读卡器天线调试

读卡器天线调试
读卡器天线调试

天线匹配调试流程

PCB天线匹配调试流程(个人总结) 根据个人调试经验归纳总结调试天线匹配的步骤流程,仅供参考--ab。 步骤1、根据结构和PCB大小设计线圈圈数、线宽、圆方等设计PCB天线线圈。可以根据实际产品需求按照“附件1:非接触天线电感计算”的参数计算出大约的线圈电感和品质因数Q。 步骤2、按照步骤1设计出PCB的天线线圈,利用网络分析仪测试裸板的天线线圈实际的Q值,然后根据产品对Q值的需要进行并电阻调节Q值大小。 Q值计算和意义: ,f为谐振频率,R为负载电阻,L为回路电感,C为回路电容。 一般而言,Q越高,能量的传输越高,但是过高的Q值会影响读写器的带通特性,尤其是读写器本身频率点比较偏的时候,标签Q值过高,有可能会导致标签的频率点在读卡器的带通范围之外。一般设置Q值为20的时候带通特性和带宽都比较好。一般L和C的值由于要匹配谐振,不怎么好改动,因此要降低Q 可以通过并联一个电阻R来解决。所以在设计之初,需要尽量的让品质因数Q 留有余量,以便后期调试。如果设计太小Q值就不好往高调试了。 步骤3、针对AS3911芯片的匹配电路可以参考“附件2: AS3911_AN01_Antenna_Design_Gui”初步确定出EMC、matching电路。 天线匹配电路参考

步骤4、利用网络分析仪适当调整EMC、matching电路让天线谐振在,匹配10欧~50欧的电阻。根据AS3911文档推荐匹配20~30欧效率最高,如果考虑功耗等因素可以适当的匹配电阻变大,提高输入阻抗。 天线匹配意义: 在天线的LCR电路中产生谐振,使电路中呈现纯阻抗性,此时电路的阻抗模值最小。当电压V固定时,电流最大。 (1) 电路阻抗最小且为纯电阻。即Z=R+jXLjXC=R (2) 电路电流为最大。 (3) 电路功率因子为1。 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即QL=QCQT=QLQC=0 史密斯圆图图示 步骤5:可以根据史密斯圆图来调整匹配电路。目标:将与实数轴相交,交点就是谐振在的电路阻抗最小且呈纯阻性,此时电路的阻抗模值最小。当电压V固定时,电流最大。 可以根据"附件3:AS3911 Matching " 来调整史密斯圆图的参数。 如果想对射频理论知识感兴趣可以参考。《射频电路设计》

短波天线原理和应用

短波天线的原理和应用 摘要:本文从电波传播和电离层分布特性的角度解释了短波电波辐射的特点,并介绍了常用短波天线的种类和特性。对各类短波天线的架设要求和注意事项给出了建议和参考。最后对短波天线的接地系统的设计给出了一些参考方案。 关键词:天线、电离层、极化、接地 1.序 无线电通信就是依赖于无线电电波在空间的传播而建立通信链路的,因此电波传播是 无线电的一个重要环节。对于不同的工作频段,电波的传播特性将有所不同。同时所采用的辐射天线也将有很大的不同。本文将就电波的传播特性和短波常用天线以及电台架设的注意问题作一些介绍。 1.1 电离层特性 电波在空间传播将会受到电离层的影响,尤其是中短波的传播就是依赖于电离层的反射进行传输的,因此对电离层应有一些了解。 a)电离层的产生 地球表面有1000公里高的大气层,由于太阳光辐射(x射线,紫外线)空气不断电离同时不断复合,这样空气中将存在着游离的带电粒子; b)带电粒子随高度增加而增加,在离地面较近的地方每立方米只有几个或几十个粒子,到接近1000公里时,每立方米将有上千或上万个带电粒子。因电离层一般按如下分层: C层D层E层F1层F2层 0~50kM 60~90kM 100~120kM 170~220kM 225~450kM c)电离层在白天、黑夜,一年四季将会有不同的变化。白天由于有阳光,低层(D层)电离层浓度升高,反之黑夜时将降低。一年四季变化也是由于因受阳光照射时间长或短而变化。 d)电离层在不断上下或水平运动,从而造成电波反射传播过程中的瑞利衰落和多普勒效应。 e)电离层具有非均匀分布性,类似云彩的特点,因而造成电波反射时的散射,多径时延。f)电离层对电波的吸收随工作频率升高而减少。对中长波吸收很大,如10~20kW的中波广播机覆盖面在100km左右,而1kW的短波可传送3000km。即频率愈高的中短波信号愈容易穿越低层(D层)的电离层。 1.2 大地对电波的影响 大地对电波的影响主要是地波传播的影响,大地不能视为良导体也不能视为绝缘体,由于地质不同应区分对待。 a)对于如海水、淡水、湿地,对电波的吸收较小,但由于地面反射波与入射波有180o 相位差,将会吸收紧靠地面的电波,使波瓣抬高; b)对于干燥地质对电波吸收会较大(主要对短波吸收); c)对于金属矿藏地质如铁矿地带,对电波吸收是非常大的,千万不要在这里设立电台(收发信台);

卫星天线安装图解

卫星天线安装图解 天线的安装: 安装前的准备: 1.按说明书的地基施工图做好天线地基。 2.安装工具。包括:活动扳手(大18寸*2、小4寸*2或钳子)、专用改锥、剪子、水平仪、防水胶布等。 3.按照说明书清点卫星天线的另件数是否正确。 4.请准备12寸--14寸带AV输入的彩色或黑白电视机一台,视音频线(AV线)一套,一根3米左右的和一根30米左右的同轴电缆,一条临时的220V电源及插座。 安装步骤: 第一步:注意安装的基座立柱必须保证水平和垂直,可使用水平尺等进行调整。 第二步:安装天线的锅体四脚支撑。注意螺杆、螺母的正反方向。不要旋紧螺丝。 第三步:安装天线的方向轴。方向轴与天线的四脚支撑进行连接。注意方向轴的方向,使天线高频头支撑杆,中间的那只,保持在锅体下方即可。旋紧与之连接的固定螺丝。 第四步:把天线抬起,安装到天线基座的立柱上。 第五步:安装高频头支撑杆。不要把螺丝拧死。 第六步:把高频头置于高频头固定盘上。(可能需要专用螺丝刀,拆开高频头的保护罩) 第七步:使用馈线(同轴电缆)连接高频头的高频输出端至接收机的高频输入端。 第八步:上好其他部分的固定螺丝。注意都不要拧死。 第九步:使用AV线(视音频线)连接卫星接收机的视频输出到电视机的视频输入。 至此,天线的安装已经完成。 寻星指南: 调试前准备:1.安装工具。2.调试器材。3.连接线材。4.寻星参数。 寻星时间:根据你所在的地点和接收卫星的位置计算出当地的寻星时间。这对于卫星覆盖边缘地区、小天线尤为重要。 天线方向的调试:粗调:根据事先算出的仰角和方位角,将天线的这两个角度分别调到这两个数值上,使之对准所要接收的卫星,直至接收到电视信号。细调:使所收的信号最佳。根据现场的条件,可以有多种简易而有效的调整方法。 第一步:检查连接好的线路。 第二步:用量角器调整好天线仰角。 仰角直接用量角器就可以量 先将直尺最低端固定在天线最低端边沿上,另一端固定在天线最高端边沿上,注意直尺一定要通过天线中心,找准直径,不能倾斜,这是关键。直尺顶端留出20㎝以供固定量角器。在量角器中心钻一小孔,用小钉将带有重锤的线穿过量角器中心孔,将量角器一同

天线测试方法介绍

天线测试方法介绍 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。 图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。

天线选型

短波无线电通信天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。 2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

卫星天线的调试策略和技巧

卫星天线的调试策略和 技巧 标准化管理部编码-[99968T-6889628-J68568-1689N]

浅谈地面卫星天线的调试方法和技巧 ——普陀区广电台张皓摘要:本文阐述了调试地面卫星天线中需要注意的各种要素、原则、方法和以及调试过程中的注意事项。 关键词:卫星天线搜星要素调整方法注意事项 随着卫星转发的广播电视节目和数据不断增多,各电视台下行接收设施也越来越多,而且由于各种原因导致传输原节目的卫星轨道经常变化,因此地面卫星接收站也需要不断调整天线方向来对准卫星,以保证正常收视。 一、地面站搜星要素 搜索卫星一般要注意四个要素:仰角、方位角、极化和焦距。 仰角:指卫星地面站的天线主瓣波束轴线对准卫星的连线与其在地平面的投影夹角,常用EL表示。 方位角:指当以地理正北为零度,按顺时针方向参考时,天线波束主瓣轴瞄准卫星的连线的投影线与正北方向线的夹角,常用AZ来表示。 极化:指电磁波在传播过程中的电场矢量方向和幅度随时间变化的特性,一般包括左旋、右旋圆极化及水平、垂直线极化四种极化方式,我国卫星接收信号通常采用水平、垂直线极化波。地卫站天线的极化方式一定要与所接收的卫星下行信号的极化方式一致即极化匹配,才能保证接收质量达到规定的标准,否则将影响信号的正常接收及质量。 焦距是指卫星接收天线对接收信号反射后信号汇聚最强的位置点。 二、常用计算公式与调星原则 地面站方位角、仰角是卫星接收天线指向的两个重要数据,馈源极化角ρ、焦距f是卫星接收天线调整中另外两个不容忽视的参数。四个参数可由以下卫星天线定位经验计算公式获得,实际应用中我们一般以Az的大小与正负来确定方位角。

几种短波天线的比较

几种短波天线的比较(ZT) 这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。当然,还很多的其他的天线类型。这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。 1. 国产的10米波段1/2波长垂直天线: 这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。缺点是单波段天线,一个波段得要一根。另外每节1米左右,携带不算很麻烦也不算容易。 2. 曰本钻石公司的HV-4: 这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。所以其实是不适合野营使用的。 3. 自制的加感天线: 振子是1.5米长的拉杆天线,收起来的时候很短。加感线圈在底部,另外还需要地线配合。由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。只有摆成当年调试的样子,才能谐振。回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。看来这天线也必须这样做才成,它太受环境的影响。这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。但是也不算太差。 阻抗匹配概念 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。 重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生

如何调试卫星天线角度介绍

如何调试卫星天线角度介绍 1、卫星转发器 卫星转发器,是这样的设备,接收地面发射站发来的14GHz或6GHz的微弱的上行电视信号,经频率变换(一次变频、二次变频)为不同的下行频率12GHz或4GHz,再由技术处理放大到一定功率向地球发射,有卫星电视接收设备接收。每一路音视频和数据通道都是由一个卫星转发器进行接收处理然后再传输,每一个转发器所处理的信号都有一个中心频率及一个特定的带宽,目前卫星转发器主要使用L、S、C、Ku和Ka频段。 2、水平极化、垂直极化 极化通常是指与电波传播方向垂直的平面内,瞬时电场矢量的方向。在极化波中,以地平线为准,当极化方向与地面平行时,称为水平极化。当极化方向与地面垂直时,称为垂直极化。 3、卫星天线 卫星天线的作用是收集由卫星传来的微弱信号,并尽可能去除杂讯。大多数天线通常是抛物面状的,也有一些多焦点天线是由球面和抛物面组合而成。卫星信号通过抛物面天线的反射后集中到它的焦点处。 4、馈源 馈源的主要功能是将天线收集的信号聚集送给高频头(LNB),馈源在

接收系统中的作用是非常重要的。 馈源的种类 锥形馈源 环形馈源 圆锥馈源 梯状馈源 6、LNB高频头 高频头(Low Noise Block)即下行解频器,其功能是将由馈源传送的卫星经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。 调试过程 由于一般用户都没有场强仪等专用设备,因此本文将介绍的是如何使用指南针、量角器等常用设备寻星。 器材准备:卫星天线、高频头(馈源一体化)、卫星接收机、电视机、指南针、量角器以及连接线若干。 计算寻星所需参数 对于固定式天线系统,需要根据天线所在地的经纬度及所要接收卫星的经度计算出天线的方位角和仰角,并以此角度调整天线使其对准相应的卫星。

天线测试方法介绍

天线测试方法介绍 来源:Vince Rodriguez公司 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz 以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。

陶瓷(微带)天线调试方法

▲L 2007.05.30 陶瓷天線微調手則 目前GPS 業界最常使用的陶瓷天線有兩種,分別為偏心饋入式及中心饋入式陶瓷天線,這兩種形式的天線是以饋入點位置作區別,所謂的偏心饋入其饋入點位置在陶瓷天線正中心偏一角的對角線上 ( 如Fig-1所示),而中心饋入式天線其饋入位置並非在其正中心,它是在正中心往上移 一點的位置(如Fig-2所示)。 因GPS 衛星為所使用的發射天線為右旋圓極化 (RHCP) 天線,為使待接收的GPS 裝置能順利接收衛星訊號,因此通常在設計接收天線時會使用相同的右旋極化結構來設計,如Fig-1(a) 、Fig-2(a)皆為右旋極化結構。左旋極化結構如Fig-1(b)、Fig-2(b)所示。 (a) RHCP (b) LHCP Fig-1,偏心饋入式陶瓷天線 (a) RHCP (b) LHCP

■ 偏心饋入式陶瓷天線 Fig-3 此饋入方式是藉由兩互相垂直的模態 (Lx 及Ly) 其共振長度的些微差異 (Lx ≠ Ly) 所形成圓極化輻射波,若Lx > Ly,此為右旋圓極化天線(RHCP antenna);反之,若Lx < Ly,則為左旋圓極化天線(LHCP antenna)。因GPS天線需設計為RHCP ,所以Lx > Ly,故Lx為低頻模態( f L),Ly為高頻模態( f H)。如圖Fig-4 所示,由Return Loss可看出其兩模態位置,f L 頻率為marker-2,f H 頻率為marker-3,其圓極化中心頻率為marker-1,須特別注意圓極化中心頻率為Smith Chart 兩模態所相交的尖點,並非Return Loss的最低點。而微調的方式可分為削邊、挖槽縫及截角三種方式,其操作方式如下敘述。 H f L

RFID天线安装与调试实训报告

实训报告 姓名学号 系部 专业物联网应用技术 班级 _ 指导教师 实训名称天线安装与调试 完成时间: 2013年月日 目录

1 物联网常用天线简介 (3) 2 物联网天线常见参数 (3) 3 物联网常用器件安装测量记录及分析 (4) 4 标签天线制作及测量分析 (13) 参考文献 (15) 1 物联网常用天线简介

物联网(The Internet of things)的定义: 通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网就是“物物相连的互联网”。 天线的基本功能: 将由发射机(或传输线)送来的高频电流(或导波)能量转变为无线电波并传送到空间;在接收端,则将空间传来的无线电波能量转变为向接收机传送的高频电流能量,因此,天线可认为是导波和辐射波的变换装置,是一个能量转换器。 天线种类: 首先按天线用途分:可分为基地台天线和移动台天线 (1) 按天线的辐射方向可划分:可为全向天线和定向天线 (2) 按工作性质划分:可分为接收天线和发射天线 (3) 按天线的极化方向分还分为水平极化天线及垂直极化天线 (4) 按频率分类:长波天线,中波天线,短波天线,超短波天线,微波天线 2 物联网天线常见参数 (1)天线的增益:天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 (2)带宽:这也是一个重要但容易被忽略的问题。天线是有一定带宽的,这意味着虽然谐振频率是一个频率点,但是在这个频率点附近一定范围内,这付天线的性能都是差不多好的。这个范围就是带宽。 (3)输入阻抗:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。 (4)反射系数(Г): 反射电压/入射电压,为标量。

常用的几类天线的优缺点

常用的几类天线的优缺点 木雨 2014-11-14 07:04:16 因各位对天线的认识不同,所以这里简单介绍一下我们最常用的几类天线的优缺点,供大家参考!并对广大HAM比较典型的问题作解答: 第一、让我们来认识一下什么天线适合我们,我们最常用的天线就是偶极天线DP(dipole antenna)、其次就是垂直接地天线GP(Ground Plane Antenna),还有长线天线(Longwire ANT)、八木天线(YAGI)等。。DP天线架设简单、有着极高的效率和信噪比适合中近程距离通讯的入射仰角,和接近8字形的辐射波辨,成本最低所以是使用最普遍的一种天线。GP天线有着全向并且低入射仰角的优点适合DX 越洋通信。长线天线配合自动天调或者手动天调是一种效率接近60%的一种天线,适合没有空间架设短波天线的一种补充。八木天线有着高增益的定向天线,非常适合DX远距离通讯的一款天线。 每一款天线都有着它的优点和缺点,比如DP有着极高的效率和信噪比但是它有方向性(虽然方向性并不强但是的确的方向性),GP天线有着全向辐射和低仰角的优点,但是因为是垂直架设底噪大就是GP的缺点。长线天线因为是不对称天线所以底噪相对也较大一些,效率稍低、但是优点就是配合天调不用修剪振子即可使用,长线天线只是没有办法架设短波天线的一种办法。八木天线有着极高方向性的天线,低仰角并且可以转向、可以说指到那打到那里,缺点造价高、要通过转动天线才不会漏掉弱信号。没有十全十美的天线,所以我们可以根据自身的环境和经济条件来选择适合自己的天线。 第二、天线频率越低波长越长,所以短波低波段的天线都是很长。标准全尺寸DP就是1/2波长并非一波长(很多新HAM不懂什么叫全尺寸),比如40米波段(7MHZ)全尺寸偶极天线全长就是20米,一对振子对应就是一个波段,如果要实现多波段就要增加振子。三波段全尺寸天线就要三对(6条振子),所以在城市我们几乎没有几个HAM家里有足够的空间来架设这么长的天线。所以才会用到陷波器、陷波器就是相当于一个开关作用。在你使用不同波段时天线陷波器会自动选择通或者阻断选择对应的振子,这样就可以在一对振子中实现多波段。但是陷波器都是由线圈组成所以会对后面的波段起到缩短作用,同时陷波器也会产生损耗,同时因为有缩短所以带宽相当全尺寸天线要窄一些和效率也要低一些。陷波器使用非常广泛,比如A3S A4S八木天线,还有CREATE 730V多波段正V天线,钻石CP6等垂直GP天线都是使用陷波器。带有陷波器的天线优点就是架设方便、并且实现了多波段,缺点就是因为使用了陷波器天线带宽要窄一些、效率也要低一些。在一条振子实现多波段陷波器是必不可少的,也是最方便的一种解决方案!比如本人原创的一款K-730天线其中21M 29M都是标准的全尺寸,只有14M和7M因为串有陷波器会产生缩短系数。但实际使用买过天线的HAM对天线效果都是满意的,K系列天线就是在效率和实现多波段取了一个择中点,即实现了多波段、架设又方便、效率又不会低。相对于铝管陷波器天线K系列天线成本是最低的,所以低廉的价格造就了K系列天线的极高性价比,这也是这个天线卖的最火的原因。就本人也没有想到会销量会超过1300付,有优点就会有缺点没有十全十美的天线,只有适合你的天线。 第三、关于天线的调整,有些新HAM说我没有驻波表,也没有天线分析仪可以调整好天线吗?驻波表和天分是我们玩业余无线电必备的,没有这些我们是无法调整天线,我们国产天分有BA5RW的AW07A还有大红点驻波表等,图示阻抗分析仪目前有BH7KVE开发的KVE-60A图示显示都是非常直观的、也是非常适合新老HAM使用。调整天线的关键不是调整驻波,而是调整天线的谐振点。天线可以看作是一个LC组成的谐振电路、振子就是L(电感)空间电场形成C(电容),天线高度变了环境变了空间电场也变了C也变了、所以谐振点会变。天线只要按要求架设后剩下要做的就是测谐振点,再修剪振子(振子就好比L电感)、减短了振子电感变小了LC谐振点就会上升,让谐振点落在我们工作的频率上调整即结束!扫描谐振点是调整天线的关键,因为天线架设好扫描天线谐振在什么频率上

华为微波天线调测指导书

天线调测指导书 (仅供内部使用) 拟制:邢子彬日期:2009-03-30 审核:日期:yyyy/mm/dd 审核:日期:yyyy/mm/dd 批准:日期:yyyy/mm/dd 华为技术有限公司 版权所有侵权必究

修订记录

天线调测指导书 关键词:天线、主瓣、旁瓣、接收电平 摘要:介绍了天线主瓣与旁瓣相关知识,以及单极化天线和双极化天线的调整方法。 缩略语清单: 一、主瓣和旁瓣 在对调天线前,需掌握天线主瓣和旁瓣的相关知识。 1、主瓣和旁瓣的定义 天线辐射的电场强度在空间各点的分布是不一样的,我们可以用天线方位图来表示。通常取其水平和垂直两个切面,故有水平方向图和垂直方向图,如图1所示为垂直方向图。方向图中有许多波瓣,最大辐射方向的波瓣叫主瓣,其它波瓣叫旁瓣,旁瓣中可以影响对调天线的是第一旁瓣。 图1 主瓣和旁瓣 2、定位主瓣

微波天线的主瓣宽度很窄,通常在0.6~3.7度之间,例如:一个1.2m的天线(工作频率为23 GHz),信号电平从主瓣信号峰值衰减到零只有0.9度的方位角。所以在定位主瓣的时候,一旦检测到信号,则只需要对天线做微调即可。 在对调天线扫描过主瓣的时候,信号电平要经历一个快速变化的过程,通过比较接收到的信号峰值可以确定天线主瓣是否对准,通常情况下主瓣信号峰值比第一旁瓣的信号峰值高20~25dB。当两端天线同时收到对端的主瓣信号,如果两个信号强度差在2dB以内,属于允许范围。 如图2是天线在自由空间传播模型的正面图,旁瓣围绕在以主瓣为圆心的周围成放射状传播。 图2 天线水平方向图 3、扫描路径 在不同的俯仰角(方位角)上扫描信号时,扫描到的旁瓣信号有时被误认为主瓣信号。如图3是天线水平方向上的辐射模型,天线在三种不同仰角位置扫描到的信号电平值: 图3 三种扫描路径

短波天线常见故障及维护

短波天线常见故障及维护 短波天线多用于定向广播或通讯,所以要求天线具有很强的方向性,故多采用由多个天线振子组成的天线阵,短波天线的塔桅杆仅起支撑作用。一副天线架设的高低和跨度的大小,即天线层数和振子多少是由其服务区域决定的。一般地讲,较大的天线阵,方向性强,天线架得高,仰角低,传播距离远;反之,天线架得低、仰角高、传播距离较近。一般短波天线向两边的发射场强是相等的。若要使天线只向一个方向发射,就需在天线的后面加上反射幕或反射网,反射幕的高度与天线完全一样。 短波天馈线的维护与中波一样,也分为一般性维护和定期维护两个方面:(1)一般性维护:重点巡视全部天线馈线塔杆,雷雨、大风、冰凌后,应及时进行检查。(2)定期维护:重点是沿馈电线路检查馈线杆、双门和馈线的情况;检查塔杆、拉线拉杆、天线幕、反射网是否断线、下引线松紧度以及场地开关和交换闸的情况。 短波天线的主要维护内容 (1)每年冬夏到来之前,应调整馈线和天线下引线的松紧度以避免季节变化对馈线造成的不利影响。在温差变化太大地区,比如,我国东北、西北等地,根据气温变化及时调整天线和馈线的垂度和张力,使天线和馈线始终保持技术指标要求的范围之内。 (2)每五年一次调整天线幕的垂度和天线振子张力,同时调整塔身的垂直弯曲度和拉线的拉力。 (3)每年六月给拉线馈线花兰螺丝涂抹黄油,以保证调整时灵活。 (4)每年十月给馈线基坑,拉线址锚培土,并夯实。一般应高出自然地面20cm。 (5)每月一次检查场地开关的传动部分和接头。并清洁绝缘子及接点。馈线下面农作物离馈线距离应大于1m,馈线两旁的树枝离开馈线要在5m以上,不符合要求的应与有关单位联系及时去除。 短波天馈线常见故障和处理 (1)天线幕打火:可能是天线振子或下引线太松,在大风摇曳下造成断线虚接,故障多出在馈电点部位。 (2)下引线打火:下引线上出现局部高电位造成,可在打火部位绑一段同等直径的铜线以降低电位;要检查馈电线路,找出造成高电位的原因。 (3)反射网打火:原因多是频率不太合适引起。一般来讲短波天线频带较宽,而反射网是按某一固定频率设计的,当使用频率与设计频率相差较大时易使反射网打火甚至断线。以上故障可在两塔上串绳,若打火断线严重可建议改换频率。 (4)天线幕振子上哑铃绝缘断裂:应检查天线幕,清洁绝缘子或调整尾巴线张力。 (5)馈线杆倾斜;雨后馈线基坑塌陷或大风过后及外力碰撞拉线造成,应及时扶正馈杆,填实基坑并加装拉线,加强巡视杆路。 (6)阻抗失配:馈线太松或改变了几何形状所造成,应及时调整馈线垂度,使3000平行输出的两条馈线保持一致。 (7)馈线打火:功率容量不够、电位梯度超过馈线的临界电位梯度。在海拔较高的地区,馈线的临界电位梯度变低。 (8)铁塔校正垂直弯曲度困难:短波塔主要起支撑作用,一般在塔的一侧悬挂天线幕或反射幕等。对铁塔来说,天线的跨度越大,荷载越重,在大风时,因天线幕的挡风面更增加了对铁塔的荷载,造成塔身向天线一侧倾斜,这样会造成天线幕加大垂度,使下引线变松。而维护时,往往因力所不及。只能调整下引线来维特播音。故调整短波塔时,应把天线下端的固定点,包括下引线、重垂线、接地线等全部放松,再校正铁塔。一般来说,塔身的顶部应向天线外侧倾斜一些,调整结束后,再恢复下引线的固定点。 综上分析,要从根本解决天馈线存在问题,应从设备的日常维护上入手,定期对天馈线进行检查、测试,发现问题及时处理。维护人员要加强自身素质培训,学习掌握天馈线的维护方法,提高维护水平,能够快速、准确地诊断和排除故障,确保安全传输发射。

天线测试方法

1测试方法 1.1技术指标测试 1.1.1频率范围 1.1.1.1技术要求 频率范围:1150MHz~1250MHz。 1.1.1.2测试方法 在其它技术指标测试中检测,其它各项指标满足要求后,本项指标符合要求。 1.1.1.3测试结果 测试结果记录见表1。 表1 工作频率测试记录表格 1.1.2 1.1. 2.1技术要求 极化方式:线极化。 1.1. 2.2测试方法 该指标设计保证,在测试验收中不进行测试。 1.1.3波束宽度 1.1.3.1技术要求 波束宽度: 1)方位面:60°≤ 2θ≤90°; 0.5 2)俯仰面:60°≤ 2θ≤90°。 0.5 1.1.3.2测试框图 测试框图见图1。

图1 波束宽度测试框图 1.1.3.3测试步骤 a)按图1连接设备; b)将发射天线置为垂直极化,将待测天线也置为垂直极化并架设于一维转台上, 设置信号源输出频率为1150MHz,幅度设为最大值; c)使用计算机同时控制一维转台及频谱仪,在一维转台转动的同时频谱仪自动记 录待测天线接收的幅度值,待一维转台完成360°转动后,测试软件绘制该频点的俯仰面方向图; d)从该频点方向图中读出俯仰面波束宽度,并记录测试结果于表2; e)重复步骤b)~d),直到完成所有频点俯仰面波束宽度测试; f)将发射天线置为水平极化,将待测天线也置为水平极化并架设于一维转台上, 设置信号源输出频率为1150MHz,幅度设为最大值; g)使用计算机同时控制一维转台及频谱仪,在一维转台转动的同时频谱仪自动记 录待测天线接收的幅度值,待一维转台完成360°转动后,测试软件绘制该频点的方位面方向图; h)从该频点方向图中读出方位面波束宽度,并记录测试结果于表2; i)重复步骤f)~h),直到完成所有频点方位面波束宽度测试; j)若方位面波束宽度和俯仰面波束宽度60°≤ 2θ≤90°,则满足指标要求。 0.5 1.1.3.4测试结果 测试结果记录见表2。

卫星天线安装大集合(超全)

卫星天线安装大集合卫星知识 作者:佚名文章来源:本站原创点击数:更新时间:2010-10-25 一锅三星安装教程一锅三星调试一锅三星设置一锅三星图如何安装一锅三星 准备工具和软件 1、冲击钻一台,使用8MM的冲击钻头,铅笔或者油性笔、粉笔都行,用来给打孔的位置做记号,注意你想安装的地方离电源的距离,过远还要准备延长电源线。 2、同轴电视线若干,自己量好距离,从你电视机的位置到锅的位置再加上3米左右(四切到高频头的3根连接线),选择同轴电视线很关键,不好的线直接会影响信号,记得一定要买全铜芯,四屏蔽高编的,什么铜包钢,只有双屏蔽的最好不要。 3、8MM膨胀螺丝,锅中自带4个,不用买。 4、扳手一把,小扳手就行,固定螺栓用。 5、剪刀一把,做视频线用。 6、十字和一字螺丝刀各一把,要是刚好有双头的就只要一把够了。 7、尖嘴钳一把。 8、锤子一把,砸膨胀螺栓用。 9、防水电工胶布一卷。 10、其它热缩管,扎带,锅要装的漂亮全靠它们,本店有送,不用买。 11、液晶小彩色电视一个。用于调星。带A V输入。没有的话只能搬大电视啦(注意不能用黑白电视)。实在没有可以搬动的电视也不是不能调了,那你就要需要笔记本一台,要在装锅的位置能和自家路由器连网(有无线路由能连就最好),用笔记本调星还要另外下载个调星软件。 下载链接:https://www.360docs.net/doc/d04126924.html,/Soft/ShowSoft.asp?SoftID=14 12、新手调星都最好下载这个寻星精灵软件 下载链接:https://www.360docs.net/doc/d04126924.html,/Soft/ShowSoft.asp?SoftID=13 注意:安装过程中插拔电缆、连接视频线前一定要把DM500S的电源插头拔掉,热插拔会引起器件损坏。 选择安装位置 使用寻星软件查看你所在地方138星的相关参数,按显示的相应的方向和仰角查看有没有障碍遮挡,一般正东南方向45度仰角以上看过去没有遮挡就没有问题。自己根据你的安装位置选择正装还是倒装。

短波天线

优化短波通信的方法 1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。 1.1 正确选用工作频率 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。 对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率: (1)接近日出时,若夜频通信效果不好,可改用较高的频率; (2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率; (5)遇到磁暴时,可选用比平常低一些的频率。 计算机测频 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。 美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。 1.2 正确选择和架设天线地线 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。 短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线

收音机调试步骤及调试方法.

收音机调试步骤及调试方法 一.AM、IF中频调试 1、仪器接线图 扫频仪频标点频率为:450KHZ、455KHZ 、460KHZ或460KHZ、465KHZ 、 470KHZ。 扫频仪 1、检波输出 2、3正负电源4、RF信号输入5、检波输入(INPUT)6频标点 信号输入(PUISE INPUT)7、水平信号输入(HOR、INPUT) 2:测试点及信号的连接: A:正负电源测试点(如电路板中的CD4两端或AC输入端) 正负电源测试点从线路中的正负供电端的测试点输入。 B:RF射频信号输入(如CD2003的○4脚输入)。 RF射频信号由扫频仪输出后接到衰减器输入端,经衰减器衰减后输出端接到测试架上的RF输入端,在测试架上再串联一个10PF 的瓷片电容后,从电路中的变频输出端加入RF信号 将AM的振荡信号短路(即PVC的振荡联短路),或将AM天线RF输入端与高频地短路,(如CD2003○16与PVC地脚短路。) C:检波输出端(如CD2003○11脚为检波输出端) 从IC检波输出端串一个103或104的瓷片电容接到测试架上的OUT输出端。再连接到显示器前面的INPUT端口上以观察波形。

3.调试方法及调试标准 将收音机的电源开关打开并将波段开关切换到AM波段状态,调整中频中周磁帽使波形幅度达到最大(一般为原色或黄色的中周), 并且以水平线Y轴为基准点,看波形的左右两半边的弧度应基本对 称,以确保基增益达到最大、选择性达到最佳。如图 标准:波形左右两边的弧度基本等等幅相对称, 455KHZ频率在 波形顶端为最理想,偏差不超过±5KHZ。。如果中频无须调试的,则 经标准样机的波形幅度为参考,观察每台机的波形幅度不应小于标准 样机的幅度的3-5DB,一般在显示器上相差为一个方格。 二、FM IF中频调试 1、器接线图 ①扫频仪频率分别为10.6MHZ,10.7MHZ,10.8MHZ至少三个频率点。 1、检波输出 2、3正负电源4、RF信号输入5、检波输入(INPUT)6频标 点信号输入(PUISE INPUT)7、水平信号输入(HOR、INPUT) ②测试点及信号连接;

关于地面站天线对准卫星调试方法的探讨

关于地面站天线对准卫星调试方法的探讨 摘要近年来,我国科技水平快速发展,我国的卫星天线事业也取得了傲人的成绩,随着我国卫星天线事业的不断发展,有关于地面站天线对准卫星调试工作的困难程度也在逐渐增加。如何能够将地面站天线对准卫星调试,达到最好的效果,一直都是我国卫星工作人员正在思考的问题,而本文就是通过对地面站天线和对卫星调试方法进行探讨,并提出相应的解决方案。 关键词卫星通信;卫星调试;研究探讨;解决方案 任何一个卫星通信电路,都是与地面站合作进行工作的,地面站在建设过程中包括发端和收端。而卫星通信电路同时也包括上行以及下行线路,还有通信卫星转发器,地面站的建设是一个卫星通信电路中的重要组成部分,而地面站其本身的真正作用就是发射和接收天上卫星传来的信号,同时他也能够接收其他卫星传来的信号。虽然各种卫星的作用都有所差异,但其地面站的建设的作用都是一样的。 1 地面站搜星要素 1.1 仰角 主要就是由地面站所对的中心与卫星连线的直线所在地方与水平面的夹角,常用EL表示。 1.2 方位角 以地理北方为方向,按顺序度角度为参考方向,地面站设备的中心与卫星的连线所对应的投影角就是方位角,常用ZA表示。 1.3 极化 一般指定电磁波在传播过程中电场矢量水平方向和幅度随时间变化特性。一般包含左旋右旋,垂直以及水平线极化。地面站对于计划的选择方式也一定要和卫星的计划选择方式是一致的,这样才能够保证接收到的信号质量达到一定标准,否则就会影响信号的正常接收效率以及质量[1]。 1.4 焦距 地面站所用的设备在进行信号的接收发送送过程中,信号最强的位置。 2 卫星调试方法 2.1 模拟信号调整技巧

相关文档
最新文档