外文翻译---四足机器人的步态适应

外文翻译---四足机器人的步态适应
外文翻译---四足机器人的步态适应

附录

Gait Adaptation in a Quadruped Robot

1. Introduction

A short time after birth a foal can walk and then run. It is remarkable that the animal learns tocoordinate the many muscles of the legs and trunk in such a short period of time. It is not likely that any learning algorithm could program a nervous system ab initio with so few training epochs. Nor is it likely that the foal?s locomotor controller is completely determined before birth. How can this a- bility be explained? How can this ability be incorporated into the control system of a walking machine?

Researchers in biology have presented clear evidence of a functional unit of the central nervous system, the Central Pattern Generator (CPG), which can cause rhythmic movement of the trunk and limb muscles(Grillner and Wall′en, 1985). In adult animals, the output of these cells can generate muscle activity that is very similar to activity during normal walking, even when sensory feedback has been eliminated (Grillner and Zangger, 1975). The CPG begins its ac- tivity before birth, although its activity does not appear to imitate the details of a particular walking animal, it is apparently correlated with the animal?s class, i.e., amphibian, reptile, mammal, etc. (Bekoff, 1985; Cohen, 1988).Apparently, the basic structure of the CPG network is laid down by evolution. How is this basic structure adapted to produce the detailed coordination needed to control a walk- ing animal?

The answer to this question is important to robotics for the following reason. CPGs have been well studied as a basic coordinating mechanism (Cohen et al., 1982; Bay and Hemami, 1987; Matsuoka, 1987; Rand et al., 1988; Taga et al., 1991; Collins and Stewart, 1993; Murray, 1993; Zielinska, 1996; Jalics et al., 1997; Ito et al., 1998; Kimura et al., 1999). However, the details of how this system can automatically adapt to control a real robot are not clear. A good goal would be to describe a general strategy for matching a generic CPG to a particular robot in real-time, with a minimal amount of interaction with the environment.

Reinforcement learning has been applied on long time scales to certain problems in walking (learning coordination and basic leg movement) (Ilg and Berns, 1995), but the time scales of such an approach is too long to explain the quick learning of animals just after birth.

The author suggests that part of the answer may be in the use of a number of simple innate internal models to evaluate the performance of the rapidly developing nervous system. These innate internal models could be used to adaptively tune CPGs during phases of rapid development. Figure 3 illustrates the training concept. A CPG generates a signal destined for a group of actuators (muscle) as well as a second signal, which is a copy of the signal sent to the actuators destined for an innate forward model. In biology, a copy of the motor signal is called an efference copy (Sperry, 1950). A forward model as described by Kawato (Kawato and Wolpert, 1998) is a functional model of the forward dynamics of the system.We use very simplified, innate forward models. These forward models predict the sensory expectation, or the desired consequence of CPG activity. This information is compared, and an adaptive rule then modifies the CPG.

The author suggests that a handful of adaptive mechanisms may be used for rapid tuning of a generic CPG. For example, the adaptive model can be used to ensure coordination of limbs with the environment.

The use of simplified, innate models is the most conservative stance possible. The intent is to make the fewest assumptions possible about the …knowledge? that the nervous system has about the body that it is trying to control. By demonstrating how this process may be used in a physical device—a robot—we give compelling evidence that this approach is sufficient.

This article reports on an investigation into how a group of forward models could be used to adaptively tune a CPG in a real robot. As these models are innate, we assume they are simple; it would not be satisfying if these models were as complex as the behaviors that they help generate. Secondly, these models should not be detailed, accurate models of the forward dynamics of the robot. If innate models are used, their simplicity prohibits them from detailing accurate information about the structure of

the pattern generator. The study here supposes that once the CPGs have been tuned to produce basic locomotion, other, more general learning mechanisms would take over to create a more refined gait. These learning mechanisms might include reinforcement learning or supervised learning methods.

2. Experiments

The results of three experiments using GEO-II are described in this section. These experiments require progressively more adaptation to the environment and culminate in adaptive walking behavior. The robot learns to adjust key parameters of the CPG network to allow the robot to walk within minutes.

2.1Experimental Setup

The robot platform is a four-legged robot, “GEO-II” (Fig. 1). Sensors include a force sensor on each foot, and a gyro scope which senses body roll. The unique features of this robot include a flexible, three-degrees of freedom spine. This allows spinal movement including twist. Model airplane servo actuators drive all axes.These servos are positional control devices. Geo II weighs 1.25 Kg.

Figure 1.The GEO-II robot. GEO-II features a flexible spine

Computation is divided between an onboard processor, a 68HC11 based ServoX24 board by Digital Designs and Systems, Inc., and a dual Intel Pentium workstation. The ServoX24 board is responsible for generating command signals for the servos as well as A/D sampling of sensor signals. The workstation is responsible for computing the ARRs, the AMs, and reflexes modules. The workstation also hosts a graphical user interface. All code runs under Windows 2000(C++ Microsoft) in a multi-threaded, windowed environment.

2.2 Adaptive Modules

2.2.1Twist Adaptation Results.

The Twist ARR and Twist AM work together to generate a balanced, twisting of the body. When the Twist ARR is activated initially, the output gain of this module is near zero. Thus, no body twisting and no cyclic sensory feedback is sensed. The Twist AM gradually increases the gain as well as both the positive and negative twist uCPGs. (see Fig. 3B). Through time, as the robot shifts its weight, the paw forces vary periodically (see Fig.3A). As can be seen, the front legs of the robot move out of phase. The magnitude of the twist amplitude is decreased due to gyroscope feedback.

Figure3. Twist adaptation response. (A) Foot pressure of front legs.

(B)Change in amplitude Ai of the twist uCPGs.

In the end, the front legs periodically lifted symmetrically off the ground.

2.2.2 Burst Length Adaptation Results

In this setup, GEO-II is suspended in a test apparatus. This is done to facilitate data collection only. If a trunk twist is induced, the hip assembly will rock back and forth and will cause the legs to contact the ground periodically. The experimental procedure is as follows: The hip is placed in oscillation, the burst length is reset to zero and adaptation is then turned on. Note that adaptation is independently controlled for each leg.

The burst length is zero. As time progresses, the burst length lengthens and then stabilizes. As can be seen, the burst length adjusts until it stabilizes so that the burst

terminates just as the leg touches the ground. If the leg were to terminate its flexion too early, this leg would be locked forward. This may cause the robot to stumble as it swings its foot forward. If it did not extend soon enough, the limb would be flexed when the leg struck the ground, and the robot may lose its balance.

3. Discussion

Two key principles are combined in this work: (1) Innate forward models, (2) Distributed Control. Using these principles, the following three problems are addressed: (1) Static Postural Control, (2) Learning proper parameter settings for the output of auCPG model (an ARR), and (3) Learning coordination with the environment.

Postural control is of primary importance. The postural control mechanism in this work relies on force sensors on the foot as the sole input to the control system. The idea behind the control scheme is to maintain three degrees of symmetry—front to back, side-to-side and diagonal symmetry. Thus, sensory signals become references for other signals related by a degree of symmetry; senses are compared to each other. Furthermore, each degree of symmetry is related to a particular …muscle group? in the robot. Front to back symmetry generates commands for the hip rotation axes. Side-to-side symmetry drives hip adductors. Finally, diagonal symmetry drives twist about the body axis. It is fortunate that these degrees of symmetry map so easily onto the proximal actuators. In other mechanical walking machines, the twist axis is fixed. Thus asymmetries must be compensated for by leg flexion. By adding the twist, the torso and associated proximal actuators can compensate for imbalances (as defined here). It is also noted that compensation could be achieved on a slope. Also, postural adjustment can be made to compensate for weights placed on the robot. Such weight may mimic a payload dropped onto the rob ot?s back. It may also mimic constant perturbations such as dangling wires and cables. Thus, the system, by using the principle of symmetry, can simply drive muscles in a one-to-one fashion without the need for any detailed kinematic model of the robot. Yet this scheme achieves postural control in the face of significant outside disturbances.

The issue of control from higher level centers is not discussed here. The general strategy is to allow direct parameter modification from higher centers. The interested reader is directed to (Lewis and Sim′o, 1999, 2001) for an example of using high level vision to adaptively control ARR. In that work, an example is given of Burst Length Modulation by a higher center (communicating with visual centers).

Adaptive modules are used to tune the output of a CPG. Here the idea is to use a model of sensory expectation. The models are rudimentary and are sufficient to allow the system to bootstrap. It is not necessary to have any detailed model of the dynamics of the system.

Adaptive modules were also used to generate expectancies for when a foot strike should occur. This allows the adjustment of the flexor burst length. This adaptive mechanism was crucially important in assisting the robot in generating precisely the correct burst timing, preventing stumbling and foot dragging. Again the model used was rudimentary and did not depend on any detailed dynamics of the robot.

This idea of a rudimentary model is crucially important to understanding the value of this work. The idea of a detailed dynamic model is rejected. The power in this idea is that the adaptive system should, in principle, work over a very broad range of robotic devices with similar form. We made only the most general assumptions about the structure being controlled here. This also means that it is not necessary to identify a model (i.e., to instantiate by making detailed perturbations and observations) before learning can begin. That is why learning was achieved so rapidly in the cases presented.

The results of the present work illustrates the power of simple innate models in bootstrapping the system. In earlier work, it was assumed that adaptation should be made to occur in stages (Lewis et al., 1992). However, remarkably, all adaptive modules could be switched on simultaneously, and developmental stages seemed to emerge spontaneously. This was surprising.

The author suggests that once the system has overcome the basic problem of developing a rudimentary gait, using the techniques defined here, more generalpurpose learning would continue to refine the walking over time. In

vertebrates, this may be one of the roles of the cerebellum.

4. Summary and Conclusions

CPGs have been well studied by a number of researchers with possible applications to the control of walking machines. While a simple CPG circuit, consisting of a handful of oscillators, can be constructed, it is not clear how these CPGs can be made to adapt to a particular machine.

The approach presented here has the following elements: (i)ACPGmodel is chosen where the parameters controlling the behavior of the model are represented explicitly. This model is called an Adaptive Ring Rule (ARR). (ii) Included here is the idea of an innate internal model. That is, a model that predicts, even in a crude way, the sensory consequences of intended action. These models are used by Adaptive Modules (AMs) to alter the parameters of the ARR so that the sensory feedback more closely resembles the output of associated innate internal models.

By choosing the correct AMs, we demonstrate that critical elements of gait, such as flexor burst length adaptation, hip-knee phase, and the twisting of the body, can quickly be acquired. These AMs and ARRs, in conjunction with two basic reflexes (postural control and foot extension reflex) allowthe robot to quickly acquire a basic trot gait within minutes of inception. This quick learning is compatible with the learning exhibited by animals such as horses immediately after birth. Further, such adaptive mechanisms can be built into custom electronic circuits, which are under development (Lewis et al., 2000, 2001).

四足机器人的步态适应

1.导言

短的时间在出生后1 foal可以步行,然后运行。值得注意的是,该动物学会Tocoordinate许多肌肉腿部和躯干在这么短的时间内。这是不太可能的任何学习算法可程式中枢神经系统的从头算与这么少的培训时代。也不是,它可能是foal 的运动控制器是完全取决于出生前。怎么会是这样一个bili性加以解释?怎么会是这样的能力,被纳入控制系统的一步行机?

研究人员在生物,已明确的证据显示一个功能单位的中央神经系统,中枢模式发生器(CPG )的,可以导致节奏的运动躯干和四肢肌肉(grillner和wall'en ,1985年)。在成年动物,输出,这些细胞可以产生肌肉活动,这是非常类似的活动在正常散步,甚至当感官的反馈意见已被消灭,(grillner和桑戈,1975年)。中央人民政府开始交流tivity在出生之前,虽然其活动没有出现模仿的细节特别步行动物,这是很明显的相关性与动物的阶级,即两栖类,爬虫类,哺乳类等(贝克夫,1985年;科恩,1988年)。很明显,基本结构,中央人民政府网络是所订下的演变。这是怎样的基本结构,适应生产需要详细的协调控制散步-荷兰动物?

这个问题的答案是很重要的机器人由于下列原因。cpgs已很好的研究作为一项基本协调机制(科恩等人,1982年;湾及hemami, 1987年;松冈, 1987年;兰德等人, 1988年;多贺等人, 1991年;柯林斯及史钊域, 1993年;默里, 1993年;泽林斯卡, 1996年;亚利奇等人, 1997年;伊藤等人, 1998年;木村等人,1999年)。不过,详情如何,这系统可自动适应控制一个真正的机器人并不清楚。一个很好的目标将是在描述一个总体战略匹配的一个通用的中央人民政府某一机器人在实时的时间,最小金额的互动与环境。

强化学习,已用于对长远的时间尺度的一些问题在散步(学习的协调和基本腿运动)(ilg和berns, 1995年),但时间尺度的这种做法是太长解释快速学习的动物,只是后出生。

作者认为,部分答案可能在使用一些简单的先天内部模型的业绩考核评价迅速发展的中枢神经系统。这些先天的内部模型可以用来自适应调cpgs期间,分阶段的快速发展。图3说明了训练的概念。 1 ,中央人民政府生成一个信号,目的地为一组驱动器(肌肉),以及作为第二信号,这是一个复制的信号发送到驱动器的目的地是一个天生的前进模式。在生物学,副本汽车信号,是所谓的一efference复制(斯佩里, 1950年)。前瞻性的模型所描述的kawato(kawato 和wolpert, 1998年)是一个功能模型的前沿动态的system.we使用非常简单,前进先天的模式。这些前瞻性模型预测感官的期望,或所期望的后果,中央人民政府的活动。这方面的资料比较,自适应规则,然后修改了中央人民政府。

作者表明,极少数的自适应机制,可用于快速调整的一个通用的中央人民政府。举例来说,自适应模型可以用来确保协调四肢与环境。

使用简化,固有的模式是最保守的立场可能。其意图是使最少的假设可能对'知识'神经系统大约有身体,这是试图控制。通过展示如何这个过程中可用于在一个物理设备-机器人-我们给予令人信服的证据表明,这种做法是不够的。

此文章的报告进行调查,如何一组提出的模式可以用来自适应调重弹一,中央人民政府在一个真正的机器人。由于这些模型是天生的,我们假定他们是简单

的;它不会满足,如果这些模型一样复杂的行为,帮助他们产生。其次,这些模型不应该详细,准确的模式前进动力的机器人。如果固有的模式,使用简单,禁止他们详细准确的资料,有关的结构模式发生器。研究在这里支撑,一旦cpgs 已调整,以生产的基本运动,另一方面,更普遍的学习机制,将接管,以创造一个更精致的步态。这些学习的机制可能包括强化学习或监督的学习方法。

2.实验

结果三个实验使用的地缘二是本节所描述的。这些实验的需要,逐步更适应环境,并最终在自适应散步的行为。机器人学会调整的关键参数,中央人民政府网络,让机器人步行数分钟之内完成。

2.1实验装置

该机器人平台是一种四足机器人,“地理Ⅱ”(图1 )。传感器包括一个力传感器在每个脚,和一个陀螺的范围,其中感官机构名册。独特的特点,这个机器人包括一个灵活,三自由度的脊椎。这使脊柱运动,包括扭曲。模型飞机伺服致动器驱动器,所有的石斧。这些都是位置伺服控制装置。土力工程处二重1.25千克。

计算分之间的板载处理器,68hc11基于servox24局的数字设计和系统公司,和一个双Intel Pentium工作站。该servox24局是负责生成指挥信号为伺服以及A / D采样的传感器信号。工作站负责计算arrs,医疗辅助队,并反射模块。工作站还举办了图形用户界面。所有代码运行在Windows 2000下(C + +中的Microsoft)在一个多线程,窗口环境。

2.2 自适应模块

2.2.1扭适应的结果

捻捻和终点时,携手合作,以产生一个均衡的,扭曲的尸体。当扭终点是启动初期,输出增益模块,这是接近零。因此,没有扭体和没有感觉的反馈循环是感受到了。捻时逐渐增加的增益,以及正面和反面,都要扭ucpgs。(见图3B 条)。通过的时间,作为机器人轮班其重量,足势力有所不同,定期(见图3A)款。可以看出,前面腿机器人迁出阶段。规模捻度振幅降低是由于陀螺仪的反馈意见。

在最后,前面的腿定期解除对称离地面。

2.2.2突发长度适应的结果

在此安装,地缘二是悬浮在一种测试仪器。这样做是为了方便数据收集只。如果主干扭曲,是诱导,髋关节,大会将岩石回奔波,并会造成腿部接触地面定期。实验程序如下:髋关节,是摆在振荡,突发长度是重置为零和适应,然后打开。请注意,适应是独立控制每个站。

最初,突发长度是零。随着时间的进展,突发长度延长,然后稳定下来。可以看出,爆裂的长度调整,直至稳定,使该水管爆裂,终止正如腿触及地面。如果腿部被终止其屈曲言之尚早,这腿将被锁定前进。这可能会导致机器人蹒跚,因为它波动,其脚前进。如果不延长,尽快还不够,肢体会弯曲时,腿击中地面,机器人可能会失去平衡。

3.讨论

两个关键的原则相结合,在这方面的工作:(1)先天提出的模式,(2)分布式控制。使用这些原则,以下三个问题得到处理:(1)静态姿势控制,(2)学习正确的参数设置为输出一个ucpg模型(1终点),及(3)协调与学习环境。姿势控制是首要的重要性。该姿势控制机制,在这方面的工作依赖于力传感器对足部作为唯一的输入到控制系统。背后的想法控制计划,是要维持3程度的对称前线回来,侧侧和对角线的对称性。因此,感官信号成为参考其他信号有关的某种程度的对称性;感官比较,取长补短。此外,每个程度的对称性是一个主题相关的,特别是'肌肉组'在机器人。前线回到对称性生成命令髋关节旋转轴。侧侧对称驱动器髋关节adductors。最后,对角对称的驱动器捻有关机构轴。这是幸运的是,这些程度的对称性地图这么容易走上近端动。在其他机械步行机,扭轴是固定的。因此,不对称性,必须予以赔偿腿部弯曲。加入捻度,躯干及相关近端动可以弥补的不平衡(这里定义的)。它也指出,补偿就可以实现一个斜坡。此外,姿势的调整,可以作出赔偿的权重放置于机器人。这样的重量可能会模仿有效载荷下降到机器人的回。它也可能模仿不断的扰动,如悬挂电线电缆。因此,该系统,使用的原则,对称性,可以简单的肌肉驱动器在一个以一对一的方式,而不需要任何详细的运动学模型机器人。然而,这项计划取得姿势控制,在面对重大以外的骚乱事件。

控制问题,从更高层次中心是不是在这里讨论。一般的策略是让直接参数修正,从更高的中心。有兴趣的读者是针对(Lewis和sim'o,1999年, 2001年)的一个例子,使用高层次的眼光来自适应控制终点。在这方面的工作,给出了一个应用实例的突发长度调制由上级中心(沟通与视觉中心)。

自适应模块可用来调整输出一个中央人民政府。这里的构想是使用一个模型的感官的期望。该模型是最起码的,并足以使该系统的Bootstrap。这是没有必要有任何详细模型的动态系统。

自适应模块也被用来产生预期时,足部的罢工应该发生。这使得调整的屈突发长度。这种自适应的机制是非常重要,在协助机器人在发电,正是正确的水管爆裂的时机,防止绊脚拖。再次使用的模型是最起码的,并没有依赖于任何详细的动态机器人。

这一想法的一个最起码的模型是非常重要的认识价值,这方面的工作。构思一份详细的动态模型将被拒绝。权力在这方面的想法是,自适应系统应在原则上,工作范围十分广泛的机器人设备与类似的形式。我们所作的只是最普通的假设结构被控制在这里。这也意味着,这是没有必要找出一个模式(即以实例作出详细的扰动和意见),然后就可以开始学习。这就是为什么学习取得了如此迅速地在这些案件中。

结果,目前的工作说明的权力,简单的固有模式,在启动该系统。在以前的工作,这是假设的适应,应作出发生在阶段(刘易斯等人,1992年)。不过,值得注意的是,所有的自适应模块,可同时接通,和发育阶段,似乎出现自发性。这是不足为奇的。

4.概述和结论

CPGS已很好的研究由一个研究人员的人数与可能的应用,以控制行走的机器。而一个简单的中央人民政府电路,构成少数振荡器,可以兴建,目前尚不清

楚如何将这些CPGS可作,以适应特定的机器。

的做法,这里有以下内容:(一)acpgmodel是选择何处参数控制的行为模式的代表明确。这个模型是所谓的一环自适应规则(终点)。(二)包括在这里的想法是一个天生的内部模型。这是,一个模型,预测,即使在原油的方式,感官的后果,打算采取行动。这些模型所使用的自适应模块(医疗辅助队),以改变参数的终点,使感官反馈更加紧密地类似于输出相关的先天内部模式。

通过选择正确的医疗辅助队,我们证明的关键要素的步态,如屈突发长度适应,髋关节膝关节的阶段,扭曲身体,可以很快被收购。这些AMS和arrs,联同两个基本反射(姿势控制和足部反射延长)allowthe机器人迅速获得一个基本的逐渐达到自己的战略步态几分钟内成立。此快速的学习是与学习,展示由动物如马出生后立即。此外,这种自适应机制可以建成自定义电子电路,这是根据发展(刘易斯等人,2000年,2001年)。

1徐国华,谭民.移动机器人的发展现状及其趋势.机器人技术与应用. 2001.3

2Ashraf Elnagar. Predicion of Moving Objects in Dynamic Environments Using KalmanFilters.Proceedings of 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation. July 29-August1,2001

3卢桂章.“863”计划智能机器人研究进展.机器人技术与应用.1995,2(1):7-8

4蔡自兴.智能机器人研究的进展.智能机器人.1993:1-6

5Song.S.M.Kinematic Optimal Design of a Six-Legged Walking Machine.ph.Ddissertation,ohio state University,Columbus,OH,1984

6R.Tomovic and R.B.Meghee,A finite state Approch to the Synthesis of Bionengineering Control System IEEE Trans.On Human Factors in Electronics.Vol.HFE-7,No.2.1986

7R.b.Meghee and A.K.Jain.Someproperties of Regularly realizable Gait Matrices.Mathematical Biosciences.Vol.13,1972

8史智敏、干东英、原培章.留足步行机器人再不平地面行走的运动学研究.机械工程学报.第三期,1986

9Tsu-Tian Lee and Ching-Long Shih.Astudy of Gait Control of AQuardru[ed Walking Vehicle.IEEE Journal of Robotics and Automation.Vol.ra-2,1996

10P.Gonzalez De Santos and M.A.Jimwnez. Path Tarcking with Quadruped Walking Machines Using Discontinuous Gaits. Computers Elect.Engng Vol.21,No.6,1998 11孙汉旭.四足步行机构的研究.北京航天航空大学博士论文.1989

12徐跌群,万隆军.四足步行机器人稳定性步态分析.机器人技术专栏,2001年第23卷第8期5-7.

13杨东超,汪劲松,刘莉,陈恳.基于ZMP 的拟人机器人步态规划.机器人,2003 23(6) 14Hiroshi Kimura1, Yasuhiro Fukuoka1, Yoshiro Hada1, and KunikatsuTakase1.

Adaptive Dynamic Walking ofa Quadruped Robot on Irregular Terrain Using a Neural System Model. IEEE Int. Conf. Robotics and Automation, 1998.

15陈佳品,程君实,冯萍,马培荪,潘俊民,席裕庚. 四足机器人对角小跑步态的研究.

上海交通大学学报.Vol.31 No.6 1997

16 M.伍科布拉托维奇.步行机器人和动力型假肢.马培荪,沈乃勋译.北京:科学出

版社,1988

17RyoKurazume,KanYoneda and Shigeo Hirose. Feedforward and feedback dynamic trot gait control for quadruped walking vehicle. IEEE International Conference on Robotics and Automation , 2001:20-25

18H.Kimura, Y.Fukuoka, K.Konaga, Y.Hada and K.Takase. Towards 3D Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain by Using Neural System Model. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems Maui, Hawaii, USA, Oct. 29 - Nov. 03, 2001

19张永学, 麻亮, 强文义,付佩琛.基于地面反力的双足机器人期望步态轨迹规划.哈尔滨工业大学学报.2001 33(1)

20蔡自兴.机器人学.清华大学出版社.2000:51-54

21徐轶群, 万隆君.四足步行机器人腿机构及其稳定性步态控制. 机械科学与技术. Vol.22 ,No.1,2003

22S.M. Song, K.J.Waltron. A study of the gait control of a quadruped walking vehicle.

The MIT Press, Cambridge, 2000

23RyoKurazume,KanYoneda and Shigeo Hirose. Feedforward and feedback dynamic trot gait control for quadruped walking vehicle. IEEE International Conference on Robotics and Automation , 2001:1-3

24HironoriAdsachi,NorihoKoyachi and EijiNakano.Mechanism and Control of a Quadruped Walking Bobot.IEEE Control Sysytems Magazine.2000

25黄启育.模组化4+2足步行机械步态规划.国立中山大学硕士论文.2001

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

人形机器人论文中英文资料对照外文翻译

中英文资料对照外文翻译 最小化传感级别不确定性联合策略的机械手控制 摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。 关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。 1 引言 各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程

工业机器人外文翻译

附录外文文献 原文 Industrial Robots Definition “A robot is a reprogrammable,multifunctional machine designed to manipulate materials,parts,tools,or specialized devices,through variable programmed motions for the performance of a variety of tasks.” --Robotics Industries Association “A robot is an automatic device that performs functions normally ascribrd to humans or a machine in orm of a human.” --Websters Dictionary The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society . The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off . The basic terminology of robotic systems is introduced in the following :

机器人结构论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 FEM Optimization for Robot Structure Abstract In optimal design for robot structures, design models need to he modified and computed repeatedly. Because modifying usually can not automatically be run, it consumes a lot of time. This paper gives a method that uses APDL language of ANSYS 5.5 software to generate an optimal control program, which mike optimal procedure run automatically and optimal efficiency be improved. 1)Introduction Industrial robot is a kind of machine, which is controlled by computers. Because efficiency and maneuverability are higher than traditional machines, industrial robot is used extensively in industry. For the sake of efficiency and maneuverability, reducing mass and increasing stiffness is more important than traditional machines, in structure design of industrial robot. A lot of methods are used in optimization design of structure. Finite element method is a much effective method. In general, modeling and modifying are manual, which is feasible when model is simple. When model is complicated, optimization time is longer. In the longer optimization time, calculation time is usually very little, a majority of time is used for modeling and modifying. It is key of improving efficiency of structure optimization how to reduce modeling and modifying time. APDL language is an interactive development tool, which is based on ANSYS and is offered to program users. APDL language has typical function of some large computer languages. For example, parameter definition similar to constant and variable definition, branch and loop control, and macro call similar to function and subroutine call, etc. Besides these, it possesses powerful capability of mathematical calculation. The capability of mathematical calculation includes arithmetic calculation, comparison, rounding, and trigonometric function, exponential function and hyperbola function of standard FORTRAN language, etc. By means of APDL language, the data can be read and then calculated, which is in database of ANSYS program, and running process of ANSYS program can be controlled.

管道机器人外文翻译

一款使用离合器连接类型的内窥管道机器人 摘要-这篇论文展示了一款使用离合器的新型内窥管道机器人,用于直径小于或等于100mmde 管道内窥。这款机器人拥有三条驱动轴,且每条驱动轴各有一个离合器,离合器的设计依据平行联动原理。内窥管道机器人牢固的模型机构已经过驱动,原型机也被制作出来。机器人系统已经过一系列的仿真软件模拟和实验验证。 1.简介 管内机器人经过漫长的发展,根据运动模型可分为几种基本类型,比如轮驱动、蠕动、自动足、螺旋驱动、爬行、PIG和惰性运行等类型。在这些类型之中,轮式驱动应用最为广泛。在过去的十年时间间,机器人各式各样的驱动类型研究呈现井喷式增长。不同的驱动类型的机器人一般会有三个驱动轴,依靠单独控制各轴的速度,可以让机器人实现通过关节或者T型管道。而且这种类型机器人与轮式驱动、螺旋驱动和PIG等类型比较起来会有较大的可折叠区域,比较节省空间。 近来,随着小型化管道机器人市场的扩大,对直径小于100mm的管道机器人的关注同时愈来愈热。因为室内管道的清洁程度会直接影响到人的健康,因此,对室内管道的清洁与监测变得愈加重要,同时直径小于100mm的机器人也将主要用于室内管道清洁。机械装置使用的是平行连杆机构,有助于实现装置

减速功能。减速器与其他使用两个底板的典型减速器不同,第二部分将会详细介绍机器人系统的特征。第三部分将会讲解机构的运动学分析。机构的有效性将会通过软件仿真与实验验证,这些会在第四部分展示出来。最后,同时也是至关重要的是总结。 2.机器人特征 A机器人硬件设备及系统 如例1所示,机器人系统包括控制盒与机器人装备。根据模块化设置,控制盒与机器人硬件设备室分开的。 机器人硬件设备包含主体,三条链轮和如例2显示的三个离合轮部分。机器人长80mm,外扩至100mm。机械联动装置可确保制动功能的实现,这是因为装置有效避免了电磁制动器的缺点,比如滑移、电力不足以及规格限制。 例1.装备有机械离合装置的管道检测机器人系统 机器人装置可实现两种不同的操作模式:驱动模式与制动模式。驱动模式下的机器人会运行,制动模式会使机器人停止运行并且

外文翻译:机器人本科生外文翻译资料

外文翻译资料原文 学院 专业班级 学生姓名 指导教师

Robot Darrick Addison (dtadd95@https://www.360docs.net/doc/d03487527.html,), Senior Software Engineer/Consultant, ASC Technologies Inc. 01 Sep 2001 "A re-programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks." -- From the Robot Institute of America, 1979 Darrick Addison, an experienced developer in databases, networks, user interfaces, and embedded systems, introduces the field of robotics and the issues surrounding robotic systems. He covers mechanical design, sensory systems, electronic control, and software. He also discusses microcontroller systems, including serial and memory-mapped interfacing, and talks about some of the available open source software options. The word "robot" originates from the Czech word for forced labor, or serf. It was introduced by playwright Karel Capek, whose fictional robotic inventions were much like Dr. Frankenstein's monster -- creatures created by chemical and biological, rather than mechanical, methods. But the current mechanical robots of popular culture are not much different from these fictional biological creations. Basically a robots consists of: ? A mechanical device, such as a wheeled platform, arm, or other construction, capable of interacting with its environment ?Sensors on or around the device that are able to sense the environment and give useful feedback to the device ?Systems that process sensory input in the context of the device's current situation and instruct the device to perform actions in response to the situation In the manufacturing field, robot development has focused on engineering robotic arms that perform manufacturing processes. In the space industry, robotics focuses on highly specialized, one-of-kind planetary rovers. Unlike a highly automated manufacturing plant, a planetary rover operating on the dark side of the moon -- without radio communication -- might run into unexpected situations. At a minimum, a planetary rover must have some source of sensory input, some way of interpreting that input, and a way of modifying its actions to respond to a changing world. Furthermore, the need to sense and adapt to a partially unknown environment requires intelligence (in other words, artificial intelligence).

智能避障机器人设计外文翻译

INTELLIGENT VEHICLE Our society is awash in “machine intelligence” of various kinds.Over the last century, we have witnessed more and more of the “drudgery” of daily living being replaced by devices such as washing machines. One remaining area of both drudgery and danger, however, is the daily act ofdriving automobiles 1.2 million people were killed in traffic crashes in 2002, which was 2.1% of all globaldeaths and the 11th ranked cause of death . If this trend continues, an estimated 8.5 million people will be dying every year in road crashes by 2020. In fact, the U.S. Department of Transportation has estimated the overall societal cost of road crashes annually in the United States at greater than $230 billion. When hundreds or thousands of vehicles are sharing the same roads at the same time, leading to the all too familiar experience of congested traffic. Traffic congestion undermines our quality of life in the same way air pollution undermines public health.Around 1990, road transportation professionals began to apply them to traffic and road management. Thus was born the intelligent transportation system(ITS). Starting in the late 1990s, ITS systems were developed and deployed. In developed countries, travelers today have access to signifi-cant amounts of information about travel conditions, whether they are driving their own vehicle or riding on public transit systems. As the world energy crisis, and the war and the energy

搬运机器人外文翻译

外文翻译 专业机械电子工程 学生姓名张华 班级 B机电092 学号 05 指导教师袁健

外文资料名称:Research,design and experiment of end effector for wafer transfer robot 外文资料出处:Industrail Robot:An International Journal 附件: 1.外文资料翻译译文 2.外文原文

晶片传送机器人末端效应器研究、设计和实验 刘延杰、徐梦、曹玉梅 张华译 摘要:目的——晶片传送机器人扮演一个重要角色IC制造行业并且末端执行器是一个重要的组成部分的机器人。本文的目的是使晶片传送机器人通过研究其末端执行器提高传输效率,同时减少晶片变形。 设计/方法/方法——有限元方法分析了晶片变形。对于在真空晶片传送机器人工作,首先,作者运用来自壁虎的超细纤维阵列的设计灵感研究机器人的末端执行器,和现在之间方程机器人的交通加速度和参数的超细纤维数组。基于这些研究,一种微阵列凹凸设计和应用到一个结构优化的末端执行器。对于晶片传送机器人工作在大气环境中,作者分析了不同因素的影响晶片变形。在吸收面积的压力分布的计算公式,提出了最大传输加速度。最后, 根据这些研究得到了一个新的种末端执行器设计大气机器人。 结果——实验结果表明, 通过本文研究应用晶片传送机器人的转换效率已经得到显着提高。并且晶片变形吸收力得到控制。 实际意义——通过实验可以看出,通过本文的研究,可以用来提高机器人传输能力, 在生产环境中减少晶片变形。还为进一步改进和研究末端执行器打下坚实的基础,。 创意/价值——这是第一次应用研究由壁虎启发了的超细纤维阵列真空晶片传送机器人。本文还通过有限元方法仔细分析不同因素在晶片变形的影响。关键词:晶片传送机器人末端执行器、超细纤维数组、晶片 1.介绍

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

管道机器人(英文)

A SIMPLE ARCHITECTURE FOR IN-PIPE INSPECTION ROBOTS Mihaita HORODINCA, Ioan DOROFTEI, Emmanuel MIGNON, André PREUMONT Active Structures Laboratory UNIVERSITE LIBRE DE BRUXELLES Av. F. D. Roosevelt 50, cp 165/42, Brussels, Belgium Phone: (32)2-6504663 Fax: (32)2-6504660 e-mail: andre.preumont@ulb.ac.be Abstract: The paper presents an original robot architecture for in-pipe inspection. The robot consists of two parts articulated with a universal joint. One part is guided along the pipe by a set of wheels moving parallel to the axis of the pipe, while the other part is forced to follow an helical motion thanks to tilted wheels rotating about the axis of the pipe. A single motor is placed between the two bodies to produce the motion. All the wheels are mounted on a suspension to accommodate for changing tube diameter and curves in the pipe. The robot is autonomous and carries its own batteries and radio link. Four different prototypes have been constructed for pipe diameters of 170, 70 and 40 mm, respectively. For smaller diameters, the batteries and the radio receiver may be placed on an additional body attached to the others. The autonomy of the prototypes is about 2 hours. This architecture is very simple and the rotary motion can be exploited to carry out scrubbing or inspection tasks. Keywords: Autonomous mobile robot, In-pipe inspection, Helical motion Introduction Pipe inspection robots have been studied for a long time, and many original locomotion concepts have been proposed to solve the numerous technical difficulties associated with the change in pipe diameter, curves and energy supply. Although an exhaustive review of the literature is impossible due to the limited space available, a few broad categories can be identified: (i) For small size, many projects follow the earthworm principle consisting of a central part moving axially while the two end parts are provided with blocking devices connected temporarily to the pipe. Pneumatic versions of this concept have been proposed (e.g. [1]), but they require an umbilical for power. For smaller diameter (10 mm or less), a piezoelectric actuation has been considered, according to the inchworm principle, or according to an inertial locomotion driven by a saw-tooth wave voltage [2], or using vibrating fins with differential friction coefficients [3]. (ii) For medium size piping, classical electromechanical systems have been proposed with various architectures involving wheels and tracks, with more or less complicated kinematical structures, depending on the diameter adaptability and turning capability (e.g. [4,5]). (iii) For large pipes, walking tube crawlers have also been proposed [6].

外文翻译-多自由度步行机器人

多自由度步行机器人 摘要在现实生活中设计一款不仅可以倒下而且还可以站起来的机器人灵活智能机器人很重要。本文提出了一种两臂两足机器人,即一个模仿机器人,它可以步行、滚动和站起来。该机器人由一个头,两个胳膊和两条腿组成。基于远程控制,设计了双足机器人的控制系统,解决了机器人大脑内的机构无法与无线电联系的问题。这种远程控制使机器人具有强大的计算头脑和有多个关节轻盈的身体。该机器人能够保持平衡并长期使用跟踪视觉,通过一组垂直传感器检测是否跌倒,并通过两个手臂和两条腿履行起立动作。用实际例子对所开发的系统和实验结果进行了描述。 1 引言随着人类儿童的娱乐,对于设计的双足运动的机器人具有有站起来动作的能力是必不可少。 为了建立一个可以实现两足自动步行的机器人,设计中感知是站立还是否躺着的传感器必不可少。两足步行机器人它主要集中在动态步行,作为一种先进的控制问题来对待它。然而,在现实世界中把注意力集中在智能反应,更重要的是创想,而不是一个不会倒下的机器人,是一个倒下来可以站起来的机器人。 为了建立一个既能倒下又能站起来的机器人,机器人需要传感系统就要知道它是否跌倒或没有跌倒。虽然视觉是一个机器人最重要的遥感功能,但由于视觉系统规模和实力的限制,建立一个强大的视觉系统在机器人自己的身体上是困难的。如果我们想进一步要求动态反应和智能推理经验的基础上基于视觉的机器人行为研究,那么机器人机构要轻巧足以够迅速作出迅速反应,并有许多自由度为了显示驱动各种智能行为。至于有腿机器人,只有一个以视觉为基础的

小小的研究。面临的困难是在基于视觉有腿机器人实验研究上由硬件的显示所限制。在有限的硬件基础上是很难继续发展先进的视觉软件。为了解决这些问题和推进基于视觉的行为研究,可以通过建立远程脑的办法。身体和大脑相连的无线链路使用无线照相机和远程控制机器人,因为机体并不需要电脑板,所以它变得更加容易建立一个有许多自由度驱动的轻盈机身。 在这项研究中,我们制定了一个使用远程脑机器人的环境并且使它执行平衡的视觉和起立的手扶两足机器人,通过胳膊和腿的合作,该系统和实验结果说明如下。图 1 远程脑系统的硬件配置图 2 两组机器人的身体结构 2 远程脑系统 远程控制机器人不使用自己大脑内的机构。它留大脑在控制系统中并且与它用无线电联系。这使我们能够建立一个自由的身体和沉重大脑的机器人。身体和大脑的定义软件和硬件之间连接的接口。身体是为了适应每个研究项目和任务而设计的。这使我们提前进行研究各种真实机器人系统。 一个主要利用远程脑机器人是基于超级并行计算机上有一个大型及重型颅脑。虽然硬件技术已经先进了并拥有生产功能强大的紧凑型视觉系统的规模,但是硬件仍然很大。摄像头和视觉处理器的无线连接已经成为一种研究工具。远程脑的做法使我们在基于视觉机器人技术各种实验问题的研究上取得进展。 另一个远程脑的做法的优点是机器人机体轻巧。这开辟了与有腿移动机器人合作的可能性。至于动物,一个机器人有 4 个可以行走的四肢。我们的重点是基于视觉的适应行为的4肢机器人、机械动物,在外地进行试验还没有太多的研究。 大脑是提出的在母体环境中通过接代遗传。大脑和母体可以分享新设计

智能机器人外文翻译

Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission

相关文档
最新文档