内压力波动时炉墙有一定强度,在炉墙上设计有足够强度的刚性梁。一般每隔3m左右装设一层,其大部分采用强度足够的工字钢制成。 2.板材 (1)按其厚度可分为厚板、中板和薄板。 (2)按其轧制方式可分为热轧板和冷轧板,其中冷轧板只有薄 板。 (3)按其材质有普通碳素钢板、低合金结构钢板、不锈钢板、 镀锌钢薄板等。 例如:油罐、电站锅炉中的汽包就是用钢板(10~100多毫米厚)焊制成的圆筒形容器。其中中、低压锅炉的汽包材料常为专用的锅炉碳素钢, 3.管材 常用的有普通无缝钢管、螺旋缝钢管、焊接钢管、无缝不锈钢管、高压无缝钢管等。 例如:锅炉水冷壁和省煤器使用的无缝钢管一般采用优质碳索钢管或低合金钢管,但过热器和再热器使用的无缝钢管根据不同壁温,通常采用1 5CrMo或12Crl.MoV等钢材。 4.钢制品 常用钢制品主要有焊材、管件、阀门。 二、有色金属的类型及应用 1.重金属 (1)铜及铜合金 工业纯铜具有良好的导电性、导热性及优良的焊接性能,纯铜强度不高,硬度较低,塑性好。在纯铜中加入合金元素制成铜合金,除保持纯铜的优良特性外,还具有较高的强度,主要有黄铜、青铜、白铜。 (2)锌及锌合金的特性 纯锌具有一定的强度和较好的耐腐蚀性。锌合金分为变形锌合金、铸造锌合金、热镀锌合金。 (3)镍及镍合金 纯镍强度较高,塑性好,导热性差,电阻大。镍表面在有机介质溶液中会形成钝化膜保护层而有极强的耐腐蚀性,特别是耐海水腐蚀能力突出。 镍合金是在镍中加入铜、铬、钼等而形成的,耐高温,耐酸碱腐蚀。 2.轻金属 (1)铝及铝合金特性及应用 工业纯铝具有良好的导电性和导热性,塑性好,但强度、硬度低,耐磨性差,可进行各种冷、热加工。铝合金分为变形铝合金、铸造铝合金。 (2)镁及镁合金 纯镁强度不高,室温塑性低,耐腐蚀性差,易氧化,可用作还原剂。 镁合金可分为变形镁合金、铸造镁合金,用于飞机、宇航结构件和高气密零部件。 (3)钛及钛合金 纯钛强度低,但比强度高,塑性及低温韧性好,耐腐蚀性好。 随着钛的纯度降低,强度升高,塑性大大降低。在纯钛中加入合金元素对其性能进行改善和强化形成钛合金,其强度、耐热性、耐腐蚀性可得到很大提高。 1

角度传感器应用电路设计

磁阻式传感器KMZ41的特点: 内部包含有两个有磁阻构成的、位置成正交的、独立的电桥(Wheatstone Bridge)。其内部结构如下图所示: 将KMZ41置于有X轴、Y轴构成的平面上,当旋转磁场强度变化时,KMZ41就会产生两路正弦输出的信号,两信号的相位差就代表芯片轴向与磁场方向的夹角a,输出信号波形如下图所示: 图1 图2 图1为KMZ41产生的两路正弦输出信号;图2为芯片轴向与磁场方向的夹角。UZZ9001的内部结构与工作原理: UZZ9001的芯片内部包括A/D转换器1和A/D转换器2、滤波器、算法逻辑、SPI接口、时钟振荡器、;逻辑控制及复位等。UZZ9001Y与KMZ41连接,能够将磁阻式传感器KMZ41输出的两个有相位差的正弦信号转换成数字信号输出,与微控制器配套构成一个角度测量系统。 *

角度传感器部分设计: 方案一 由UZZ9000和KMZ41构成的角度检测电路: UZZ9000为线性电压输出式角度传感器调理器电路,输出电压与被测角度信号成正比;测量角度的范围是0~180°,且在0~100°范围内;测量误差小于±0.45°分辨力达0.1°;测量范围和输出零点均可调节;电源电压范围为+4.5~+5.5V;电源电流为10mA;工作温度范围是-40~+150℃。 由UZZ9000和KMZ41构成的电压输出式角度检测电路如图所示。改变R2和R3的比值,可以调节传感器1的偏移量;改变R4和R5的阻值,可以调节传感器2的偏移量;改变R6和R7的比值,可以调节零点偏移;改变R8和R9的比值;可以调节测量角度范围。电阻R2~R9可以采用电位器代替。电路输出电压送至数字电压表或者微控制器系统,即可显示出被测角度值。该电路可广泛用于发动机凸轮/曲轴速度及位置检测、节流阀控制、转向操作控制、汽车中的ABS系统等领域。 注:1.设置角度范围。在UZZ9000的引脚端13加上不同的外部电压可以选择0~30到0~180共16个不同的角度范围。

传感器技术习题及答案

传感器技术绪论习题 一、单项选择题 1、下列属于按传感器的工作原理进行分类的传感器是( B )。 A. 应变式传感器 B. 化学型传感器 C. 压电式传感器 D. 热电式传感器 2、通常意义上的传感器包含了敏感元件和( C )两个组成部分。 A. 放大电路 B. 数据采集电路 C. 转换元件 D. 滤波元件 3、自动控制技术、通信技术、连同计算机技术和(C ),构成信息技术的完整信息链。 A. 汽车制造技术 B. 建筑技术 C. 传感技术 D.监测技术 4、传感器按其敏感的工作原理,可以分为物理型、化学型和( A )三大类。 A. 生物型 B. 电子型 C. 材料型 D. 薄膜型 5、随着人们对各项产品技术含量的要求的不断提高,传感器也朝向智能化方面发展,其中,典型的传感器智能化结构模式是( B )。 A. 传感器+通信技术 B. 传感器+微处理器 C. 传感器+多媒体技术 D. 传感器+计算机 6、近年来,仿生传感器的研究越来越热,其主要就是模仿人的(D )的传感器。 A. 视觉器官 B. 听觉器官 C. 嗅觉器官 D. 感觉器官 7、若将计算机比喻成人的大脑,那么传感器则可以比喻为(B )。 A.眼睛 B. 感觉器官 C. 手 D. 皮肤 8、传感器主要完成两个方面的功能:检测和(D )。 A. 测量 B. 感知 C. 信号调节 D. 转换 9、传感技术与信息学科紧密相连,是(C )和自动转换技术的总称。 A. 自动调节 B. 自动测量 C. 自动检测 D. 信息获取 10、以下传感器中属于按传感器的工作原理命名的是( A ) A.应变式传感器B.速度传感器 C.化学型传感器D.能量控制型传感器 二、多项选择题 1、传感器在工作过程中,必须满足一些基本的物理定律,其中包含(ABCD)。 A. 能量守恒定律 B. 电磁场感应定律 C. 欧姆定律 D. 胡克定律 2、传感技术是一个集物理、化学、材料、器件、电子、生物工程等学科于一体的交叉学科,涉及(ABC )等多方面的综合技术。 A. 传感检测原理 B. 传感器件设计 C. 传感器的开发和应用 D. 传感器的销售和售后服务 3、目前,传感器以及传感技术、自动检测技术都得到了广泛的应用,以下领域采用了传感技术的有:(ABCD )。 A. 工业领域 B. 海洋开发领域 C. 航天技术领域 D. 医疗诊断技术领域 4、传感器有多种基本构成类型,包含以下哪几个(ABC ) A. 自源型 B. 带激励型 C. 外源型 D. 自组装型 5、下列属于传感器的分类方法的是:(ABCD ) A. 按输入量分 B. 按工作原理分 C. 按输出量分 D. 按能量变换关系分 6、下列属于传感器的分类方法的是:(ABCD ) A. 按输入量分 B. 按工作原理分 C. 按构成分 D. 按输出量分

(整理)交通工程学知识点.

一、填空题 (1)、我国道路交通标志按其含义分:警告标志、禁令标志、指示标志、之路标志 (2)、排队规则指到达的顾客按怎样的次序接受服务,它包括三种形式:损失制、等待制、混合制。 (3)、交通密度的调查方法有出入量法、摄影法两种。 (4)、交通工程学是一门发展中的交叉学科。其内容包含有自然科学和社会科学的成分,且不断丰富。 (5)、交通工程学研究目的是探讨如何使交通运输安全、迅速、舒适、经济 (6)、驾驶员的视野与行车速度有密切关系,随着汽车的行驶速度的提高,注视点前移,视野变窄,周界感减少。 (7)、汽车动力性能注意可以用三方面指标评定:最高车速、加速时间或加速度、最大爬坡能力 (8)、描述交通流特性的三个参数是交通量、车速和交通密度。 (9)、泊松分布理论适用于交通流量小,驾驶员随意选择车速,车辆到达时随机的判断依据是 ()() 1=x E x D (10)、高速公路是自成系统的一种公路形式,一般由三部分组成:高速公路基本路段、交织区、匝道 (11)、构成交通三要素是指人车路 (12)二项分布理论适用于拥挤交通流,驾驶员自由行驶机会少,车辆到达数在均值附近波动。判断依据 为 ()() 11<-=P x E x D 13、 交通工程学研究的主要对象是驾驶员、行人、车辆、道路和交通环境 14、 人们把1930年美国成立的交通工程师协会作为交通工程学正式诞生的标志 15、 根据延误发生的原因可以把延误分为固定延误、停车延误、行驶延误、排队延误、引道延误和控制延误。 16、 汽车在行驶过程中遇到的阻力有空气阻力、滚动阻力、惯性阻力、坡度阻力。 17、 通行能力按作用性质可以分为三种:基本通行能力、可能通行能力和设计通行能力 18、 交通工程学是研究交通规律及其应用的一门技术科学。研究目的是探讨如何安全、迅速、舒适、经济地完成交通运输任务;它的研究内容主要是交通规划、交通设施、交通运营管理;它的探索对象是驾驶员、行人、车辆、道路和交通环境。 19、 驾驶疲劳:是指作业者在连续作业一段时间以后,劳动机能的衰退和产生疲劳感的现象。驾驶人员在连续驾驶车辆后,产生生理、心理机能以及驾驶操作效能下降的现象称为驾驶疲劳。 20、 第30位小时交通量 将一年当中8760个小时的小时交通量,按大小次序排列,从大到小排列序号为第30位的那个小时的交通量,称为第 30位小时交通量。 21、 85%位速度:表示在该路段上行驶的车辆中有85%的车辆低于该速 度,即是说大于85%

传感器常见问题答案汇编

一、简答题 1、 从传感器的静态特性和动态特性考虑,详述如何选用传感器。 答:考虑传感器的静态特性的主要指标,选用线性度大、迟滞小、重复性好、分辨力强、 稳定性高、抗干扰稳定性高的传感器。考虑动态特性,所选的传感器应能很好的追随输入量的快速变化,即具有很短的暂态响应时间或者应具有很宽的频率响应特性。 2、 在静态测量中,根据测量系统输入量与对应输出值所绘制的定度曲线可以确定那些静态特性? 答:在静态测量中,根据绘制的定度曲线,可以确定测量系统的三个静态特性:灵敏度,非线性度,回程误差。 3、 简述应变片在弹性元件上的布置原则,及哪几种电桥接法具有温度补偿作用。 答:布置原则有:(1)贴在应变最敏感部位,使其灵敏度最佳; (2)在复合载荷下测量,能消除相互干扰; (3)考虑温度补偿作用; 单臂电桥无温度补偿作用,差动和全桥方式具有温度补偿作用 4、 涡流式传感器测量位移与其它位移传感器比较,其主要优点是什么?涡流传感器能否测量大位移量?为什么? 答:优点:能实现非接触测量,结构简单,不怕油等介质污染。 涡流传感器不能测量大位移量,只有当测量范围较小时,才能保证一定的线性度。 5、 传感器的定义和组成框图?画出自动控制系统原理框图并指明传感器在系统中的位置 和作用。 答:传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 组成框图:自动控制系统原理框图: 传感器的作用:感受被测量并转换成可用输出信号传送给控制对象。 6、 光电效应可分为哪三种类型。 答:光电效应可分为:外光电效应,内光电效应,光生伏特效应。 7、 传感器(或测试仪表)在第一次使用前和长时间使用后需要进行标定工作,请问标 被测量 敏感元件 信号调节转换电路 辅助电源 传感元件 传感器 对象 给定 + e 反馈装置 扰动 ﹣

角度传感器简单应用系统

2010年05期(下 )角度传感器简单应用系统 叶贞贞 (合肥学院电子信息与电气工程系 安徽 合肥 230061) 【摘要】本设计以C8051F005单片机为控制核心,用单轴倾角传感器SCA60C 检测平衡板倾斜角度,通过对步进电机的控制达到了控制平衡板旋转角度的目的。 【关键词】角度传感器;C8051F005单片机;角度预置;步进电机;显示联动 0.引言 传感器在现代信息技术中有着举足轻重的地位,传感器为系统提供进行处理和决策所必需的原始信息,很大程度上影响和决定着系统的性能,本设计采用以单片机为控制单元,用单轴倾角传感器检测平衡板倾斜角度,采取步进电机控制平衡板角度自动旋转目的。 1.硬件电路设计 角度传感器硬件连接图如图1所示,当步进电机带动平衡板倾斜到使角度传感器SCA60C 处于水平位置时,Vo 端输出+0.5V 的模拟电压。传感器SCA60C 仅可精确检测到0~90度的角度范围,当平衡板转到使角度传感器与水平面成90度的角度时,此时Vo 端输出+5V 的模拟电压。在0~90度的倾角范围内,Vo 端输出的是正比于倾角大小的+0.5~+5V 的模拟电压信号,当平衡板转动到使角度传感器与水平面间的角度从90度到180度的范围变化时,输出端Vo 输出的是从+5V 依次变化到+0.5V 的模拟电压信号[1][2],因此通过测定传感器SCA60C 输出端Vo 电压的大小即可确定平衡板与水平面的夹角。 图1角度传感器硬件连接图 图2步进电机驱动电路原理图 步进电机驱动电路的设计本系统中,我们选择4相5线步进电机,其驱动电路主要由L297+L298组成,该驱动电路集驱动与保护于一体。L297是脉冲分配器,只要步进电机A 、B 、C 、D 四项依次连接到J1的1、2、3、4各点,且将剩下的一条线接地,L297就会自动的将输入到端口CW/CCW 的脉冲分配给步进电机的各个相序,此时步进电机便可转动[3][4]。控制电机时只需单片机通过I/O 口向L297的cw/ccw 和clock 端发送控制信号即可控制它的转速和正反转。驱动电路原理如图2。 本系统主要由主控制器模块、角度检测模块、A/D 转换模块、键盘模块和显示器模块等部分组成,系统连接图如图3所示: 图3系统框图 图4程序流程图(下转第8页 ) 作者简介:叶贞贞(1987.1—),女,汉族,安徽安庆人,就读于合肥学院06级电子信息与电气工程系电子信息工程专业。 ◇高教论述◇

传感器技术发展现状及趋势

传感器技术发展现状及趋势 桂林航天工业学院 课程论文 题目:传感器技术发展现状及趋势 专业:工商企业管理(生产运作与质量管理) 姓名:罗并 学号:20190820Z00102 指导教师:陈少航 2019年 6月12日 传感器技术发展现状及趋势 在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探 测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发,采集, 传送和处理息息相关。分析当前信息与技术发展状态,21世纪的先进传感器必须具备小型化,智能化,多功能化和网络化等优良特征。 为了能够与信息时代信息量激增,要求捕获和处理信息的能力日益增强的技术发展趋 势保持一致,对于传感器性能指标(包括精确性,可靠性,灵敏性等)的要求越来越严格; 与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标 准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被 各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小,重量轻,反应快,灵敏度高以及成本低等优点。 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD) 的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本,高性能的 新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能 够满足科技发展需求的微型化的方向发展。 智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新 型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用 领域,如分布式实时探测,网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。,智能化传感器具有以下优点: (1)智能化传感器不但能够对信息进行处理,分析和调节,能够对所测的数值及其误 差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行

工程地质复习提纲(全)

工程地质 1.工程地质学是介于地学和工程学之间的一门边缘交叉学科,他研究土木工程中的地质问题,可见工程地质学是为了解决地质条件和人类工程活动之间矛盾的一门实用性很强的学科。 2.工程地质学中的地质因素包括:地形地貌,地层岩性,地质构造,水文地质,自然地质作用与现象等 3.圈层构造:地壳,地幔,地核 4.岩石按成因分为:岩浆岩,沉积岩,变质岩 5.地壳中的化学元素,除极少数呈单质存在外,绝大多数的元素都是以化合物的形态存在于地壳中。这些存在于地壳中的具有一定化学成分和物理性质的自然元素或化合物,称为矿物。其中构成岩石的矿物,称为造岩矿物。常见:石英,正长石,方解石。 6.造岩矿物绝大部分是结晶质 7.矿物的物理性质,决定于矿物的化学成分和内部构造。 8.矿物的物理性质: 1 颜色:自色,他色,加色 2 条痕色:与实际颜色不一定相同 3 光泽 4 硬度划分:滑石石膏方解石萤石磷灰石正长石石英黄玉刚玉金刚石 5 解理,断口:矿物受打击后,能延一定方向裂开形成光滑平面的性质,称为解理。不具方向性的不规则断裂面称为断口。 解理分为:极完全解理完全解理中等解理不完全解理 解理的完全程度和断口是相互消涨的,解理完全是则不显断口。反之,解理不完全或无解理时,则断口显著。 9.(岩浆岩)岩浆岩依冷凝成岩浆岩的地质环境的不同,分为三大类:深成岩(3000米),浅成岩,喷出岩(火山岩) 10.岩浆岩的产状是反映岩体空间位置与相互关系及其形态特征,产状有:岩基,岩株,岩盘,岩床,岩脉。 11.根据SIO2的含量分为:(1)酸性岩类(大于65%)(2)中性岩类(52-65%) (3)基性岩类(45-52%)(4)超基性岩类(小于45%) 12.(结构)岩浆岩的的结构,是指组成岩石的矿物的结晶程度,晶粒的大小,形状及其相互结合的情况。分为: 1.全晶质结构(粗粒结构,中粒结构,细粒结构,微粒结构) 2.半晶质结构

传感器常用参数的含义

真空传感器是工业实践中最常用的一种压力传感器,现已广泛应用于各种工业自控环境。每种仪器在使用的时候,我们都力求能够使其测量结果精准,而首要的就是对该产品相关信息要有了如指掌,才能够为其安装使用奠定坚实的基础。下面就让艾驰商城小编对传感器常用参数的含义来一一为大家做介绍吧。 1、传感器:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。通常有敏感元件和转换元件组成。 (1)敏感元件是指传感器中能直接(或响应)被测量的部分。 (2)转换元件指传感器中能较敏感元件感受(或响应)的北侧量转换成是与传输和(或)测量的电信号部分。 (3)当输出为规定的标准信号时,则称为变送器。 2、测量范围:在允许误差限内被测量值的范围。 3、量程:测量范围上限值和下限值的代数差。 4、精确度:被测量的测量结果与真值间的一致程度。 5、从复性:在所有下述条件下,对同一被测的量进行多次连续测量所得结果之间的符合程度: 6、分辨力:传感器在规定测量范围圆可能检测出的被测量的最小变化量。 7、阈值:能使传感器输出端产生可测变化量的被测量的最小变化量。 8、零位:使输出的绝对值为最小的状态,例如平衡状态。 9、激励:为使传感器正常工作而施加的外部能量(电压或电流)。 10、最大激励:在市内条件下,能够施加到传感器上的激励电压或电流的最大值。 11、输入阻抗:在输出端短路时,传感器输入的端测得的阻抗。 12、输出:有传感器产生的与外加被测量成函数关系的电量。 13、输出阻抗:在输入端短路时,传感器输出端测得的阻抗。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品

最新传感器技术详细讲解

传感器技术详细讲解

传感器技术

模块一传感器(Sensor) 知识要求:1、传感器组成及工作原理; 2、分类、输出特性、和负载的连接。 技能要求:1、掌握光电、电感、电容和磁场式传感器的正确使用; 2、掌握传感器的串联、并联回路控制负载。 1.1 传感器基本知识 1.1.1 定义 传感器是自动检测装置中直接感受被测量,并将它转换成可用信号输出的器件。 ①自动检测在自动化装置构成的系统中是必不可少的。 ②直接感受被测量,表明传感器和被测量之间没有其它感受器件。 ③实际的被测量中多数是非电量,当然也可能是电量。 ④输出的可用信号,是与被测量有确定对应关系的电量,通常为电压、电流。 1.1.2 组成 辅助电源 图1.1传感器组成

①敏感元件是传感器中直接感受被测量并输出与被测量成确定关系的其他量的元件。其作用是检测感应被测物体信息。 ②转换元件是只感受由敏感元件输出的与被测量成确定关系的其它量并将其转换成电量输出的元件。其作用是把被测物体信息转换为可用输出信号(电量)。 ③辅助元件:辅助电源,固定、支撑件等。 1.1.3 应用 代替人的五种感觉(视、听、嗅、味、触)器官。 1.1.4 分类 按输出信号的性质分:数字量传感器、模拟量传感器。 1.1.5 数字量传感器输出特性 (1)NPN型:传感器的转换元件的输出管为NPN型。 ①传感器的负载(灯)接在传感器电源正极(+DC24V)和传感器输出信号端之间; ②未感应时传感器输出管截止,输出端输出逻辑电平“1”(+DC24V),负载不工作; ③有感应时传感器输出管导通,输出端输出逻辑电平“0”(0V),负载得电工作。 (2)PNP型:传感器的转换元件的输出管为PNP型。 ①传感器的负载(灯)接在传感器输出信号端和传感器电源负极(0V)之间;

给水排水管网系统知识点整理

给水排水管网系统知识点整理 1、给水的用途有:生活用水、工业生产用水和市政消防用水三大类。 2、给水排水官网系统的组成: (1)给水管网系统一般由:输水管(渠)、配水管网、水压调节设施(泵站、减压阀)及水量调节设施(清水池、水塔、高位水池)等构成。 (2)排水管网系统一般由:废水收集设施、排水网管、水量调节池、提升泵站、废水输水管(渠)和排放口等构成。 3、居民用水:指居民家庭生活中饮用、烹饪、洗涤等用水,是保障居民日常生活、身体健康、清洁卫生和生活舒适的重要条件。 4、公共设施用水:指籍贯、学校、医院、宾馆、车站、公共浴场等公共建筑和场所的用水供应,要求用水量大、用水地点集中,水质要求与居民生活用水相同。 5、工业企业生活用水:工业企业区域内从事生产和管理工作的人员 在工作时间内的饮用、烹饪等生活用水,水质要求与居民生活用水一样。 6、工业生产用水:指工业生产过程中为满足生产工艺和产品质量要 求的用水,可分为产品用水、工艺用水、辅助用水。 7、市政和消防用水:是指城镇或工业企业区域内的道路清洗、绿化浇灌、公共清洁卫生和消防的用水。 8排水工程:用于废水收集、处理和排放工程设施。废水分为:生活污

水、工业废水和雨水三种,其中含有大量有机物污染物是废水处理的重点对象。 9、城市供水系统需要具备充足的水资源、取水设施、水质处理设施 和输水及配水管道网络系统。 10、给水排水系统的水质关系:原水水质标准—给水水质标准—排放 水质标准。 11、给水官网系统分类:(1)按水源分类:单水源和对水源给水管网系 统。(2)按系统构成分:统一给水官网系统和分区给水管网系统。 (3)按输水方式分:重力输水管网系统和压力输水管网系统。 12、排水体制:不同排除方式所形成的排水系统称为排水体制。分为合流制和分流制两种。 第2章 1、地形是影响污水管道定线的主要因素。 2、区域排水系统:将两个以上城镇地区的污水统一排除和处理的系 统,称为区域排水系统。 3、试诉区域排水系统的有何优缺点: (1)优点:污水厂数量少,处理设施大型化集中化,每单位水量 的基建和运行管理费用低,比较经济;污水厂占地面积小,节省土地;水质、水量变化小,有利于运行管理;④河流等水资源利用与 污水排放的体系合理化,而且可能形成统一的水资源管理体系等。 (2)缺点:当排入大量工业废水时,可能使污水处理发生困难;工程设施规模大,组织与管理要求高,而且一旦污水厂运行管理不当,

角度传感器工作原理及应用简介

角度传感器工作原理及应用简介 角度位移传感器是利用角度变化来定位物体位置的电子元件。适用于汽车,工程机械,宇宙装置、导弹、飞机雷达天线的伺服系统以及注塑机,木工机械,印刷机,电子尺,机器人,工程监测,电脑控制运动器械等需要精确测量位移的场合。本文介绍角度位移传感器原理及其应用实例。角度位移传感器原理 角度传感器用来检测角度的。它的身体中有一个孔,可以配合乐高的轴。当连结到RCX 上时,轴每转过1/16圈,角度传感器就会计数一次。往一个方向转动时,计数增加,转动方向改变时,计数减少。计数与角度传感器的初始位置有关。当初始化角度传感器时,它的计数值被设置为0,如果需要,你可以用编程把它重新复位。 角度位移传感器实例 如果把角度传感器连接到马达和轮子之间的任何一根传动轴上,必须将正确的传动比算入所读的数据。举一个有关计算的例子。在你的机器人身上,马达以3:1的传动比与主轮连接。角度传感器直接连接在马达上。所以它与主动轮的传动比也是3:1。也就是说,角度传感器转三周,主动轮转一周。角度传感器每旋转一周计16个单位,所以16*3=48个增量相当于主动轮旋转一周。现在,我们需要知道齿轮的圆周来计算行进距离。幸运地是,每一个LEGO齿轮的轮胎上面都会标有自身的直径。我们选择了体积最大的有轴的轮子,直径是81.6CM(乐高使用的是公制单位),因此它的周长是81.6=81.63.14256.22CM。现在已知量都有了:齿轮的运行距离由48除角度所记录的增量然后再乘以256。我们总结一下。称R 为角度传感器的分辨率(每旋转一周计数值),G是角度传感器和齿轮之间的传动比率。我们定义I为轮子旋转一周角度传感器的增量。即: I=GR 在例子中,G为3,对于乐高角度传感器来说,R一直为16.因此,我们可以得到: I=316=48 每旋转一次,齿轮所经过的距离正是它的周长C,应用这个方程式,利用其直径,你可以得出这个结论。

传感器技术发展现状及趋势

桂林航天工业学院 课程论文 题目:传感器技术发展现状及趋势 专业:工商企业管理(生产运作与质量管理) 姓名:罗并 学号:20130820Z00102 指导教师:陈少航 2015年6月12日 传感器技术发展现状及趋势 在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发,采集,传送和处理息息相关。分析当前信息与技术发展状态,21世纪的先进传感器必须具备小型化,智能化,多功能化和网络化等优良特征。 为了能够与信息时代信息量激增,要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性,可靠性,灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小,重量轻,反应快,灵敏度高以及成本低等优点。 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本,高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。 智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测,网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。,智能化传感器具有以下优点: (1)智能化传感器不但能够对信息进行处理,分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。 (2)智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。 (3)智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,

相关文档
最新文档