变电站一次设备

变电站一次设备
变电站一次设备

变电运行培训内容

变电站一次设备(充油式变压器、干式变压器、自耦变压器、断路器(空断路器)、电压互感器、电流互感器、电容器、电抗器、消弧线圈及过电压设备等)作用、类型、原理、结构、辅助设备及作用、特点、运行规定、巡视检查、大小修的项目、试验项目、验收、操作、异常运行及处理,故障及处理。

第二章变电站一次设备

第一节变电站的主变压器

一、变压器的原理及分类:

变压器型号SFCSZ4-120000/220 S-三相、F-风冷、C-干式、S-三绕组、Z-有载调压、4-设计序列号、120000-容量120000KVA、220-高压侧电压等级220KV,也就是三相有载调压风冷干式变压器容量120000KVA、高压侧电压等级220KV。

1、变压器的原理

变压器是一种通过改变电压而传输交流电能的静止感应电器。它有一个共用的铁芯和与其交链的几个绕组,且它们之间的空间位置不变。当某一个绕组从电源接受交流电能时,通过电感生磁、磁感生电的电磁感应原理改变电压(电流),在其余绕组上以同一频率、不同电压传输出交流电能。因此,变压器的主要结构就是铁芯和绕组。铁芯和绕组组装了绝缘和引线之后组成变压器的器身。器身一般在油箱或外壳之中,再配置调压、冷却、保护、测温和出线等装置,就成为变压器的结构整体。

2、变压器的分类

按照单台变压器的相数来区分,可以分为三相变压器和单相变压器。在三相电力系统中,一般应用三相变压器,当容量过大且受运输条件限制时,在三相电力系统中也可以应用三台单相式变压器组成变压器组。

按照绕组的多少来分,可分为双绕组变压器和三绕组变压器。通常的变压器都为双绕组变压器,即在铁芯上有两个绕组,一个为原绕组,一个为副绕组。三绕组变压器为容量较大的变压器(在5600千伏安以上),用以连接三种不同的电压输电线。在特殊的情况下,也有应用更多绕组的变压器。

按照结构形式来分类,则可分为铁芯式变压器和铁壳式变压器。如绕组包在铁芯外围则为铁芯式变压器;如铁芯包在绕组外围则为铁壳式变压器。二者不过在结构上稍有不同,在原理上没有本质的区别。电力变压器都系铁芯式。

按照绝缘和冷却条件来分,可分为油浸式变压器和干式变压器。为了加强绝缘和冷却条件,变压器的铁芯和绕组都一起浸入灌满了变压器油的油箱中。

二、油浸式变压器

1、油浸式变压器的分类

目前,在无人值班变电站中用的较多的是油浸式变压器。最初的变压器都是空气冷却的。后来变压器的容量越做越大,电压也逐步提高,用空气来冷却和作为绝缘就越来越困难,因此就产生了油浸式变压器,把变压器浸在盛于铁箱中的油内。变压器油是从石油中提炼出来的,有很好的绝缘性能,它除了作为绝缘介质外,还作为一个散热的煤介。铁箱除了作为油的容器外,还提供了一个对周围空气的散热面。

油浸式电力变压器在运行中,绕组和铁芯的热量先传给油,然后通过油传给冷却介质。油浸式电力变压器的冷却方式,按容量的大小,可分为以下几种:

(1)自然油循环自然冷却(油浸自冷式)

这种冷却方式的特点就是依靠油箱壁的辐射和变压器周围空气的自然对流把热量从油箱的冷却器表面带走。一般认为,当变压器容量在2500KVA及以下时,可以采用膨胀式散热器,变压器可不装储油柜,并可将其设计成全密封型,但是,较大容量的变压器必须人为地增大油箱与空气接触的散热表面。随着低损耗技术的发展,采用油浸自冷式冷却的容量上限在增加,40000kVA及以下额定容量的变压器也可选用油浸自冷冷却方式。这样的优点是不要辅助供风扇用的电源,没有风扇所产生的噪声,散热器可以直接装在变压器油箱上,也可以集中装在变压器附近,油浸自冷式变压器的维护相对简单,始终可以在额定容量下运行。(2)自然油循环风冷(油浸风冷式)

通常情况下,当变压器容量在8000KVA及以上、40000KVA及以下时,可采用管式或片式散热器,可选用风冷冷却方式,一般在散热器上加装风扇,因为表面散热系数与流体在表面流动的速度有关,在吹风之后,对流部分的散热系数将增大好几倍,大大提高散热器的冷却效率。风冷式散热器是利用风扇改变进入散热器与流出散热器的油温差,提高散热器的冷却效率,使散热器数量减少,占地面积缩小。但此时要引入风扇的噪声,风扇的辅助电源。停开风扇时可按自冷方式运行,但是输出容量要减少,要降低到三分之二的额定容量。对管式散热器而言,每个散热器上可装两个风扇,对片式散热器而言,可用大容量风机集中吹风,或一个风扇吹几组散热器。

对于油浸自循环风冷变压器而言,油为自然循环,其循环动力是温度差;变压器的器身(铁芯及线圈)由于电磁损耗而发热,这种热量由靠近绕组和铁芯部分的油所吸收;箱底油温低,顶层油温高,顶层油与散热器连通散热器内的油将热量传给散热管或者散热板片,再传给空气,这样散热器进出口就形成温度降落(一般为20-30℃)。由温度降落就形成油的密度变化,冷却油的密度变大,靠自重而下沉;油箱内的油因被器身加热使油温升高,密度变小,形成浮升力;这样油箱内的发热与油箱外部的空气靠动力循环,热空气被风扇吹走,冷空气随之补充进来形成冷热空气交换流动,变压器的热量不断地传给空气,形成一种动态平衡。维持变压器各部(铁芯、绕组、油等)温升在标准规定的范围以内,从而保障变压器的寿命。

(3)强迫油循环冷却

强迫油循环冷却按冷却器可以分为水冷却和风冷却。对于强迫油循环冷却的变压器,它的油箱上没有油管或者散热器,变压器内的油经过管道和油泵被打到一个分开装置的油冷却器,油被冷却后重新回到变压器内。这种冷却方式的优点是:一方面,利用油泵后可以加强变压器内部油的流动,降低内部绕组对油的温升;另一方面,由于去掉了庞大的散热器,变压器的安装面积可以大大缩小,而且散热器可以安装在其他合适的地方,这一点对于巨型水电站的设计是很有利的。因为水电站的水源方便,一般采用水冷却方式。在其他场合也可以用风冷,它的结构基本上与装在变压器上的冷却器差不多。强迫油循环冷却因为结构较为复杂,所以一般只用在容量为50000KVA及以上的巨型变压器上。

2、油浸式变压器主要结构

油浸式变压器主要由铁芯、绕组、油箱、油枕、散热器、套管和分接开关等组成。铁芯构成了磁路,线圈套在铁芯上。线圈由导线绕制而成,绕组是指与电源(或负载)相接的线圈或线圈的组合,即绕组是由线圈所组成的。通常把铁芯和绕组合在一起称为变压器的器身,是变压器的最基本的组成部分。

(1)铁芯

铁芯是变压器的磁路部分。运行时因产生磁滞损耗和涡流损耗而发热。为降低发热损耗和减小体积和重量,铁芯由厚度小于0.35mm,导磁系数高的冷轧晶粒取向硅钢片构成。依照绕组在铁芯中的布置方式,有铁芯式和铁壳式之分。在大容量的变压器中,为使铁芯损耗发出的热量能够被绝缘油在循环时充分带走,以达到良好的冷却效果,常在铁芯中设有冷却

油道。

(2)绕组

绕组和铁芯都是变压器的核心元件。由于绕组本身有电阻或接头处有接触电阻,由I2Rt 知要产生热量。故绕组不能长时间通过比额定电流高的电流。另外,通过短路电流时将在绕组上产生很大的电磁力而损坏变压器。其基本绕组有同心式和交叠式两种。变压器绕组主要故障是匝间短路和对外壳短路。匝间短路主要是由于绝缘老化,或由于变压器的过负荷以及穿越性短路时绝缘受到机械的损伤而产生的。对外壳短路的原因也是由于绝缘老化或油受潮、油面下降,或因雷电和操作过电压而产生的。

(3)油箱

油浸式变压器的器身(绕组及铁芯)都装在充满变压器油的油箱中,油箱用钢板焊成。中、小型变压器的油箱由箱壳和箱盖组成,变压器的器身放在箱壳内,将箱盖打开就可吊出器身进行检修。

(4)油枕

油枕又叫油柜,是一种油保护装置,它是由钢板做成的圆桶形容器,水平安装在变压器油箱盖上,用弯曲管与油箱连接。油枕的一端装有一个油位计(油标管),从油位计中可以监视油位的变化。油枕的容积一般为变压器油箱所装油体积的8%~10%。当变压器油的体积随着油的温度膨胀或缩小时,油枕起着储油及补油的作用,从而保证油箱内充满油。同时由于装了油枕,使变压器油缩小了与空气的接触面,减少了油的劣化速度。

(5)呼吸器

又称吸湿器,通常由一根管道和玻璃容器组成,内装干燥剂(硅胶或活性氧化铝)。当油枕内的空气随变压器油的体积膨胀或缩小时,排出或吸入的空气都经过呼吸器,呼吸器内的干燥剂吸收空气中的水分,对空气起过滤作用,从而保持油的清洁。浸有氯化钴的硅胶,其颗粒在干燥时是钴蓝色的,但是随着硅胶吸收水分接近饱和时,粒状硅胶将转变成粉白色或红色,据此可判断硅胶是否已失效。受潮后的硅胶可通过加热烘干而再生,当硅胶颗粒的颜色变成钴蓝色时,再生工作就完成了。

(6)压力释放装置

压力释放装置在保护电力变压器方面起着重要作用。充有变压器油的电力变压器中,如果内部出现故障或短路,电弧放电就会在瞬间使油汽化,导致油箱内压力极快升高。如果不能尽快释放该压力,油箱就会破裂,将易燃油喷射到很大的区域内,可能引起火灾,造成更大破坏,因此必须采取措施防止这种情况发生。压力释放装置有防爆管和压力释放器两种,防爆管用于小型变压器,压力释放器用于大、中型变压器。

(7)散热器

散热器的形式有瓦楞形、扇形、圆形、排管等,散热面积越大,散热的效果就越好。当变压器上层油温与下部油温有温差时,通过散热器形成油的对流,经散热器冷却后流回油箱,起到降低变压器温度的作用。

(8)套管

变压器绕组的引出线从箱内穿出油箱引出时必须经过绝缘套管,以使带电的引线绝缘。绝缘套管主要由中心导电杆和磁套组成。导电杆在油箱内的一端与绕组连接,在外面的一端与外线路连接。绝缘套管的结构主要取决于电压等级。电压低的一般采用简单的实心磁套管。电压较高时,为了加强绝缘能力,在瓷套和导电杆间留有一道充油层,这种套管称为充油套管。

(9)分接开关

分接开关是调整变压比的装置。双绕组变压器的一次绕组及三绕组变压器的一、二次绕组一般有3、5、7个或19个分接头位置,分接头的中间分头为额定电压的位置。3个分接

头的相邻分头电压相差5%,多个分头的相邻分头电压相差2.5%或1.25%。操作部分装于变压器顶部,经传动杆伸入变压器的油箱。根据系统运行的需要,按照指示的标记来选择分接头的位置。变压器的高压装置分为无载调压和有载调压两种。无载分接开关,是在不带电情况下切换,其结构简单。有载分接开关,是在不停电情况下切换,在带负荷下进行,故在电力系统中被广泛采用。

3、油浸式变压器正常使用条件:

(1)海拔不超过1000m 户内或户外;

(2)最高环境气温+40℃,最高日平均温度+30℃;

(3)最高年平均温度+20℃,最低气温-25℃。

根据用户要求可提供在特殊使用条件下运行的变压器

4、油浸式变压器性能特点

(1)油浸式变压器低压绕组除小容量采用铜导线以外,一般都采用铜箔绕抽的圆筒式结构;高压绕组采用多层圆筒式结构,使之绕组的安匝分布平衡,漏磁小,机械强度高,抗短路能力强。

(2)铁芯和绕组各自采用了紧固措施,器身高、低压引线等紧固部分都带自锁防松螺母,采用了不吊芯结构,能承受运输的颠震。

(3)线圈和铁芯采用真空干燥,变压器油采用真空滤油和注油的工艺,使变压器内部的潮气降至最低。

(4)储油柜具有呼吸功能来补偿因温度变化而引起油的体积变化,并与外界隔离,这样就有效地防止了氧气、水份的进入而导致绝缘性能的下降。

5、油浸式变压器的油系统

油浸式变压器有几个互相隔离的独立油系统。在油浸式变压器运行时,这些独立油系统内的油是互不相通的,油质与运行工况也不相同,要分别做油中含气色谱分析以判断有无潜在故障。

(1)主体内油系统:与绕组周围的油相通的油系统都是主体内系统,包括冷却器或散热器内的油,储油柜内的油,35kV及以下注油式套管内油。

注油时必须将这个油系统内存储的气体放气塞放出。一般而言,上述部件都应有各自的放气塞。主体内油主要起绝缘与冷却作用。油还可增加绝缘纸或绝缘纸板的电气强度。在真空注油时,如有些部件不能承受与主体油箱能承受的相同真空强度时,应用临时闸隔离,如储油柜与主油箱间的闸阀。冷却器上潜油泵扬程要够,以免由于负压而吸入空气。这个油系统要有释压装置的保护系统,以排除器身有故障时所产生的压力。

(2)有载分接开关切换开关室内的油:这部分油有本身的保护系统,即流动继电器、储油柜、压力释放阀。这个开关室内的油起绝缘与熄灭电流作用。油会在切换开关切断负载电流时产生的油中去,这个油系统要良好的密封性能,即使在切换过程中产生电弧压力也要保护密封性能。

有载分接开关切换开关室内的油虽与主体内油隔离,但在真空注油时,为避免破坏切换开关室的密封,应与主体内油同时真空注油,在真空注油时,使这两个系统具有相同的真空度,必要时也应将这个系统的储油柜在抽真空时隔离。为结构上方便,主体的储油与切换开关室的储油柜设计成一互相隔离的整体。

(3)60kV及以上电压等级的全密封。这个油系统内的主要起绝缘作用,或增加油电容式套管内绝缘纸的电气强度。在主体内注油时,应将套管端部接线端子密封好,以免进气。

(4)高压出线箱内油、或电气出线箱内油:三相 500kV 变压器的高压出线通过波纹绝缘隔离油系统。这个油系统主要起绝缘作用。为简化结构,这个油系统也可通过连管与主体内油系统相联或设计成单独的油系统。

(5)在对油浸式变压器进行各种绝缘试验时,首先是放气,通过放气塞释放可能存储的气体。可通过分析各个系统的油中含气色谱分析可预判有无潜在故障。每一油系统都要满足运行的要求,如吸收油膨胀与收缩时油体积的变化,放油用阀门、放气塞、冷却器、散热器与主油箱的隔离阀等。每一油系统具有良好的密封性能,有载分接开关切换开关室内的油应能单独更换而不放出主体内油,运输时主体内油可放出而充干燥氮气。

(6)即使同一油系统,油基不同的油是不能混用的。每一油系统应注意在负温时的油特性,如主体内油在负温时油的粘度大,流动性差,散热性差。有载分接开关切换开关室内油在负温时会使切换过程加长,使过渡电阻温升增加。

对超高压油浸式变压器的主体内油系统而言,还应注意油流带电现象,要防止油流带电过渡到油流放电现象。要控制油的电阻率、各部分油速、释放油中电荷的空间。

三、变压器安装及运行维护

1、确保负荷在变压器的设计允许范围之内。油浸变压器中需要仔细地监视顶层油温,变压器的安装地点应与其设计和建造的标准相适应。若置于户外,确定该变压器适于户外运行,保护变压器不受雷击及减少外部损坏危险。

2、对油的检验:变压器油的介电强度随着其中水分的增加而急剧下降。油中万分之一的水分就可使其介电强度降低近一半。所有主变压器的油样应经常作击穿试验,以确保正确地检测水分并通过过滤将其去除。

3、保持瓷套管及绝缘子的清洁:在油冷却系统中,检查散热器有无渗漏、生锈、污垢淤积以及任何可能限制油自由流动的机械损伤;保证电气连接的紧固可靠;定期检查分接开关。并检验触头的紧固、灼伤、疤痕、转动灵活性及接触的定位;每隔一定周期应对变压器线圈、套管以及避雷器进行介损的检测。

4、预防渗漏油:油浸式变压器在油箱内充满变压器油,装配中依靠紧固件对耐油橡胶元件加压而密封。密封不严是变压器渗漏油的主要原因,故在维护与保养中应特别注意。小螺栓是否经过震动而松动,如有松动应加紧固,加紧程度应适当,并应各处一致。橡胶是否断裂或变形严重。这时可更新的橡胶件,更换时应注意其型号规格是否一致,并保持密封面的清洁。

5、预防变压器受潮:变压器是高电压设备,要求保持其绝缘性能良好。油浸式变压器极易受潮,预防受潮是维护保养变压器采取的主要措施之一。为此要求注意以下事项:变压器就位后,应立即做交接试验;加装吸湿器,以防止内部器身不受潮湿。监视吸湿器中的硅胶,受潮后应立即更换。吸湿器中的硅胶,起到吸收潮气,保护变压器的作用。潮湿吸饱后,硅胶颜色改变,这时需更换新的干燥的硅胶。订货时应注意,要尽量减少变压器送电前的存放时间。变压器制造后,存放时极易受潮,存放时间越长受潮越严重,故应把计划安排好,尽量缩短存放时间。如要进行起吊运输,维修加油,油阀放油,吊芯等工作时,均应先通过油枕下面的放油塞把油枕内污油放掉,并用干布擦净、封好,以免使油枕内污油进入油箱内。变压器运行中,要经常注意油位、油温、电压、电流的变化,如有异常情况应及时分析处理。变压器安装时严禁用铝绞线、铝排等与变压器的铜导杆连接,以免腐蚀导杆。

四、变压器的故障检测

电力变压器故障检测主要有电气量检测和化学检测方法。化学检测主要是通过变压器油中特征气体的含量、产气速率和三比值法进行分析判断,它对变压器的潜伏性故障及故障发展程度的早期发现具有有效性。实际应用过程中,为了更准确的诊断变压器的内部故障,色谱分析应根据设备历史运行状况、特征气体的含量等采用不同的分析模型确定设备运行是否属于正常或存在潜伏性故障以及故障类别。

1、电力变压器的内部故障主要有过热性、放电性及绝缘受潮等类型

⑴过热性故障是由于设备的绝缘性能恶化、油等绝缘材料裂化分解。又分为裸金属过热和固

体绝缘过热两类。裸金属过热与固体绝缘过热的区别是以CO和CO2的含量为准,前者含量较低,后者含量较高。

⑵放电性故障是设备内部产生电效应(即放电)导致设备的绝缘性能恶化。又可按产生电效应的强弱分为高能放电(电弧放电)、低能量放电(火花放电)和局部放电三种。

1)发生电弧放电时,产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体。这种故障在设备中存在时间较短,预兆又不明显,因此一般色谱法较难预测。

2)火花放电,是一种间歇性的放电故障。常见于套管引线对电位未固定的套管导电管,均压圈等的放电;引线局部接触不良或铁心接地片接触不良而引起的放电;分接开关拨叉或金属螺丝电位悬浮而引起的放电等。产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体,但由于故障能量较低,一般总烃含量不高。

3)局部放电主要发生在互感器和套管上。由于设备受潮,制造工艺差或维护不当,都会造成局部放电。产生气体主要是氢气,其次是甲烷。当放电能量较高时,也会产生少量的乙炔气体。

⑶变压器绝缘受潮时,其特征气体H2含量较高,而其它气体成分增加不明显。

值得注意的是,芳烃含量问题。因为它具有很好的“抗析气”性能。不同牌号油含芳烃量不同,在电场作用下产生的气体量不同。芳烃含量少的油“抗析气”性能较差,故在电场作用下易产生氢和甲烷,严重时还会生成蜡状物质;而芳烃含量较多的绝缘油“抗析气”性能较好,产生的氢气和甲烷就少些,因此,具体判断时要考虑这一因素的影响。

⑷色谱分析诊断的基本程序

1)首先看特征气体的含量。若H2、C2H2、总烃有一项大于规程规定的注意值的20%,应先根据特征气体含量作大致判断,主要的对应关系是:①若有乙炔,应怀疑电弧或火花放电;

②氢气很大,应怀疑有进水受潮的可能;③总烃中烷烃和烯烃过量而炔烃很小或无,则是过热的特征。

2)计算产生速率,评估故障发展的快慢。

3)通过分析气体成分含量,进行三比值计算,确定故障类别。

4)核对设备的运行历史,并且通过其它试验进行综合判断。

5)油中主要气体含量达到注意值时故障分析方法

在判断设备内有无故障时,首先将气体分析结果中的几项主要指标,(H2,∑CH,C2H2)与色谱分析导则规定的注意值(表3-1)进行比较。

表3-1 正常变压器油中气,烃类气体含量的注意值

①当任一项含量超过注意值时都应引起注意。但是这些注意值不是划分设备有无故障的唯一标准,因此,不能拿“标准”死套。如有的设备因某种原因使气体含量较高,超过注意值,也不能断言判定有故障,因为可能不是本体故障所致,而是外来干扰引起的基数较高,这时应与历史数据比较,如果没有历史数据,则需要确定一个适当的检测周期进行追踪分析。又如有些气体含量虽低于注意值,但含量增长迅速时,也应追踪分析。就是说:不要以为气体含量一超过注意值就判断为故障,甚至采取内部检查修理或限制负荷等措施,是不经济的,而最终判断有无故障,是把分析结果绝对值超过规定的注意值,(注意非故障性原因产生的故障气体的影响,以免误判),且产气速率又超过10%的注意值时,才判断为存在故障。

②注意值不是变压器停运的限制,要根据具体情况进行判断,如果不是电路(包括绝缘)问

题,可以缓停运检查。

③若油中含有氢和烃类气体,但不超过注意值,且气体成份含量一直比较稳定,没有发展趋势,则认为变压器运行正常。

④表3-1中注意值是根据对国内19个省市6000多台次变压器的统计而制定的,其中统计超过注意值的变压器台数占总台数的比例为5%左右。

⑤注意油中CO、CO2 含量及比值。变压器在运行中固体绝缘老化会产生CO和CO2。同时,油中CO和CO2的含量既同变压器运行年限有关,也与设备结构、运行负荷和温度等因素有关,因此目前导则还不能规定统一的注意值。只是粗略的认为,开放式的变压器中,CO的含量小于300μl/L,CO2/CO比值在7左右时,属于正常范围;而CO2/CO比值一般低于7时也属于正常值。

2、故障产气速率判断法

(1)实践证明,故障的发展过程是一个渐进的过程,仅由对油中溶解的气体含量分析结果的绝对值很难确定故障的存在和严重程度。因此,为了及时发现虽未达到气体含量的注意值,但却有较快的增长速率的低能量潜伏性故障,还必须考虑故障部位的产气速率。根据GB/T7252—2001《变压器油中溶解气体分析判断导则》中推荐通过产气速率大小作为判断故障的危害程度,对分析故障性质和发展程度(包括故障源的功率、温度和面积等)具有重要的意义。当相对产气速率(每运行月某种气体含量增加值占原有起始值的百分数的平均值),总烃的产气速率大于10%时应引起注意,变压器内部可能有故障存在,如大于40μl/L/月可能存在严重故障。但是,对总烃起始含量很低的变压器不易采用此判据。

(2)根据总烃含量、产气速率判断故障的方法

1)总烃的绝对值小于注意值,总烃产气速率小于注意值,则变压器正常;

2)总烃大于注意值,但不超过注意值的3倍,总烃产气速率小于注意值,则变压器有故障,但发展缓慢,可继续运行并注意观察。

3)总烃大于注意值,但不超过注意值的3倍,总烃产气速率为注意值的1~2倍,则变压器有故障,应缩短试验周期,密切注意故障发展;

4)总烃大于注意值的3倍,总烃产气速率大于注意值的3倍,则设备有严重故障,发展迅速,应立即采取必要的措施,有条件时可进行吊罩检修;

3、根据三比值法分析判断方法

所谓的IEC三比值法实际上是罗杰斯比值法的一种改进方法。通过计算,C2H2/C2H4、CH4/H2、C2H4/C2H6的值,将选用的5种特征气体构成三对比值,对应不同的编码,分别对应经统计得出的不同故障类型。应用三比值法应当注意的问题:

(1)对油中各种气体含量正常的变压器,其比值没有意义;

(2)只有油中气体各成份含量足够高(通常超过注意值),气体成分浓度应不小于分析方法灵敏度极限值的10倍,且经综合分析确定变压器内部存在故障后,才能进一步用三比值法分析其故障性质。如果不论变压器是否存在故障,一律使用三比值法,就有可能将正常的变压误判断为故障变压器,造成不必要的经济损失。

总之,变压器油中气体含量色谱分析方法能有效诊断变压器内部潜伏性故障的早期存在。具体应用中要根据故障或缺陷的不同发展阶段,采用不同的分析方法,结合设备的实际运行状况及外部电气试验数据,充分发挥油化学检测的灵敏性,正确评判设备状况或制定针对性的检修策略,提高变压器的运行可靠性。

五、无人值班变电站的运行模式对主变压器的要求

无论是有人值班还是无人值班变电站,站内的主变压器是非常关键的设备。在早期的变电站中,油浸风冷、强油风冷的变压器在运用中较多,这一类变压器散热附件较多,包括电机、风扇、潜油泵、非片散式散热器件、甚至净油器,以及较多的蝶阀、油管道。附件多了,

设备长久运行下去,出故障的几率必然就高,自然在生产运行中容易发生较多的缺陷,甚至造成设备强迫停运。这样一来,供电可靠性、连续性大大降低,检修工作量增大,运行成本增加。

对于老旧的变电站进行综自改造,如果仅局限于监控系统改造,虽然能够完成无人值班形式,但是,如果不能从设备的各个方面进行改造,尤其从细节上改造,则不是一次成功的改造。

无人值班的变电站,其对设备的巡视次数必然不同于有人值班变电站形式的次数,其通过遥视系统监视得到的信息又不可能像现场巡视设备得到的信息那样全面,具体入微和确切。集控中心(监控中心)值班的运行人员,对于无人变电站内的设备,总有一种不放心的感觉,尤其是主设备,如变压器设备。

为了更好的保证变压器主设备持续安全运行,使之适应无人值班变电站的运行模式,解除变电站运行人员的后顾之忧,以及减少检修人员的劳动强度和工作量,变压器本体是现场无法改造的,但有必要对变压器的一些附件进行改造,使之精练,干脆减少或取消某些原件,其功能又不缺失,故障几率又大大下降。

目前,现场中变压器已经较少使用强迫油循环形式的散热形式。早期变压器的散热系统,如:SFPSZ4-220/120000型,有九组散热器,每组散热器对应一只潜油泵、净油器、油流继电器,一只电源控制箱,5只风机以及油管及蝶阀。总共控制45只风扇。这种散热系统,元件多,渗油点多,故障重复出现。现在,对其改造,可将众多的相同元件取消,采取大片散,大风机,少量潜油泵,会取得同样的散热效果。而在新建变电站中,对于变压器可要求厂家采取油浸自冷形式或油浸风冷形式,在元件数量上进行限制。

完善并综合运用现场采取的各种监测量,如:变压器本体、上层的油温量、各侧的电流量的采取、传输、集控中心后台的显示,运行人员在集控中心针对各种负荷、天气状态下参数的变化是否符合变压器运行规律,进行细心的收集,对比,技术管理人员认真总结分析,这样,把现场收集到的实际运行参数与该变压器的额定参数进行对比,可以确定该台变压器是否在最佳状态运行。

在无人值班变电站遥视系统安装当初,就针对变压器的关键部位安装设置专用监视摄像头,做到有的放矢,运行中时刻监视关键参数,从而对重要设备心中有数。所谓关键参数,可以是变压器现场油温表,实时与传递到后台的参数比对;可以是散热系统(可以同时监视潜油泵、油流继电器、风扇等元件),在日负荷大小不同时段,可以随时增加或减少现场散热器数量。

第二节变电站的高压断路器

高压断路器是变电站主要的电力控制设备,当系统正常运行时,它能切断和接通线路及各种电气设备的空载和负载电流;当系统发生故障时,它和继电保护配合,能迅速切断故障电流,以防止扩大事故范围。因此,高压断路器工作的好坏,直接影响到电力系统的安全运行。目前,我国无人值班变电站最常用的两种高压断路器是SF6断路器和真空断路器。一、SF6断路器

SF6断路器采用具有优良灭弧能力和绝缘能力的SF6气体作为绝缘介质,具有开断能力强、动作快、体积小等优点,但金属消耗多,价格较贵。近年来,SF6断路器发展很快,在高压和超高压系统中得到广泛应用。尤其是以SF6断路器为主体的封闭式组合电器,是高压和超高压电器的重要发展方向。

1、SF6断路器的基本结构

(1)SF6断路器功能部件

1)灭弧室:双吹型、包括密封瓷套、静触头、动触头。

2)接线端子,装在外边灭弧室下部。

3)支持瓷套:由三个瓷质绝缘套构成,作为断路器的对地绝缘,并使操作杆动作动触头。

4)底部箱:作为断口底座,可靠地置于支架上。

5)充气与监测装置:给开关补充SF6气体及监视SF6气体压力。

(2)LW16—35型SF6断路器结构

LW16—35断路器外形结构如图3—5所示。对型号的解释:L—产品名称,SF6断路器;W—户外式;16—设计序号;35—额定电压,单位为kV。它为三极分立的、落地罐式结构,三极固定于一个公共底架上,三极的SF6气体与气管16相通,每极底箱上有转轴18伸出,装有外拐臂17并与连杆7相连,L1相转轴通过四连杆与过度轴12相连,后者再通过另一四连杆与操动机构输出轴9相连,分闸弹簧14连于L2、L3相转轴的外拐臂17上。断路器每极是由底箱和上、下瓷套构成。上瓷套内设有灭弧室和导电系统,承受断口电压,下瓷套承受对地电压,内绝缘介质为SF6气体。

图3-1 LW16-35型断路器外形结构图

1-上接线座;2-静触头;3-导电杆;4-中间触指;5-下接线座;6-绝缘拉杆;7-连杆;8-弹簧机构;9-操动机构输出图;10-拐臂;11-分闸缓冲器;12-过渡轴;13-合闸缓冲器;14-分闸弹簧;15-内拐臂;16-气管;17-外拐臂;18-转轴

(3)LW16-35 型SF6断路器实物图

图3-2 LW16-35 型SF6断路器实物图

(1)SF6 气体特性

SF6气体比空气重5.135倍,一个大气压时,其沸点为-60℃。在150℃以下时,SF6有良好的化学惰性,不与断路器中常用的金属、塑料及其他材料发生化学作用。在大功率电弧引起的高温下分解成各种不同成分时,电弧熄灭后的极短时间内又会重新合成。 SF6中没有碳元素,没有空气存在,可避免触头氧化。SF6的介电强度很高,且随压力的增高而增长。在1大气压下,SF6的介电强度约等于空气的2~3倍。绝对压力为3大气压时,SF6的介电强度可达到或超过常用的绝缘油。SF6 灭弧性能好,在一个简单开断的灭弧室中,其灭弧能力比空气大100倍。在SF6中,当电弧电流接近零时,仅在直径很小的弧柱心上有很高的温度,而其周围是非导电层。这样,电流过零后,电弧间隙介电强度将很快恢复。

(2)LW16-35SF6断路器的工作原理

1)机械传动

弹簧操动机构的合闸弹簧释放其能量,通过连杆传送到断路器传动箱的外拐臂上,使内外拐臂转动,并由内拐臂经绝缘拉杆6推动动触头向上运动,使断路器合闸,与此同时,外拐臂的转动使分闸弹簧储能。

分闸时,当操动机构的扇形板与半轴的扣脱开后,分闸弹簧释放能量带动拐臂反向转动,使动触头向下运动,断路器分闸。分、合缓冲是为了吸收动触头在分、合闸动作完成后所剩余的动能,并限制动触头的终止位置。

2) 灭弧原理

①灭弧动作过程

分闸时,动触头向下运动,动、静触头间产生电弧。当静触头上的弧根转移到弧环上之后,静触头侧的旋弧线圈便串联进电路产生磁场,使电弧旋转。均匀加热SF6气体,SF6中没有碳元素,没有空气存在,可避免触头氧化。SF6的介电强度很高,且随压力的增高而增长。气体压力升高,与喷口下游形成压差,产生强烈喷口气吹,在电流过零时,自然熄弧,其熄弧能力随开断电流而自动调节。当开断小电流时,动触头上的小活塞产生附加电流,进一步改善小电流灭弧性能。因此,无论开断大电流或小电流,均具有良好的性能。且由于电弧不断的旋转,使触头和灭弧室的烧损均匀且轻微。

②吹弧

在高压断路器中,常制成各种形式的灭弧室,使气体产生较高的压力,有力的吹向弧隙,吹弧的方式有纵、横吹和纵横混合吹等(如图3-3)。吹动方向与弧柱轴线平行的叫纵吹;吹弧方向与弧柱轴线垂直的叫横吹;既有纵吹又有横吹的叫纵横混合吹。吹弧的作用是使电

弧强烈冷却和拉长,加速扩散,促使电弧迅速熄灭。纵吹的灭弧室结构简单,主要是使电弧冷却变细最后熄灭;而横吹的灭弧室结构复杂,主要是把电弧拉长,增大散热表面积,加强冷却,熄灭电弧效果较好。然而不少种类的断路器,把纵吹和横吹的特点融为一体,广泛采用纵横混合吹弧的方式,熄弧效果更好。

图3-3 吹弧方式(a)横吹(b)纵吹

利用SF6气体作为灭弧和绝缘介质的断路器称为SF6断路器,它是利用压缩后的SF6来吹弧,一般压力为0.5-0.7MPa。现在的SF6断路器,一般采用纵吹方式。纵吹灭弧室又可分为单向纵吹灭弧室和双向纵吹灭弧室两种,双向纵吹式的熄弧能力更强,开断容量更大。3)SF6气压监测

断路器底架上装有真空压力表及密度控制器,通过铜管与三极相连。在充放气、抽真空及运行时,SF6气压由真空压力表显示,其读数可按产品出厂说明资料提供的温度—压力曲线换算到20摄氏度时的压力值。密度控制器用于对断路器内气压实行自动检测,它能自动消除温度对压力的影响,只表现泄漏造成的压力降低。当压力降低至0.52—0.015MPa(20摄氏度表压),密度控制器的第二触点动作,将断路器分闸与合闸回路闭锁。

3、无人值班变电站对SF6断路器的基本要求

由于是无人值班变电站,设备巡视制度与常规变电站不同,人员又不在本变电站而集中在集控中心(集控站),对断路器设备不能第一时间进行监视,因此要做到对设备放心,首先要选用性能稳定,质量可靠的断路器产品。

在符合SF6断路器选型的前提下,要确保断路器细节的质量---确保辅助开关切换可靠。由于断路器的保护、控制、监测回路大量取自断路器辅助开关的接点,这是一次设备与二次设备紧密联系的关键部件,若出现切换不及时或不到位,将无法正确保证保护、控制、监测功能的实现。近年来市场上出现的真空辅助开关,性能优于早期的辅助开关,可以采用真空辅助开关替代暴露在空气中的辅助开关或在设备选型时强调采用真空辅助开关。

备足同批次SF6断路器分合闸线圈,以避免设备在试验、保护装置定检时容易发生烧线圈故障;准备合格的SF6气体,以及相应型号SF6断路器的配套充气装置,以便及时补气。高压开关运行中,其操作机构故障占据的比例较大,加强对机构中传动部件的维护,经常性的保持拐臂、凸轮、轴销等动部件的润滑。而对于液压机构和气动机构,必须准备常用的密封件,管路、液压油、油泵、逆止阀等部件,总结运行已发生的常见故障,有针对性的准备常用部件,有利于断路器迅速处理故障,恢复运行,避免长期非计划停运。这也是供电公司喜欢选用结构简单而小功率的弹簧操动机构的原因,一方面故障几率小于液压机构和气动机构,另一方面液压机构因渗漏造成设备脏污不易清洁,不符合变电站设备美观清洁的要求。及时跟踪了解不同型号断路器的运行信息,厂家改型信息,本供电区域、省网供电区域或其他电网系统内的专业信息要及时掌握。结合实际运用经验,断路器设备生产厂家也在不断的对其设备进行改型,诸如操动机构的改进,绝缘拉杆的改进。这些改进措施与实际运用是相辅相成的。在长期的实践经验中,某型号的断路器出现相同的缺陷或某部件经常出故障,断路器生产厂家及时总结提高给与并进行改进。同样,变电站的运行人员要积极查找总结本单

位变电站某批次、某型号的设备是否存在同类问题,总结规律,提前处理,防范未然。

在变电站规划阶段,在设备选型期,尽量使用成熟的、已经使用过的同型号的设备,不要搞得型号繁多,机构形式繁多,生产厂家繁多的设备。

二、真空断路器

真空断路器是指触头在真空中关合、开断的断路器。真空断路器开断能力强,开断时间短、体积小、占用面积小、无噪声、无污染、寿命长,可以频繁操作,检修周期长。真空断路器目前在我国配电系统中已逐渐得到广泛应用。

1、真空断路器的基本结构

(1)真空断路器功能部件

真空断路器按其结构的功能可分为六个部分:

1)支架:安装各功能组件的架体。

2)真空灭弧室:实现电路的关合与开断功能的熄弧元件。

3)导电回路:与灭弧室的动端及静端连接构成电流通道。

4)传动机构:把操动机构的运动传输至灭弧室,实现灭弧室的合、分闸操作。

5)绝缘支撑:绝缘支持件将各功能元件,架接起来满足断路器的绝缘要求。

6)操动机构:断路器合、分的动力驱动装置。

(2)ZW27-12真空断路器结构

断路器本体如图3-4。断路器本体部分由导电回路,绝缘系统,密封件和壳体组成。整体结构为三相共箱式。其中导电回路由进出线导电杆,进出线绝缘支座,导电夹,软连接和真空灭弧室连接而成。

图3-4 断路器本体结构

1-导电杆绝缘套管组合体;2-真空灭弧室;3-绝缘隔离罩;4-导电夹;5-软连结;6-绝缘拉杆;7-转轴;8-外壳;9-分闸弹簧;10-电流互感器;11-出线套管;12-操作机构;13-传动

机构;14-电压互感器

操作机构如图3-5。此机构为电动储能,电动分合闸,同时具有手动功能。这个机构由合闸弹簧,储能系统,过流脱扣器,分合闸线圈,手动分合闸系统,辅助开关,储能指示等部件组成。

图3-5 ZW27-12 真空断路器操作机构图

(3)ZW27—12户外真空断路器实物图

图3-6 ZW27—12户外真空断路器实物图

2、ZW27—12真空断路器的工作原理

真空断路器是在高度真空中灭弧。真空中的电弧是在触头分离时电极蒸发出来的金属蒸汽中形成的。电弧中的离子和电子迅速向周围空间扩散。当电弧电流达到零值时,触头间的粒子因扩散而消失的数量超过产生的数量时,电弧即不能维持而熄灭。真空断路器工作原理与其他断路器相比之是灭弧介质不同,真空不存在导电介质,使电弧快速熄灭,因此该断路器的动静触头之间的间距很少。真空断路器利用高真空中电流流过零点时,等离子体迅速扩散而熄灭电弧,完成切断电流的目的。其具体工作过程如下:

(1)储能过程:当储能电机 14接通电源时,电机带动偏心轮转动,通过紧靠在偏心轮上的滚子10带动拐臂9及连板7摆动,推动储能棘爪6 摆动,使棘轮11 转动,当棘轮11 上的销与储能轴套32的板靠住以后,二者一起运动,使挂在储能轴套上32 上的合闸弹簧21 拉长。储能轴套32 由定位销13 固定,维持储能状态,同时,储能轴套32 上的拐臂推动行程开关5切断储能电机14 的电源,并且储能棘爪被抬起,与棘轮可靠脱离。

(2)合闸操作过程:当机构接到合闸信号后(开关处于断开,已储能状态),合闸电磁铁15的铁心被吸向下运动,拉动定位件13向逆时针方向转动,解除储能维持,合闸弹簧21带动储能轴套32逆时针方向转动,其凸轮压动传动轴套30,带动连板29及摇臂27运动,使摇臂27扣住半轴25,使机构处于合闸状态。此时,连锁装置28锁住定位件,使定位牛不能逆时针方向转动,达到机构联销的目的,保证了机构在合闸位置不能合闸操作。

(3)分闸操作过程:断路器合闸后,分闸电磁铁接到信号,铁芯吸合,分闸脱扣器 19中的顶杆向上运动,使脱扣轴16转动,带动顶杆18向上运动,顶动弯板26并带动半轴25向反时针方向转动。

(4)半轴25与摇臂27解扣,在分闸弹簧的作用下,断路器完成分闸操作。

第三节变电站的互感器

互感器是按比例变换电压或电流的设备。互感器的功能是将高电压或大电流按比例变换成标准低电压或标准小电流(5A或1A,均指额定值),以便实现测量仪表、保护设备及自动控制设备的标准化、小型化;互感器还可用来隔开高电压系统,以保证人身和设备的安全。本节就无人值班变电站的互感器的工作原理、接线方式以及其新技术进行介绍和分析。一、互感器的工作原理及分类

互感器按照其用途可分为下列两大类:

1、电压互感器

电压互感器和变压器原理类似,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。

电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁芯上。两个绕组之间以及绕组与铁芯之间都有绝缘,使两个绕组之间以及绕组与铁芯之间都有电的隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。

电压互感器二次侧不允许出现短路,因为如果电压互感器的二次侧运行中短路,二次线圈的阻抗大大减小,就会出现很大的短路电流,使副线圈因严重发热而烧毁,因此在运行中电压互感器不允许短路。一般电压互感器二次侧要用熔断器,只有35kV及以下的互感器中才在高压侧装设熔断器,其目的是当互感器发生短路时把它从高压电路中切断。

按电压变换原理分可分为电磁式电压互感器、电容式电压互感器和光电式电压互感器。电磁式电压互感器根据电磁感应原理变换电压,原理与基本结构和变压器完全相似,我国多在220kV及以下电压等级采用。电容式电压互感器由电容分压器、补偿电抗器、中间变压器、阻尼器及载波装置防护间隙等组成,目前我国110kV-500kV电压等级均有应用,超高压只生产电容式电压互感器。光电式电压互感器通过光电变换原理以实现电压变换,近年来才开始使用。

2、电流互感器

利用变压器原、副边电流成比例的特点制成。其工作原理、等值电路也与一般变压器相同,只是其原边绕组串联在被测电路中,且匝数很少;副边绕组接电流表、继电器电流线圈等低阻抗负载,近似短路。原边电流(即被测电流)和副边电流取决于被测线路的负载,而与电流互感器的副边负载无关。由于副边接近于短路,所以原、副边电压U1和U2都很小,励磁电流I0也很小。

电流互感器运行时,副边不允许开路。因为一旦开路,原边电流就成为励磁电流,使磁通和副边电压大大超过正常值而危及人身和设备安全。因此,电流互感器副边回路中不许接熔断器,也不允许在运行时未经旁路就拆下电流表、继电器等设备。

按电流变换原理可分为电磁式电流互感器和光电式电流互感器。电磁式电流互感器,根据电磁感应原理实现电流变换的电流互感器;光电式电流互感器,通过光电变换原理以实现电流变换的电流互感器。

随着电力传输容量的不断增长和电网电压的提高,传统的电磁式结构的互感器已暴露出许多缺点,其主要包括以下几方面:

(1)电压等级越高,其制造工艺越复杂,可靠性越差,造价越高。

(2)带导磁体的铁芯易产生磁饱和和铁磁谐振,且有动态范围小,使用频带窄等缺陷。上述问题难以满足目前电力系统对设备小型化和在线监测、高精度故障诊断、数字传输等发展的需要。

二、互感器的接线方式

1、电压互感器的接线方式

下面介绍几种常用的电压互感器接线图:

图3-13 不完全星形接线方式

其中图3-13为两只单相电压互感器接成不完全的三角形,广泛地用于中性点不接地或经高阻抗接地的35kV以下电网中,它既能节省一个电压互感器,又能满足三相功率表电度表所需要的电压。仪表电压线圈接于a-b相及c-b相之间。但这种接线不能用来测量相电压。

图3-14 三相三柱式接线方式

图3-14为三柱式电压互感器接线图。互感器的一、二次线图均接成星形,可以用来测量线电压。但所接负荷过多时,而各相负荷分布不平衡,将使测量误差增大。互感器线圈中点不允许接地,否则当一次侧电网发生单相接地时,因磁化电流比正常值大得多,及不接地两相铁心磁通也超过正常磁通,可能使电压互感器烧坏,为避免三柱式电压互感器的错误接线,高压线圈无中点引出线。

图3-15 三相星形接线方式

图3-15为三个三线圈单相电压互感器接成星形,高压中点接地及低压部分有引出中线。此种接法可以测量线电压和相电压,因而被广泛使用,特别是用在110kV 及以上的电网中。

a b c A B C A B C

图3-16三相五柱式接线方式

图3-16为三相五柱式电压互感器,用在10kV及以下的小电流接地系统内,一、二次线圈为Y,y-0接线,辅助线圈接成开口三角形,可供绝缘监视使用。

2、电流互感器的接线方式

图3-17 单相式接线方式

图3-18 不完全星形连接方式

图3-19 三相星形连接方式

图3-17是单相电路中采用一台电流互感器的接线图。图3-18为三相三线制电路中采用两台电流互感器的接线图,称两相星形接线。图3-19是三相四线制电路中采用三台电流互感器的连接方式。

二、光电式互感器

自20世纪70年代以来,国内外都在研究一种新型的互感器,以解决电磁式互感器存在的上述问题。最终研制成功出了采用半导体集成电路技术、激光技术、光线传输技术的光电式互感器,在无人值班变电站中的运用也越来越广泛,因此下面就光电式互感器进行的原理、结构及特点进行简要的介绍。

1、光电式电压互感器

(1)光电式电压互感器的原理

目前各国研制的光电式电压互感器的传感方式大体分为有源型和无源型。

1)有源型

有源型的高压侧电压信号通过采样后将电压信号传递到发光二极管变成光信号,再由光纤传递到低电位侧,进行逆变换成电信号后放大输出。由于二极管的发光强度与施加电压成比例,所以信号输出也与施加电压成比例。这种型式的互感器的传感头部分需要供电电源,发光元件还存在耐冲击性能差及强度随老化而发生变化等相关问题需要解决。

2)无源型

某些晶体物质(如常用的BGO)具有光电效应,在没有外电场作用下,其各向同性,光率体为一圆球体,在电场作用下,透过该物质的光会产生双折射现象,这种现象称为Pockels 效应。其输出的光强与被测电压成正比,因此只要测出输出光强,便可通过计算得到被测电压。

无源型互感器的传感头部分不需要供电电源,结构简单,且不存在电磁元件、磁饱和问题。(2)光电式电压互感器的结构

下面就目前常见的无源型光电电压互感器的基本结构进行介绍,其方框图如图3-20所示。

光电电压互感器主要由高压部分、光纤电压传感器和光电探测器三大部分组成。

图3-20 光电式电压互感器结构方框图

1)高压部分,包括高压绝缘套管、SF6绝缘气体等,被测高电压加到上电极、下电极接地、泡克尔斯电光效应晶体处于电场中。

如高电压由电容分压器按一定分压比,降低到光纤电压传感器所能承受的较低电压(如5kV 左右),称为电容分压型。如将高电压(如110kV 及以上)直接加在泡克尔斯晶体上,则称无分压型。后一种型式结构简单,有取代前一种型式的趋势。 2)光纤电压传感器,包括泡克尔斯电光效应晶体(GBO 等),光信号变换的光学元件和传输光信号的光纤等,如图3-21所示。

图3-21 光电测量电压原理图

3)光电探测器,包括光电转换器、模拟信号处理电路、数字信号处理电路、光源驱动电路、电源和控温器等。 (3)光电式电压互感器的特点

与传统的电压互感器相比,光电式电压互感器具有以下几个特点:

1)体积小,质量轻; 高电压光源光电变换放大负荷

泡克尔斯

电光晶体

传感器

高电压侧光纤低电位侧光源光纤准直透镜起偏器1/4波片光电探 测器高电压下电极光电晶体

检偏器准直透镜光纤

2)无铁芯、不存在磁饱和和铁磁谐振问题;

3)暂态响应范围大,频率响应宽;

4)抗电磁干扰性能佳;

5)无油化结构,绝缘可靠、价格低;

6)便于向数字化、微机化发展

2、光电式电流互感器

(1)光电式电流互感器的原理

光电式电流互感器分为有源型、无源型和全光纤型三种。

1)有源型

高压侧电流信号通过采样线圈传递给发光二极管而变成光信号,二极管的发光功率随电流大小而改变,光信号由光纤传递到低电位侧,进行逆变换成电信号后放大输出。这种型式的电流互感器传感头也需要电源供电给高压侧电子器件,头部结构较为复杂,是较早期的结构型式。

2)无源型

无源型的传感头部分不需要供电电源,传感部分一般用法拉第磁光效应原理制成,将某种具有法拉第效应的原件(如铅玻璃)放在由一次电流产生的磁场中,用直线偏振光沿磁场方向入射法拉第效应元件,刚通过此元件的光的偏振面将随磁场强度的大小成正比地旋转,其输出光强正比于磁场强度(即电流大小),因而可以通过测量光强而得知一次电流值。无源型光电式电流互感器的结构较简单,是目前应用最广泛的结构方式。

3)全光纤式

全光纤电流互感器实际上也是无源型,但结构比前述无源型更简单,其传感头时由光纤本身制成的,在被测电流的道题上用光纤绕上几圈,即构成传感器,其他部分则与无源型完全一样,这种结构比前述无源型易于制造,精度易满足要求,可靠性也比较高,但是这种结构的光纤应采用特殊的光纤——零双折射的具有保偏性能的光纤,这种光纤与前述有源型和无源型所采用的普通光纤不同,它制造比较困难,质量难以保证,且价格昂贵。

(2)光电式电流互感器的结构

在此章节中就目前常见的无源型光电电流互感器的基本结构进行介绍,其基本工作原理如图3-22所示。

光 源光电变换

放 大负 载一次电流高电位侧低电位侧光纤

法拉第磁光玻璃传感器

(完整版)110kv变电站一次电气部分初步设计

110kv变电站一次电气部分初步设计 毕业设计 题目110KV变电站一次电气初步设计 学生姓名谭向飞学号20XX309232 专业发电厂及电力系统班级20XX3092 指导教师陈春海评阅教师完成日期 20XX 年11月6日 三峡电力职业学院 毕业设计课题任务书 课题名称学生姓名指导教师谭向飞陈春海 110kV 变电站一次电气初步设计专业指导人数发电厂及电力系统班号 20XX3096 课题概述:一、设计任务 1.选择110kV变电站接线形式; 2.计算110kV变电站的短路电流; 3.选择110kV变电站的变压器,高/低压侧断路器、隔离开关、母线、电流互感器、电压互感器,并校验。二、设计目的掌握变电站一次电气设计的计算,能选择电气设备。三、完成成果110kV变电站一次电气接线及设备选择。 I 原始资料及主要参数: 1、110kV渭北变所设计最终规

模为两台110/10kV主变,110kV两回进线路,变压器组接线线,10kV8回馈线,预计每回馈线电流为400A, 2、可行研究报告中变压器调压预测结果需用有载调压方式方可满足配电电压要求,有载调压开关选用德国MR公司M型开关,#2主变型号SZ9-40000/110, 5×110+-32%/,YNd11,Uk%=。 3、110kV配电装置隔离开关GW5-110ⅡDW/630;断路器3AP1-FG-145kV, 3150A﹑40kA;复合绝缘干式穿墙套管带CT 2×300/5;中心点隔离开关GW13-63/630,避雷器HY5W-108/268及中心点/186。 4、出八回线路、10kVⅡ段母线设备﹑变二侧开关分段以及电容补偿。10kV断路器选用ZN28E-12一体化弹簧储能操作,支架落地安装;主变10kV 侧及分段隔离开关用GN22-10G手动操作;10kV线路及电容器隔离开关用GN19-10Q手动操作;出线CT两相式,二组次级绕组,用作测量和保护;电容器回路三相式;变二侧CT 三组次级用作测量﹑纵差﹑过流及无流闭锁。参考资料及文献: 1、3~110kV高压配电装置设计规范 2、35~110kV 变电所设计规范 3、变电所总布置设计技术规程 4、中小型变电所实用设计手册丁毓山主编 5、低压配电设计规范 6、工业与民用电力装置的接地设计规范 7、电力工程电缆设计规范 8、并联电容器装置的电压、容量系列选择标准设计成果要求: 1、说明书:≥6000 字 2、图纸:A3 号 1 张号张号张 3、实习报

变电站电气一次设备常见问题 王锦平

变电站电气一次设备常见问题王锦平 摘要:目前,随着我国电力市场的发展及人们生活水平的提高,对电力的需求 越来越多,对电力企业提出了更高的要求,对电网的改造工程也迫在眉捷,成为 社会及人民群众关注的焦点。变电站电气一次设备作为电力传输网络的重要组成 部分,对供电质量有着直接的影响。要保证变电站的正常运行,就必须确保变电 站电气一次设备的安装、质量控制以及智能化升级方面得到保障。为了减少一次 设备应用出现故障带来的损失,就要结合电气设备实际应用,做好常见故障的有 效预防和处理。 关键词:变电站;一次设备;问题;措施 引言 近年来,随着我国经济建设力度的不断加大以及人们生活水平的提高,对电 力的需求不断增加。电力的生产、输送和分配是电力企业发展的关键部分,而变 电站电力设备保证正常的运行是最基础的。夏季作为用电高峰期,更是对电力系 统带来较大的负担。变电站是电力系统中最为关键的环节,电气一次设备的长时 间运行以及超负荷运转状态下很容易引发电力故障。在变电站的日常运行过程中,要根据以往的工作经验做出总结,找出电气一次设备出现问题的原因并及时采取 有效的措施加以解决,以保证人们日常生产生活对电力的需求。 1变电站电气一次设备常见的问题 1.1过电压问题 变电站电力系统在运行中,常常会受到雷击、谐振、操作与故障等多种因素 的影响,最终使得电气设备电压高于额定工作电压。过电压现象对电气一次设备 的危害比较大,甚至可能危害到电力网络的稳定性。过电压现象的发生原因存在 多种差别,不同原因导致的过电压。外部过电压一般是因为室外架设变压器引起,雷雨天气时,变压器一般会受到雷电直击。瞬间经过的雷电能够使变电设备产生 电压。当变压器接受到雷电直击时,放电产生的磁场,会产生电压。内部过电压 现象多是由于人员操作不当,一次变电设备电压异常变高,进而破坏了电压设备 的绝缘功能,最终导致变电设备遭到损毁。 1.2过热问题 变压器是一种能够将高压电力转变为低压电力的设备,变压器本身有着非常 大的功率,它的日常运行需要用极高的电压来维持,因此,变压器在运行的时候 会造成非常大的热量,热量大势必就会有较高的温度,持续的高温运行会使设备 的稳定性与安全性受到影响。因此,相关的工作人员需要想办法对其进行降温, 使其能够正常平稳的运行。在变电设备运行的过程中,很容易出现一些不明原因 的过热情况,如果不及时的对其进行解决,可能会导致非常严重的后果。 2变电站电气一次设备常见问题的解决措施 2.1使用防雷设备 针对造成过电压现象的外部原因,技术人员应该使用避雷线或者避雷针来避免,一般将避雷针与避雷线设置在输电线路与变压器低压一侧位置,从而将低压 绕组的过电压幅值限制住,达到降低对变压器的影响。为了避免雷雨天气对系统 造成的伤害,相关工作人员应该加强日常检测工作,及时处理存在的安全隐患。 同时,可以装置智能控制器,一旦发生过电压现象,智能控制器会及时发出警报,进而有效杜绝电压对设备造成的负面影响。 2.2使用红外线技术监测温度

110kV变电站电气一次系统设计毕业设计(论文)

毕业设计论文 110KV变电所电气一次部分初步设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

变电站主要设备

输变电系统就是一系列电气设备组成的。发电站发出的强大电能只有通过输变电系统才能输送到电力用户。 图1-2给出了变电站主要设备的示意图。图中除了所示的变压器、导线、绝缘子、互感器、避雷器、隔离开关与断路器等电气设备外,还有电容器、套管、阻波器、电缆、电抗器与继电保护装置等,这些都就是输变电系统中必不可缺的设备。 图1-2 变电站主要设备示意图 1—变压器;2—导线;3—绝缘子;4—互感器;5—避雷器;6—隔离开关;7—断路器 下面,对输变电系统的主要电气设备及其功能进行简单介绍。 (1)输变电系统的基本电气设备主要有导线、变压器、开关设备、高压绝缘子等。 1)导线。导线的主要功能就就是引导电能实现定向传输。导线按其结构可以分为两大类:一类就是结构比较简单不外包绝缘的称为电线;另一类就是外包特殊绝缘层与铠甲的称为电缆。电线中最简单的就是裸导线,裸导线结构简单、使用量最大,在所有输变电设备中,它消耗的有色金属最多。电缆的用量比裸导线少得多,但就是因为它具有占用空间小、受外界干扰少、比较可靠等优点,所以也占有特殊地位。电缆不仅可埋在地里,也可浸在水底,因此在一些跨江过海的地方都离不开电缆。电缆的制造比裸导线要复杂得多,这主要就是因为要保证它的外皮与导线间的可靠绝缘。输变电系统中采用的电缆称为电力电缆。此外,还有供通信用的通信电缆等。 2)变压器。变压器就是利用电磁感应原理对变压器两侧交流电压进行变换的电气设备。为了大幅度地降低电能远距离传输时在输电线路上的电能损耗,发电机发出的电能需要升高电压后再进行远距离传输,而在输电线路的负荷端,输电线路上的高电压只有降低等级后才能便于电力用户使用。电力系统中的电压每改变一次都需要使用变压器。根据升压与降压的不同作用,变压器又分为升压变压器与降压变压器。例如,要把发电站发出的电能送入输变电系统,就需要在发电站安装变压器,该变压器输入端(又称一次侧)的电压与发电机电压相同,变压器输出端(又称二次侧)的电压与该输变电系统的电压相同。这种输出电压比输入电压高的变压器即为升压变压器。当电能送到电力用户后,还需要很多变压器把输变电系统的高电压逐级降到电力用户侧的

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

浅谈变电电气一次设计

浅谈变电电气一次设计 摘要:在变电站的设计过程中,电气一次设计是设计的关键,电气一次设计的 安全和稳定是保证电网正常运行的重要条件。本文主要结合实例阐述了变电站电 气一次设计要点,希望能够为同行借鉴和参考。 关键词:变电;电气一次;主接线;设备;变电器 1.电气主接线设计 1.1 初步方案设计 根据原始资料,此变电站有三个电压等级:110/35/10kV,故可初选三相三绕 组变压器,根据变电站与系统连接的系统图知,变电站有两条进线,为保证供电 可靠性,可装设两台主变压器。为保证设计出最优的接线方案,初步设计以下两 种接线方案供最优方案的选择。 方案一:110kV 侧采用双母线接线,35kV 侧采用单母分段接线,10kV 侧采用 单母分段接线。 方案二:110kV 侧采用单母分段接线,35kV 侧采用双母线接线,10kV 侧采用 单母分段。 两种方案接线形式分别见图 1~2。 2.变电站电气一次设计的基本要求 变电站电气一次设计,在保证整个体系正常运转的前提下,将借助专业的技 术方法来不断扩充功能性, 需要遵从以下几个层面的内容开展设计工作。 第一,在实施变电站内部线路连接操作的时候,总线务必要采用专业的稳定 性强的方法进行,这样才能从根本上确保变电站的正常运作。第二,变电站电力 系统电气一次设计务必要保证与所在地区的电能需要相协调一致,并且可以在这 个前提下实施完善。第三,在针对变电站结构开展设计工作的时候,变电站的占 地面积要保证负荷标准规范,要实现利用有限的资源,获取最大化的收益的目标,极大限度的节省资源,所有的电气机械都要选择综合性能较好的。最后,变电 站内部的电气设计工作主要侧重的是电力体系中的自动化的发展,保证符合系统 所需要的自动化程度,并且还要寻找相应的方法来提升机械的安全性和稳定性, 保证整个电能供应体系平稳的运行,降低出现问题的概率,促进电力企业获取更 加丰厚的收益。 3.变电站电气一次设计 3.1电气平面布置 秉承因地制宜的原则,在正式开展设计之前,对所处地区的地质情况进行实 地勘探,结合获得的信息来实施变电站电气一次设计,第一步要确定整体设计平 面布局计划,可以参照类似的设计方案,其次在实施二次设备设计时,电容器不 得安放在垂直空间之内,要防止电容器对电子机械的干扰。 3.2电气设备选择 结束变电站结构设计工作后,结合所处地区的性能规划的需要,结合承载负 荷的能力,电能传输等方面的信息,借助主体线路的连接网络,结合实际情况来 确定电气设备的参数,并且实施检核,涉及到的内容由:安全性能、稳定性能等等。在遵从以上原则的基础上,要保证机械的综合性能要符合实际情况的需要,

110kV变电站电气一次部分课程设计

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目:110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远

距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18)

推荐-110kV变电站电气一次部分初步设计说明书 精品

重庆电力高等专科学校 重庆教培中心教学点 毕业专业:电力系统自动化

内容提要 根据设计任务书的要求,本次设计为110kV变电站电气一次部分初步设计,并绘制电气主接线图及其他图纸。该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。各个电压等级分别采用单母线分段接线、单母线分段带旁母线和单母线分段接线。 本次设计中进行了电气主接线的设计。电路电流计算、主要电气设备选择及效验(包括断路器、隔离开关、电流互感器、母线等)、各电压等级配电装置设计及防雷保护的配置。 本设计以《电力工程专业指南》、《电力工程电气设备手册》、《高电压技术》、《电气简图用图形符号(GB/T4728.13)》、《电力工程设计手册》、《城乡电网建设改造设备使用手册》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。

目录前言 第一部分110kV变电站电气一次部分设计说明书第1章原始资料 第2章电气主接线设计 第2.1节主接线的设计原则和要求 第2.2节主接线的设计步聚 第2.3节本变电站电气接线设计 第3章变压器选择 第3.1节主变压器选择 第3.2节站用变压器选择 第4章短路电流计算 第4.1节短路电流计算的目的 第4.2节短路电流计算的一般规定 第4.3节短路电流计算的步聚 第4.4节短路电流计算结果 第5章高压电器设备选择 第5.1节电器选择的一般条件 第5.2节高压断路器的选择 第5.3节隔离开关的选择 第5.4节电流互感器的选择 第5.5节电压互感器的选择 第5.6节高压熔断器的选择 第6章配电装置设计 第7章防雷保护设计 第二部分110kV变电站电气一次部分设计计算书第1章负荷计算 第1.1节主变压器负荷计算 第1.2节站用变压器负荷计算 第2章短路电流计算 第2.1节三相短路电流计算 第2.2节站用变压器低压侧短路电流计算第3章线路及变压器最大长期工作电流计算第3.1节线路最大长期工作电流计算 第3.2节主变进线最大长期工作电流计算第4章电气设备选择及效验 第4.1节高压断路器选择及效验 第4.2节隔离开关选择及效验 第4.3节电流互感器选择及效验 第4.4节电压互感器选择及效验 第4.5节熔断器选择及效验 第4.6节母线选择及效验 第5章防雷保护计算 第三部分110KV变电站电气一次部分设计图纸电气主接线图

变电站一次设备结构及原理

变电站一次设备基本结构及原理 2013-4-20

变电站 变电站是联系发电厂和用户的中间环节, 起着变换和分配电能的作用。 1.枢纽变电站 2.中间变电站 3.地区变电站 4.终端变电站 5.企业变电站枢纽变电站位于电力系统的枢纽点,连接电力系统高、中压的几个部分,汇集有多个电源和多回大容量联络线,变电容量大,电压(指其高压侧,以下同)等级为330~500kV 。全站停电时,将引起系统解列,甚至瘫痪。中间变电站一般位于系统的主要环路线路中或系统主要干线的接口处,汇集有2~3个电源,高压侧以交换潮流为主,同时又降压供给当地用户,主要起中间环节作用,电压等级为220~330kV 。全站停电时,将引起区域电网解列。 地区变电站以对地区用户供电为主,是一个地区或城市的主要变电站,电压等级一般为110~220kV 。全站停电时,仅使该地区中断供电。终端变电站位于输电线路终端,接近负荷点,经降压后直接向用户供电,不承担功率转送任务,电压等级为110kV 及以下。全站停电时,仅使其站供的用户中断供电。企业变电站是供大、中型企业专用的终端变电站,电压等级一般为35~110kV ,进线为1~2回。

变电站电气设备 为了满足电能的生产、输送和分配的需要,发电厂和变电站中安装有各种电气设备,用于实现起动、转换、监视、测量、调整、保护、切换和停止等操作。 按电压等级可分为高压电器和低压电器; 按所起的作用不同,电气设备可分为一次设备和二次设备两大类。

变电站电气设备图片

变电站一次主设备 变电站中凡直接用来接受与分配电能以及与改变电能电压相关的所有设备,均称为一次设备或主设备。由于大都承受高电压,故也多属高压电器或设备。它们包括主变压器、断路器、隔离刀闸、母线、互感器、电抗器、补偿电容器、避雷器以及进出变电所的输配电线路等。由一次设备连接成的系统称电气一次系统或电气主接线系统。

110kV变电站电气一次部分课程设计

110k V变电站电气一次部分课程设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远

距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19)

电气一次设备在变电站的安装和质量保证

电气一次设备在变电站的安装和质量保证 摘要:随着我国电力产业的发展,很多的问题也随之而生。变电站是电力建设 中必不可少的基础设施,在很多变电站的有关电气设备实际安装过程中涉及到很 多的问题。变电站的电气一次设备安装是其中一个重点问题,其安装的质量涉及 到人们的财产安全,其安装过程及使用的安全性更是涉及到人们的生命安全。怎 样在保证质量的前提下,安全的对电气一次设备进行安装是变电站施工中重点考 虑的问题。 关键词:一次设备;变电站;安装;质量保证 引言:当前,随着我国经济发展而引发的能源危机问题日益严重,尤其在电 能方面,经常出现供应不足的情况。电能是保证经济发展的关键,电力企业要提 供更好的服务以满足居民和企业对电能的需求,从而获取经济效益,因此,电网 的稳定性是基础。虽然近些年电网的稳定性有所提高,但在电气设备进行安装的 同时,还要做好质量控制工作,采取科学的控制措施,保证电气设备的正常运行,进一步提高电网稳定性。 1.变电站电气一次设备安装质量控制的必要性 变电站的输入电压比较高,电流也比较大,这就对于相应的电气设备安装要 求也较高。影响变电站安全运行的因素较多,变电站安全受到电气设备安装质量 的影响较大。安装质量包括:电气设备接线的正确性、可靠性,设备固定的牢固性,电气设备仪表固定焊接等因素。因此,在变电站电气一次设备安装中要通 过相应的质量控制措施保证工程的安装质量,从而保证整体变电站的运行质量。 2.变电站电气一次设备安装的安全控制 2.1 施工过程中各环节安全控制要点 分析电气一次设备安装的过程中,由于其性质的特殊性对施工要求较高,而 其对于安全的控制因素也较多,所以在施工期间必须重视安全控制,其中变压器、母线、电缆、断路器等部件的安装不仅是施工的关键环节,也是容易引起安全事 故的重点。主要体现为: 2.1.1变压器安装是安装过程中较复杂的工作,变压器作为变电站的整个设备 系统最重要的设备。在安装过程中要提前做好相关准备,提高思想认识,时刻注 意和警惕安装质量及安全。施工人员对于施工图纸、技术资料做到全面把握,并 对各个部件进行安全性能、绝缘性能、密封性能的检查,安装过程必须由专业施 工人员依照施工程序执行安装程序和调试内容,以正确的措施来处理问题,达到 防范于未然,避免造成财产损失甚至人员伤亡。 2.1.2电力电缆作为电力运输主要装置,具有产热大,散发困难的问题。所以 其工作容易受到环境的制约。安装过程前要注意到电缆的规格,载流量的大小, 避免电缆在运作过程中超过电缆承受的标准。另外需特别注意安装操作的环境温 度不能过低,如温度过低可采用提高施工现场环境温度或者低压电流等方式进行 预热,注意坚决禁止用明火直接烘烤电缆的错误方式,以免引起事故发生。 2.1.3母线安装是一项基础性工作,需要施工人员提前做好准备,对母线质量 以及可供安全使用程度进行详细了解,并在此基础上制定出安全可行的安装方案。 2.2 施工人员安装前安全意识的强化变电站电气一次设备的安装安全不仅指设备安装的安全,还包括安装期间施工人员的安全。因安装中涉及的设备复杂,过 程烦琐、难度大,所以对安装人员的技术及环境也应有较高的要求,而人员的安 全意识起着相当关键的作用。故在安装时,应提高安装人员的安全意识以保证安

变电站电气一次部分毕业设计

变电站电气一次部分毕业设计

毕业设计(论文) 课题名称220kV变电站电气一次部分初步设计 学生姓名 学号 系、专业电气工程系、电气工程及其自动化 指导教师 职称

内容提要 本次设计为220kV变电站电气一次部分的初步设计。根据原始资料,以设计任务书和国家及行业有关电力工程设计的规程规范为设计依据,并结合该地区实际情况设计该变电站,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。本期该变电站设有两台主变压器,远期该变电站设有三台主变压器。站内主接线分为220kV、110kV和10kV三个电压等级。 设计正文分设计说明书和设计计算书两个部分,设计说明书包括电气主接线设计、变压器选择说明、短路电流计算说明、电气设备选择说明、配电装置设计、电气总平面布置和防雷保护设计;设计计算书包括变压器选择、短路电流计算、电气设备选择及校验等,并附有电气主接线图及其它相关图纸。 关键词:220kV变电站;短路计算;主接线;设备选择。

Summary The design of 220 kV substation electrical part of the preliminary design at a time. According to the original data, a design specification and country and industry relevant power engineering design procedure specification for design basis, and combined with the region's actual condition, the design of the substation design in conformity with the relevant economic and technological policies of the state, the contents of the selected equipment for all countries recommend new products, advanced technology, reliable operation, economic and reasonable.. The substation is equipped with two sets of the main transformer, forward the has three main transformer substation. station connection is divided into 220 kV, 110 kV and 10 kV voltage grade three. This text points design specifications and design calculation of two parts, the design specifications, including the main electrical wiring design of transformer selection, the short circuit current calculation, electrical equipment selection, design of power distribution equipment, electrical total plane layout and lightning protection design; Design calculation includes the choice of transformer, the short-circuit current calculation, electrical equipment selection and calibration, etc., with the main electrical wiring diagram and related drawings. Key words: 220 kV substation; Short circuit calculation; The main wiring; Equipment selection.

110KV降压变电站电气一次部分初步设计

110KV降压变电站电气一次部分初步设计 一、变电站的作用 1.变电站在电力系统中的地位 电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机)、变换(变压器、整流器、逆变器)、输送和分配(电力传输线、配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。 2.电力系统供电要求 (1)保证可靠的持续供电:供电的中断将使生产停顿,生活混乱,甚至危及人身和设备的安全,形成十分严重的后果。停电给国民经济造成的损失远远超过电力系统本身的损失。因此,电力系统运行首先足可靠、持续供电的要求。 (2)保证良好的电能质量:电能质量包括电压质量,频率质量和波形质量这三个方面,电压质量和频率质量均以偏移是否超过给定的数来衡量,例如给定的允许电压偏移为额定电压的正负5%,给定的允许频率偏移为正负0.2—0.5%HZ 等,波形质量则以畸变率是否超过给定值来衡量。 (3)保证系统运行的经济性:电能生产的规模很大,消耗的一次能源在国民经济一次能源总消耗占的比重约为1/3 ,而且在电能变换,输送,分配时的损耗绝对值也相当可观。因此,降低每生产一度电能损耗的能源和降低变换,输送,分配时的损耗,又极其重要的意义。 二、变电站与系统互联的情况 1.待建变电站基本资料 (1)待建变电站位于城郊,站址四周地势平坦,站址附近有三级公路,交通方便。 (2)该变电站的电压等级为110KV,35KV,10KV三个电压等级。110KV是本变电站的电源电压,35KV,10KV是二次电压。 (3)该变电站通过双回110KV线路与100公里外的系统相连,系统容量为1250MVA,系统最小电抗(即系统的最大运行方式)为0.2(以系统容量为基准),系统最大电抗(即系统的最小运行方式)为0.3。

变电站电气一次设备安装施工安全及质量控制 杜龙国

变电站电气一次设备安装施工安全及质量控制杜龙国 摘要:变电站是电力系统中变换电压、接受和分配电能、控制电流方向和调整 电压的电力设施,它通过其变压器将各级电压的电网联系起来。变电站电气一次 设备是变电站不可或缺的主要部分,变电站电气一次设备安装是整个变电站建设 施工中的重要环节。在安装的过程中施工的质量与安全对供电设备的有效运作起 着重要的作用,因此要给与高度的重视。本文介绍了变电站电气一次设备安装重 要性,探讨了电气一次设备的安装施工安全和质量控制。 关键词:变电站;一次设备;施工安全;质量控制 电能是保证经济发展的关键,电力企业要提供更好的服务以满足居民和企业 对电能的需求,从而获取经济效益,因此,电网的稳定性是基础。虽然近些年电 网的稳定性有所提高,但在电气设备进行安装的同时,还要做好质量控制工作, 采取科学的控制措施,保证电气设备的正常运行,进一步提高电网稳定性。 1变电站电气一次设备安装重要性 变电站电气一次设备安装过程中,涉及了多种设施设备,其中包括变压器、 母线、断路器、隔离开关以及附属电缆装置等。由于变电站的电流与电压相对来 说都非常大,对变电站电气一次设备进行安装,有着非常高的要求,而变电站的 电力传输和生产都是依靠这些设备来实现的,为此,一次设备的安装质量可以说 关系着整个变电站的生产作业和安全稳定程度。 在进行电气一次设备的安装过程中,本身来说其操作非常复杂,但因其存在 的重要性,对变电站作业的影响,故电气一次设备的安装质量可以说直接决定了 变电站后期运行有效性与供电安全性。与此同时,在施工期间,其施工安全性也 直接关系着安装操作人员的生命安全,为此,保障电气一次设备安装施工安全性 和加强质量控制具有非常重要的意义。 除此之外,在安装设备时,会涉及到大量的电力电缆等电力运输部分,而这 些电力电缆又对工作环境有着非常高的要求,在进行安装期间,需要考虑诸多因素,在保证安全的前提下,确保其安装后寿命能够得到有效延长。故在变电站电 气一次设备安装时,必须充分重视起施工安全及质量控制,确保其能够更加安全 稳定运行。 2电气一次设备的安装施工安全和质量控制 2.1母线安装施工的安全和质量控制 母线的安装可以说直接关系着整个施工效率和质量,必须引起充分的认识。 在进行安装之前需对所使用的工具进行校正,并提前准备好所需要的工具,及时 配置操作中需要运用到的各种工具,以保证工期能够顺利开展和按时按成。在对 母线进行运输时,可能会出现弯曲变形等现象,出现这种情况都是母线自身因素 所致,对这种情况下,必须采取相应的措施进行保护和有效弥补。 在对母线进行保护时,可充分发挥母线校正机的校正作用,来防止母线发生 弯曲变形,针对需要实施弯曲处理的母线,则可运用辊轴来对其进行处理,将母 线放置在辊轴之间,并将龙门压力的丝杆完全拧紧,再讲平弯机手柄压下,注意 控制力度,以免因过度用力导致母线出现开裂或者截断等情况。 作为电力设备输入输出中非常重要的线缆,在进行安装时,其安装质量可直 接影响着线缆后期高负荷环境、特殊环境下的承载能力和运行质量。在安装电缆 期间,安装人员必须根据设计好的图纸对线缆位置再次进行核对,明确弯曲半径,使其能够更好的达到图纸设计预期要求。

推荐-110KV变电站所电气一次部分设计课程 精品

课程 变电站(所)电气一次部分设计 课程名称发电厂电气部分课程设计 专业电气工程及其自动化

目录 第一部分变电站(所)电气一次部分设计说明书 一、原始资料 (3) 二、电气主接线设计 (4) 三、主变压器变的选择 (7) 四、站(所)用变压器的选择 (8) 五、高压电气设备选择 (9) 高压断路器的选择及校验 (9) 隔离开关的选择及校验 (11) 电流互感器的选择及校验 (12) 电压互感器的选择及校验 (14) 高压熔断器的选择及校验 (15) 母线选择及校验 (16) 电缆选择及校验 (17) 六、防雷及过电压保护装置设计 (17) 第二部分变电站(所)电气一次部分设计计算书 一、负荷计算 (19) 主变负荷计算 (19) 站用变负荷计算 (19) 二、短路电流计算 (20) 三、电气设备选择及校验计算 (25) 高压断路器的选择及校验 (26) 隔离开关的选择及校验 (29) 电流、电压互感器的选择及校验 (31) 高压熔断器的选择及校验 (33) 母线选择及校验 (34) 电缆选择及校验 (37) 四、防雷保护计算 (37) 结束语 (39)

第一部分变电站(所)电气一次部分设计说明书一、原始资料 (一) (二)建站规模

(三)环境条件 变电所位于某城市,地势平坦,交通便利,空气较清洁,区平均海拔300米,最高气温40℃,最低气温5℃,年平均气温23℃。年平均雷电日55日/年,土壤电阻率高达1000 .M (四)短路阻抗 系统作无穷大电源考虑 二、电气主接线设计 (一)主接线的设计原则和要求 1.主接线的设计原则 (1)考虑变电站在电力系统的地位和作用 变电站在电力系统中的地位和作用是决定主接线的主要因素。变电站是枢纽变电站、地区变电站、终端变电站、企业变电站还是分支变电站,由于它们在电力系统中的地位和作用不同,对主接线的可靠性、灵活性、经济性的要求也不同。 (2)考虑近期和远期的发展规模 变电站主接线设计应根据5~10年电力系统发展规划进行。应根据负荷的大小和分布、负荷增长速度及地区网络情况和潮流分布,并分析各种可能的运行方式,来确定主接线的形式及站连接电源数和出线回数。 (3)考虑负荷的重要性分级和出线回路多少对主接线的影响 对一、二级负荷,必须有两个独立电源供电,且当一个电源失去后,应保证全部一、二级负荷不间断供电;三级负荷一般只需一个电源供电。 (4)考虑主变台数对主接线的影响 变电站主变的容量和台数,对变电站主接线的选择将产生直接的影响。通常对大型变电站,由于其传输容量大,对供电可靠性高,因此,其对主接线的可靠性、灵活性的要求也高。而容量小的变电站,其传输容量小,对主接线的可靠性、灵活性要求低。 (5)考虑备用量的有无和大小对主接线的影响 发、送、变的备用容量是为了保证可靠的供电,适应负荷突增、设备检修、故障停运情况下的应急要求。电气主接线的设计要根据备用容量的有无而有所不同,例如,当断路器或母线检修时,是否允许线路、变压器停运;当线路故障时是否允许切除线路、变压器的数量等,都直接影响主接线的形式。 2. 主接线设计的基本要求 根据有关规定:变电站电气主接线应根据变电站在电力系统的地位,变电站的规划容量,负荷性质线路变压器的连接、元件总数等条件确定。并应综合考虑供电可靠性、运行灵活、操作检修方便、投资节约和便于过度或扩建等要求。 (1)可靠性 所谓可靠性是指主接线能可靠的工作,以保证对用户不间断的供电,衡量可靠性的客观

220kV变电站电气一次部分设计技术探析 王春敏

220kV变电站电气一次部分设计技术探析王春敏 发表时间:2019-03-27T16:24:03.890Z 来源:《基层建设》2018年第35期作者:王春敏 [导读] 摘要:随着我国国力的不断强盛,经济突飞猛进的发展,工业化进程的加快,用电量也在不断的增加。 抚顺市电力设计院辽宁抚顺市 11306 摘要:随着我国国力的不断强盛,经济突飞猛进的发展,工业化进程的加快,用电量也在不断的增加。变电站在电力传输系统中具有非常重要的作用,因为它在整个传输系统中起到变换电压,并进行再次分配及控制的作用,保障人们生活用电的需求。由于变电站在电力传输网的重要作用,它的功能对于电网的可靠性有着决定性的影响,直接关乎着整个电网运行的稳定。根据变电站设计的不同,可将变电站分为一次和二次之分,一次设计中主要是主接线设计、电气设备的选择、接地以及防雷等设计。 关键词:220kV变电站;电气一次设计;设计技术分析 1变电站的重要性 变电站主要功能是通过转变电压,以及对转变完电压的传输和对电流流向的控制达到传输电流的目的。它沟通电压和电网,使不同等级电压的电流稳定有序的传输。由此可见,变电站的主要功能就是增加或减少电压。根据用电单位的不同用电需求,变电站负责将发电厂生产的固定压力电流通过加压或降压的方式进行处理,加压方便长距离运输,同时保护传输线路;降低压方便人们使用,同时保证人们用电安全。由于不同地网之间的构造不同,变电站的设计也不相同,主要有110kV、220kV和500kV等不同规格,不同规格的变电站对电压的调节也会不同。当今,220kV变电站的分布最广,因为我国家庭用电的规格几乎都是220v,所以必须要用220kV变电站进行变压。因此,对220kV变电站的设计工作必须重点关注它的实用性、安全性和绿色环保性能,确保它的传输安全和居民用电安全和减少对能源的使用和浪费,对整个国民经济都有着重要的作用。 2关于220kV变电站进行电气一次设计方面的原则 由于220kV变电站的适用范围非常广,在所有规格变电站中的特殊地位,故在进行220kV变电站的设计时还要进行一定的特殊性设计。一是主接线的设计,这也是最主要的设计,要求安全可靠是第一位的,要求每一个模块的连接必须平顺紧密,安全可靠。二是要求整体220kV变电站设计总体统一,使整体设计标准统一,避免出现前后矛盾,减少维护成本。三是充分考虑供电单位的经济效益,只有保证供电企业的合理经济效益,才能使整个供电网实现可持续发展。四是在变电站的选址和建设时应该充分考虑当地环境的承载能力,因地制宜进行建设施工,避免对环境造成不可逆后果。 3 220kV变电站电气一次设计的问题 3.1主接线设计问题 在目前变电站的设计上,为了首先保证整个供电网的安全可靠,在主接线的选择上一般选择安全性能最好的较复杂主接线。但这种选择有两个后果,一个是由于设计复杂,施工复杂,后期的维护成本比较高。一个是由于核心部件的体积增加了,造成变电站的体积也相应增加,造成占地成本增加。现在我们主要对目前市而流行的两种主接线方式,双母接线和单母分段接线,进行对比分析,发现其各自有哪些优缺点。从可靠性上分析,双母接线的优点是它有两组相互隔离的母线控制开关,在维修保养中可以轮流对单个母线控制开关进行关闭,而不影响整体线路使用,在对一个母线隔离控制开关进行维修后能够迅速恢复供电。其缺点是在进行线路检修时需要对整个线路进行断电,因为在操作母线隔离控制开关时容易导致失误。而单母分段连接的优点是采用分母分段连接,可以将供电线路分成N段进行处理,其中的一段上母线发生故障,由分段隔离器自动隔离故障段,其他分母段不会受到影响。从灵活性上分析,双母接线可以做到将电源和回路符合灵活地分配不同的母线段;而单母分段连接线能够满足不同运营方式的运用,更加的灵活。从经济性上分析:双母接线需要投入更多的设备,所需资金比较大;而单母分段需要投入的设备较少,所需资金比较少。 3.2电气设备选择的问题 一般来说,变电站中的电气设备主要包括变压器,断路器,电流互感器、隔离开关等设备,在电气选择上,主要需要考虑就是短路电流计算等问题。为了增强变电站电气设备的整体性能,减少电气设备的损坏,应该对线路不同点的短路电流进行计算。如果计算不正确,就容易烧毁线路上的电气设备,影响线路传输的安全和稳定,同时会造成电气设备使用寿命缩减,系统可靠性受到影响。 3.3防雷设计问题 我国夏季,由于极端对流天气的增加,造成雷电频次增加,为了避免变电站遭受雷电袭击,对变电站的避雷点设计显得格外重要。在变电站的设计施工时必须要按照变电站避雷等级严格进行施工,对需要采取的避雷电设计要严格按规定进行安装,同时在后期的使用维护上,也要对避雷电设施进行定期维修保养,充分做好防雷击各项工作,保障供电的安全平稳运行。 4电气一次设备设计技术 4.1变电站电气主接线的设计 主接线在变电站的整体设计中占有非常重要的地位,它的存在主要作用是保证变电站运营的安全可靠,保证变电站在不同电网之间的有效转换,从而实现变电站的平稳运行。在电气主接线的设计上,应该做到对电气主接线和电气总平而进行合理的设计和布置,同时合理对模块主接线进行优化,减少后期设备的维修保养压力,既保证变电站的平稳运营,又有效减少维修消耗。 4.2关于接地设计 从变电站的设计上,变电站必须拥有独立的接地网络。在接地的设计上,现在普遍比较流行的有自然接地方式和深井接地方式,它们的目的都是为了使接地的电阻降低到设计要求的安全范围内,从而保证变电站整体运行安全稳定。除了上述两种将阻方式之外,通常还可

相关文档
最新文档