实验一 信号的基本运算和波形变换

实验一 信号的基本运算和波形变换
实验一 信号的基本运算和波形变换

实验一信号的基本运算和波形变换

一、实验目的

1.掌握基本的变量和矩阵的运算。

2.熟悉和掌握常用的用于信号的时域变换;

3.掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的

MATLAB编程;

二、实验设备

计算机,MATLAB软件

三、实验原理

1 信号的基本运算

1.1+、-、×运算

两信号f1(·) 和f2(·)的相+、-、×指同一时刻两信号之值对应相加、减、乘。

下面矩形信号的MA TLAB程序表示,就采用了之前的扩展函数,设幅度A=1,宽度为

W=2。

% Program2_1

% rectangular pulse signal

t=0:0.001:4;

ft=u(t-1)- u(t-3);

plot(t,ft);

grid on;

axis([0 4 -0.5 1.5]);

也可以用矩形函数表述:

% rectangular pulse signal

t=0:0.001:4;

T=1;

ft=rectpuls(t-2*T,2*T);

plot(t,ft);

grid on;

axis([0 4 -0.5 1.5]);

2 信号的时域变换

2.1 信号的时移

信号的时移可用下面的数学表达式来描述:

设一个连续时间信号为x(t),它的时移y(t) 表示为:

y(t) = x(t - t0) 2.1

其中,t0为位移量。若t0为正数,则y(t)等于将x(t)右移t0秒之后的结果。反之,若t0为负数,则y(t)等于将x(t)左移t0秒之后的结果。

在MA TLAB中,时移运算与数学上习惯表达方法完全相同。

程序Program2_3对给定一个连续时间信号x(t) = e-0.5t u(t),对它分别左移2秒钟和右移2秒钟得到信号x1(t) = e-0.5(t+2)u(t+2)和x2(t) = e-0.5(t-2)u(t-2)。

% Program2_2

% This program is used to implement the time-shift operation

% on a continuous-time signal and to obtain its time-shifted versions

% and to draw their plots.

clear,close all,

t = 0:0.01:5;

x = exp(-0.5*t) ; % Generate the original signal x(t) x1 = exp(-0.5*(t+2)) ; % Shift x(t) to the left by 2 second to get x1(t) x2 = exp(-0.5*(t-2)) ; % Shift x(t) to the right by 2 second to get x2(t) subplot(3,1,1)

plot(t,x) % Plot x(t) grid on,

title ('Original signal x(t)') subplot (3,1,2)

plot (t,x1) % Plot x1(t) grid on,

title ('Left shifted version of x(t)') subplot (3,1,3)

plot (t,x2) % Plot x2(t) grid on,

title ('Right shifted version of x(t)') xlabel ('Time t (sec)')

00.51 1.52 2.53 3.54 4.55

00.5

1Original signal x(t)

00.51 1.52 2.53 3.54 4.55

00.2

0.4Left shifted version of x(t)

00.51 1.52

2.53

3.54

4.55

2

4Right shifted version of x(t)

Time t (sec)

2.2 信号的时域反转

对一个信号x[n]的反转运算在数学上表示为

y[n] = x[-n] 2.2

这种反转运算,用MATLAB 实现起来也是非常简单的。有多种方法可以实现信号的反转运算。

方法一,修改绘图函数plot(t,x)和stem(n,x)中的时间变量t 和n ,即用-t 和-n 替代原来的t 和n ,这样绘制出来的图形,看起来就是原信号经时域反转后的版本。

方法二,直接利用原信号与其反转信号的数学关系式来实现。这种方法最符合信号反转运算的实际意义。

方法三,使用MATLAB 内部函数fliplr()来实现信号的反转运算。其用法如下: y = fliplr(x):其中x 为原信号x(t)或x[n],而y 则为x 的时域反转。需要说明的是,函数fliplr()对信号作时域反转,仅仅将信号中各个元素的次序作了一个反转,这种反转处理是独立于时间变量t 和n 的。因此,如果信号与其时间变量能够用一个数学函数来表达的话,那么建议将时间变量t 和n 的范围指定在一个正负对称的时间区间即可。 2.3 信号的时域尺度变换

信号x(t)的时域尺度变换在数学描述为

y(t) = x(at), 2.3

其中a 为任意常数。根据a 的不同取值,这种时域尺度变换对信号x(t)具有非常不同的影响。 当a = 1时,y(t) = x(t);

当a = -1时,y(t) = x(-t),即y(t)可以通过将x(t)反转运算而得到; 当a > 1时,y(t) = x(at),y(t)是将x(t)在时间轴上的压缩而得到; 当0 < a < 1时,y(t) = x(at),y(t)是将x(t)在时间轴上的扩展而得到;

当 -1 < a < 0时,y(t) = x(at),y(t)是将x(t)在时间轴上的扩展同时翻转而得到; 当 a < -1时,y(t) = x(at),y(t)是将x(t)在时间轴上的压缩同时翻转而得到;

由此可见,信号的时域尺度变换,除了对信号进行时域压缩或扩展外,还可能包括对信号的时域反转运算。实际上,MATLAB 完成该运算,并不需要特殊的处理,按照数学上的常规方法即能完成。

已知)(t f 为三角函数,利用MATLAB 画出)(t f 2和)(t f 22 的波形。程序如下: [MATLAB 程序]:

% Program2_3

%changed triangular pulse signal t=-3:0.001:3; ft1=tripuls(2*t,4,0.5); subplot(2,1,1); plot(t,ft1); title('f(2t)'); grid on;

ft2=tripuls((2-2*t),4,0.5); subplot(2,1,2); plot(t,ft2); title('f(2-2t)'); grid on;

-3

-2-10123

00.5

1

f(2t)

-3

-2-10123

00.5

1

f(2-2t)

四、实验内容及步骤

实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,

进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

1.仿照前面的示例程序的编写方法,编写一个MATLAB程序,并存盘,使之能够在同一个图形窗口中的两个子图中分别绘制信号x[n]=0.5|n| 和x(t)=cos(2πt)[u(t)-u(t-3)]。要求选择的时间窗能够表现出信号的主要部分(或特征)。

编写的程序如下:

t=0:0.001:3;

ft=cos(2*pi*t);

subplot(2,1,1)

plot(t,ft);

grid on;

axis([0 4 -1.5 1.5]);

title ('Original signal x(t)')

t = -5:0.01:5;

x = exp(-0.5*abs(t)) ;

subplot(2,1,2)

plot(t,x)

grid on,

title ('Original signal x(n)')

信号x[n]=0.5|n| 的波形图和信号x(t)=cos(2πt)[u(t)-u(t-3)]的波形图

2.根据示例程序的编程方法,编写一个MATLAB程序,并存盘,由给定信号

x(t) = e-0.5t

求信号y(t) = x(1.5t+3),并绘制出x(t) 和y(t)的图形。

编写的程序如下:>>

clear,close all,

t = 0:0.01:5;

x = exp(-0.5*t) ;

x1 = exp(-0.5*(1.5*t+3)) ;

subplot(3,1,1)

plot(t,x)

grid on,

title ('Original signal x(t)')

subplot (3,1,2)

plot (t,x1) % Plot x1(t)

grid on,

title ('Left shifted version of y(t)')

信号x(t)的波形图和信号y(t) = x(1.5t+3) 的波形图

00.51 1.52 2.53 3.54 4.55

00.5

1Original signal x(t)

00.51 1.52 2.53 3.54 4.55

0.2

0.4Left shifted version of y(t)

3.给定一个离散时间信号x[n] = u[n]– u[n-8],仿照示例程序,编写程序,产生x[n]的左移序列x 1[n] = x[n+6]和右移序列x 2[n] = x[n-6],并在同一个图形窗口的三个子图中分别绘制这三个序列的图形。 编写的程序如下:

n=-20:0.001:20; T=2;

x=rectpuls(n-2*T,4*T); axis([0 4 -1.5 1.5]); x1 =rectpuls((n+6)-2*T,4*T); x2 =rectpuls((n-6)-2*T,4*T); subplot(3,1,1)

plot(n,x) grid on ,

title ('Original signal x(n)') subplot (3,1,2)

plot (n,x1) grid on ,

title ('Left shifted version of x(n)') subplot (3,1,3)

plot (n,x2) grid on ,

title ('Right shifted version of x(n)')

xlabel ('Time n (sec)')

信号波形图

-20-15-10-505101520

00.5

1Original signal x(n)

-20-15-10-505101520

00.5

1Left shifted version of x(n)

-20

-15-10-5

5101520

00.5

1Right shifted version of x(n)

Time n (sec)

、实验分析

本实验完成时间:年月日

《解题思路》信号波形合成实验电路(2)

信号波形合成实验电路(C 题) 设计任务:设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和其他信号。 1.基本要求 (1)方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz 和30kHz 的正弦波信号,这两种信号应具有确定的相位关系(要求2个信号来自同一信号源); 需要分频,所以振荡器产生150kHz 的信号。3分频得到50kHz ,5分频得到 30kHz 、15分频得到10kHz 。 (2)产生的信号波形无明显失真,幅度峰峰值分别为6V 和2V ; 方波的展开式:)7sin 7 15sin 513sin 31(sin 4)( ++++=t t t t h t f ωωωωπ 其中h 是方波的幅度(一半高度)h=2.36V ,方波高度4.71V 。 采用RLC 串联谐振电路作为选频电路,对方波进行频谱分解。其中RLC 分别选:对于10kHz 的基波,1、10mH 、25.36nF 、Q=100;对于30kHz 的3次谐波,1、10mH 、2.8nF 、Q=100。 采用低通开关电容滤波器TLC04,截止频率设为40kHz 需要2MHz 的时钟,20kHz 需要1MHz 的时钟。需要用运放组成带通滤波器。 (3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz 和 30kHz 正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V 。 制作一个移相网络,使得两路信号同相,然后叠加即可(运放实现)。 2.发挥部分 (1)再产生50kHz 的正弦信号作为5次谐波,参与信号合成,使合成的波 形更接近于方波; 用运放组成带通滤波器(运放实现)。 (2)根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的 10kHz 、30kHz 等各个正弦信号,合成一个近似的三角波形; 三角波的展开式)7sin 7 15sin 513sin 31(sin 8)(2222 +-+-=t t t t h t f ωωωωπ, 将上一步中的3种波形按这一系数合成三角波。 (3)设计制作一个能对各个正弦信号的幅度进行测量和数字显示的电路,测 量误差不大于±5%; 采用平均值检波电路检波,然后用AD 采集、显示即可(MCU 实现)。 (4)其他。 可以添加语音功能(ISD1420实现)。

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

信号波形合成实验报告之欧阳家百创编

信号波形合成实验电路 欧阳家百(2021.03.07) 摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。振荡电路采用晶振自振荡并与74LS04 结 合,产生6MHz 的方波源。分频电路采用74HC164与74HC74分频出固定频率的 方波,作为波形合成的基础。滤波采用TI公司的运放LC084,分别设置各波形 的滤波电路。移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结 果造成影响。 关键词:方波振荡电路分频与滤波移相电路加法器 Experimental waveform synthesis circuit Abstract:The design consists of a square wave oscillator circuit, divider circuit, filtercircuit, phase shift circuits, addition circuits, measurement display circuit. Subject ofthe request of the point frequency of the various parameters of processing, productionof a phase shifter circuit consisting of adders, will have the 10KHz

信波形合成实验电路

信波形合成实验电路 YUKI was compiled on the morning of December 16, 2020

信号波形合成实验电路(C 题) 内容介绍:该项目基于多个正弦波合成方波与三角波等非正弦周期信号的 电路。使用555电路构成基准的方波振荡信号,以74LS161实现前置分频形成10KHz 、30kHz 、50kHz 的方波信号,利用TLC04滤波器芯片获得其正弦基波分量,以TLC084实现各个信号的放大、衰减和加法功能,同时使用RC 移相电路实现信号的相位同步;使用二极管峰值包络检波电路获得正弦信号的幅度,以MSP430作为微控制器对正弦信号进行采样,并且采用段式液晶实时显示测量信号的幅度值。 1方案 题目分析 考虑到本设计课题需要用多个具有确定相位和幅度关系的正弦波合成非正弦周期信号,首选使用同一个信号源产生基本的方波振荡,使得后级的多个正弦波之间保持确定的相位关系。 在滤波器环节,为了生成10kHz 、30kHz 和50kHz 的正弦波,我们需要使用三个独立的滤波器,由于输入滤波器的是10kHz 、30kHz 和50kHz 的方波信号,所以可以使用带通滤波器或者低通滤波器,并且尽量维持一致的相位偏移。 从Fourier 信号分析理论看,合成 数学上可以证明此方波可表示为: )7sin 7 1 5sin 513sin 31(sin 4)( ++++= t t t t h t f ωωωωπ 三角波也可以表示为: )7sin 7 1 5sin 513sin 31(sin 8)(2222 +-+-=t t t t h t f ωωωωπ

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名: 实验一基于MATLAB的语音信号时域特征分析(2学时)

1)短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if(i==2) ,legend('N=32'); elseif(i==3), legend('N=64'); elseif(i==4) ,legend('N=128'); elseif(i==5) ,legend('N=256'); elseif(i==6) ,legend('N=512'); end end

00.51 1.52 2.5 3 x 10 4 -1 1 x 10 4 024 x 10 4 05 x 10 4 0510 x 10 4 01020 x 10 4 02040 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if(i==2), legend('N=32'); elseif(i==3), legend('N=64'); elseif(i==4) ,legend('N=128');

信号波形合成实验电路设计

信号波形合成实验电路 小组成员:李于飞、耿红鹏、赵珑 摘要:本设计通过产生不同频率和幅值的正弦信号,并将这些信号合成为近似的方波和三角波,构成了信号波形合成实验电路。本系统主要由8个部分构成:由NE555构成的方波振荡电路;主要由集成计数器74LS90和作为D触发器的CD4013构成的分频电路;使用LM318构成的窄带通滤波电路;由双运放LM318构成的移相电路;加法器合成电路;三角波合成电路;使用AD637构成的真有效值检测电路;MSP430F149单片机控制液晶显示电路。在本设计中,方波振荡电路可产生300KHZ频率的方波,经过分频电路和隔直电容以后成为双极性方波。再经过滤波和放大以后得到了所需的各次谐波,其经过移相电路之后初相位相同,即可通过加法器合成为近似的方波和三角波。各次谐波有效值可检测并由单片机控制对幅度进行显示。系统工作稳定,基本达到了题目的所有要求。 关键字:方波振荡电路;分频;移相;真有效值;信号合成。 目录 一、系统方案……………………………………………………… 1.1方波发生电路方案………………………………………….…… 1.2分频电路设计方案………………………………………….......

1.3 滤波电路设计方案……………………………………………… 1.4移相电路设计方案..................................... 1.5 信号合成电路设计方案……………………………………….... 1.6信号检测和显示方案……………………………………… 二、理论分析与计算……………………………………… 2.1系统原理框图…………………………………… 2.2方波信号的合成与分解…………………………………... 2.3三角波信号合成……………………………………….. 2.4反相加法电路.......... ............................................. 三、总体方案的设计与实现………………………………………. 3.1 555振荡电路原理分析与计算........................................... 3.2 分频电路............................................................... 3.3方波——三角波变换电路............................................ 3.4三角波——正弦波变换电路........................................ 3.5移相电路.................................................................. 3.6比例运算和合成电路...................................................... 3.7AD转换和液晶显示.............................................. 四、实验测试及测试结果分析 4.1测试仪器............................. 4.2整机标准 ............................... 4.3合成电路结果.......................... 4.4测试结果和分析........................

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

波形的发生和信号的转换

波形的发生和信号的转换 自测题 一、判断下列说法是否正确,用“√”或“×”表示判断结果。 (1)在图T8.1所示方框图中,若φF=180°,则只有当φA=±180°时,电路才能产生正弦波振荡。() 图T8.1 (2)只要电路引入了正反馈,就一定会产生正弦波振荡。() (3)凡是振荡电路中的集成运放均工作在线性区。() (4)非正弦波振荡电路与正弦波振荡电路的振荡条件完全相同。()解:(1)√(2)×(3)×(4)× 二、改错:改正图T8.2所示各电路中的错误,使电路可能产生正弦波振荡。要求不能改变放大电路的基本接法(共射、共基、共集)。 图T8.2

解:(a)加集电极电阻R c及放大电路输入端的耦合电容。 (b)变压器副边与放大电路之间加耦合电容,改同铭端。 三、试将图T8.3所示电路合理连线,组成RC桥式正弦波振荡电路。 图T8.3 解:④、⑤与⑨相连,③与⑧相连,①与⑥相连,②与⑦相连。如解图T8.3所示。 解图T8.3

四、已知图T8.4(a)所示方框图各点的波形如图(b)所示,填写各电路的名称。 电路1为,电路2为,电路3为,电路4为。 图T8.4 解:正弦波振荡电路,同相输入过零比较器,反相输入积分运算电路,同相输入滞回比较器。

五、试分别求出图T8.5所示各电路的电压传输特性。 图T8.5 解:图(a)所示电路为同相输入的过零比较器;图(b)所示电路为同相输入的滞回比较器,两个阈值电压为±U T=±0.5 U Z。两个电路的电压传输特性如解图T8.5所示 解图T8.5

六、电路如图T8.6所示。 图T8.6 (1)分别说明A 1和A 2各构成哪种基本电路; (2)求出u O 1与u O 的关系曲线u O 1=f (u O ); (3)求出u O 与u O 1的运算关系式u O =f (u O 1); (4)定性画出u O 1与u O 的波形; (5)说明若要提高振荡频率,则可以改变哪些电路参数,如何改变。 解:(1)A 1:滞回比较器;A 2:积分运算电路。 (2) 根据0)(2 1 N1O O1O 212O1211P1==+=?++?+= u u u u R R R u R R R u ,可得 V 8T ±=±U u O 1与u O 的关系曲线如解图T8.6(a )所示。 (3) u O 与u O 1的运算关系式 ) ()(2000 )()(1 1O 12O11O 12O14O t u t t u t u t t u C R u +--=+-- = 解图T8.6

TI杯模拟电子设计大赛信号波形合成实验电路

TI杯模拟电子设计大赛 信号波形合成的设计与实现 参赛学校: 参赛队员: 指导老师:

摘要 生活中离不开信号,我们时时刻刻都在和信号打着交道,正弦波,方波这两种波是最基本的波形,我们通过设计方波的产生来更加深刻了解到信号的产生。 Abstract Life is inseparable from the signal, we all the time and signal name of dealings, sine wave, square wave are the two waves in the most basic waveform. Now we design a products to generate square wave signal to know the wave deeply . 一.设计思路 采用单片机430 来控制输出值的显示。基本的流程图如下所示:

又因为我们将方波傅利叶分解出得出如上的图,我们发现方波就是基波,三次谐波,五次谐波组成。 对三角波分解,如下图 从图中,我们知道三角波是三次谐波翻转180度,然后和基波与五次谐波相加所得,其中因

为别的谐波幅值不太,我们可以不做考虑。 二.方案论证 1、方波的产生方案论证和选择 方波是要设计的基础部分,下面产生的任何波形都是在这个波上产生的。 方案一:采用专用DDS芯片产生方波。优点:软件设计,控制方便,电路易实现。但是因为题目要求是“方波振荡器的信号经分频与滤波处理”,也就是说,软件控制不是题目想要的。 方案二:采用晶振来产生。用60M的晶振来产生方波,通过对60M的有源晶振分频来产生频率分别为10K Hz,30K Hz,50K Hz 的方波,但这样产生的分频电路过于复杂,不利于系统的搭建。 方案三:利用555产生出一定频率的方波。根据后面的要求,我们直接用555产生50K Hz 和60K Hz的方波 为了后面的设计,又因为555的技术已经很成熟了,选择方案三,使用555来直接产生方波。 2、分频与滤波 通过RC振荡来滤波,为了得到毛刺少的波,我们用三阶滤波。 3、移相电路设计方案论证和选择 方案一:由三相输入隔离变压器二次绕组接成12边形的移相电路t每相有3个绕组通过特殊的连接方法组成。其存在着如体积大移相变化率>5 等诸多缺点。 方案二:用运放和R,C 来调节翻转的角度。R ,C 电路在输入输出时会有90度的迟滞。 根据题目的要求,我们只要在0~90度可调与一个反向器就好。 4加法器的设计方案 根据题目要求,只要可调就好。 5.电源方案的选择与论证 方案一:采用升压型稳压电路。用两片MC34063芯片分别将3V的电池电压进行直流斩波调压,得到5V 和12V的稳压输出。只需使用两节电池,节省了电池,又减小了系统体积重量。但该电路供电电流沁,供电时间短,无法使用相对庞大的系统稳定运作。 方案二:采用三端稳压集成7805与7905分别得到5V和-5V的稳定电压。利用该方法方便简单,工作稳定可靠。 综上所述,选择方案二,采用三端集成稳压器电路7805和7905。 三.信号波形系统的组成: 1方波的产生的电路设计 方波是由555发生器,二极管,三极管以及电阻,电容组成。其原理图如图1,图2所示。

大学本科语音信号处理实验讲义8学时

语音信号处理实验讲义 时间:2011-12

目录 实验一语音信号生成模型分析 (3) 实验二语音信号时域特征分析 (7) 实验三语音信号频域特征分析 (12) 实验四语音信号的同态处理和倒谱分析 (16)

实验一 语音信号生成模型分析 一、实验目的 1、了解语音信号的生成机理,了解由声门产生的激励函数、由声道产生的调制函数和由嘴唇产生的辐射函数。 2、编程实现声门激励波函数波形及频谱,与理论值进行比较。 3、编程实现已知语音信号的语谱图,区分浊音信号和清音信号在语谱图上的差别。 二、实验原理 语音生成系统包含三部分:由声门产生的激励函数()G z 、由声道产生的调制函数()V z 和由嘴唇产生的辐射函数()R z 。语音生成系统的传递函数由这三个函数级联而成,即 ()()()()H z G z V z R z = 1、激励模型 发浊音时,由于声门不断开启和关闭,产生间隙的脉冲。经仪器测试它类似于斜三角波的脉冲。也就是说,这时的激励波是一个以基音周期为周期的斜三角脉冲串。单个斜三角波的频谱表现出一个低通滤波器的特性。可以把它表示成z 变换的全极点形式 12 1()(1) cT G z e z --= -? 这里c 是一个常数,T 是脉冲持续时间。周期的三角波脉冲还得跟单位脉冲串的z 变换相乘: 112 1 ()()()1(1)v cT A U z E z G z z e z ---=?= ?--? 这就是整个激励模型,v A 是一个幅值因子。 2、声道模型 当声波通过声道时,受到声腔共振的影响,在某些频率附近形成谐振。反映在信号频谱图上,在谐振频率处其谱线包络产生峰值,把它称为共振峰。 一个二阶谐振器的传输函数可以写成 12 ()1i i i i A V z B z C z --= -- 实践表明,用前3个共振峰代表一个元音足够了。对于较复杂的辅音或鼻音共振峰要到5个以上。多个()i V z 叠加可以得到声道的共振峰模型 12 1 11 ()()11R r r M M i r i N k i i i i k k b z A V z V z B z C z a z -=---======---∑∑∑ ∑ 3、辐射模型 从声道模型输出的是速度波,而语音信号是声压波。二者倒比称为辐射阻抗,它表征了

信号波形合成实验电路(C题)

信号波形合成实验电路(C 题) 摘要:该系统由方波振荡电路产生300k 方波,经三分频和十分频,同时得到10K,30K,50K 的方波。使用TI 公司的四阶开关电容低通滤波器TLC041D ,可同时产生几路正弦信号,再经移相和加法器合成方波信号或三角波,由单片机采样峰值进行液晶显示.整个系统简易实现,性价比高。 关键字:方波振荡器 开关电容滤波器TLC041D 移相器 峰值检测 液晶显示 1. 方案设计 1.1 总体方案与系统框图 题目要求从方波中提取基波和三次谐波,五次谐波,再合成方波,为实现题目要求,本系统的各个模块如图1所示。由施密特触发器构成方波振荡电路,由简单的门电路和触发器构成分频电路,使用通用运放组成滤波,放大,移相电路合成方波或三角波。 图1 1.2 理论分析及TI 芯片选用依据 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和,如式(1-1): ) (公式1) sin cos (21 )(1 0∑∞ =++=n n n t n b t n a a t f ωω 对于方波和三角波分别可以通过傅立叶展开,如式1-2,1-3所示: )(公式2)7sin 71 5sin 513sin 31(sin 4)( ++++= t t t t h t f ωωωωπ )(公式3)7sin 7 1 5sin 513sin 31(sin 8)(2222 +-+- = t t t t h t f ωωωωπ 结合题目要求,本系统主要需要以下器件: (1) 信号源施密特触发器CD40106产生300K 方波; (2) 300K 方波分别经分频器 得到50K ,30K ,10K 方波; (3) 滤波芯片TLC041,通用运算放大器OP 系列,以及电流监测芯片))

《语音信号处理》实验报告材料

实用 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

信号的基本运算和波形变换

信号的基本运算和波形变换 一、实验目的 对某一特定信号的运算有:放大、衰减、沿时间轴压缩、展宽、翻转、差分运算等等,借助MATLAB完成语音信号的采集,并以采集到的信号为研究对象,完成上述运算,体验运算效果。 二、实验原理 以PC机上的声卡为主要硬件,使用MATLAB软件完成语音信号的采集,通过实验可以让大家切实体验对某一信号的运算所带来的效果。根据个人要求效果的不同,通过修改实验中的相关参数,可以使其效果更佳。以上方法简单使用,性价比高。 语音信号的频率范围大约是20Hz~20kHz,其频率成分主要集中在300~3400Hz,因此语音通信中国际上广泛采用8 kHz的采样速率,而目前一般的PC 机声卡采样速率都达到44.1kHz 或48kHz,其16 位的A/D 精度比普通的16位A/D卡都要高,是性价比很高数据采集卡,完全能满足一般的语音信号的采集分析要求。借用PC机的现有资源加上MATLAB软件,可以方便的完成语音信号的采集、运算、频谱分析和滤波等。使用MATLAB与声卡的接口函数完成语音信号的采集,可以将采集到的数据保存为wav格式的文件或者保存为数据,并编程实现采集到的语音信号的运算,通过听觉切实体验数字信号运算所带来的效果。 三、实验内容 1 MATLAB中语音信号的采集 对于配置了声卡并连接了麦克风的计算机,MATLAB中可以采用命令wavrecord来录音,其调用格式是: y=wavrecord(n,Fs,ch,dtype); 其中,n为总的取样点数,Fs为取样速率(样点/s),标准取样速率可设为8000、11025(默认)、22050以及44100样点/s。用户也可以设定其他取样速率值,如Fs=10000,但必须满足采样定理的要求,否则将导致录音结果失真。ch为录音声道数,默认ch=1,为单声道录音;若ch=2,则为立体声录音,这时需要声卡能够支持双声道录音并配有两个话筒。dtype 为记录的数据格式,有double(默认),single,int16,int8等几种类型。 需要强调的是,录音采用均匀量化规则,输出序列y是一个的数字序列,对于double(默认),single,int16的数据类型,每个样值的量化精度将大于等于16bit(最高精度取决于声卡指标),这对于一般工程研究是足够的,可以忽略量化过程中引入的量化误差。例如,当要研究8bitA 律PCM的语音质量时,就可以将16bit的输出录音结果视为量化之前的采样结果。 使用指令wavplay和sound可以将一个数字序列按照指定的采样率通过声卡输出到扬声器。wavplay指令一般用于windows操作系统下,sound指定则用于跨平台的操作。wavplay指令的用法是: wavplay(y,Fs); wavplay(y, Fs,’mode’)%mode可取值async或sync; 其中,y是被播放序列(取值范围必须在-1~+1之间),当y为矩阵时,为单声道播出;当y 为矩阵时,则将各列分别送入左右两个声道播出。Fs为播放的采样率,默认值为11025Hz,一般声卡支持的Fs范围是5000~44100Hz。当播放模式设置为sync(默认)时,表示同步播放,即执行该指令完毕之后(声音播放完毕)才执行下一条语句;当播放模式设置为async 时,则表示异步播放,即将该命令的数据送入声卡后,立即开始执行下一语句。 MATLAB也可以将记录的音频信号直接保存为wav格式。在windows环境下,wav格式是最常用的。利用命令

TI杯设计报告赛区一等奖信号波形合成实验电路

全国大学生电子设计竞赛 2010年TI杯模拟电子系统专题邀请赛设计报告 题目:信号波形合成实验电路(C题) 学校:武汉大学 指导老师: 参赛队员姓名: 日期: 2010年08月24日

2010年TI杯模拟电子系统专题邀请赛试题 信号波形合成实验电路(C题) 一、课题的任务和要求 课题任务是对一个特定频率的方波进行变换产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波和近似三角波。 课题要求是首先设计制作一个特定频率的方波发生器,并在这个方波上进行必要的信号转换,分别产生10KHz、30KHz和50KHz的正弦波,然后对这三个正弦波进行频率合成,合成后的目标信号为10KHz近似方波和近似三角波。另外设计一个正弦信号幅度测量电路,以测量出产生的10KHz、30KHz和50KHz正弦波的的幅度值。 课题还给出了参考的实现方法,见下图。 图1 电路示意图 图1 课题参考实现方案 二、实现方案的分析 1.基本方波发生器方案的分析 方波的产生方法很多,如用运算放大器非线性产生、用反向器及触发器产生、也可用模数混合时基电路ICL7555产生等。本例采用第一种方案,最符合题意要求。 2.波形变换电路方案的分析 从某方波中提取特定频率的正弦波方案很多,如用窄带滤波器直接从方波中提取所需的基波或谐波;用锁相方法进行分频或倍频产生所需频率;用数字分频方案,从较高频率的方波或矩形波中通过分频获得所需频率方波并进行变换获得正弦波。本课题采用第三种方案。 3.移相方案分析 在方波——正弦波转换中,难免会产生附加相移,通过移相来抵消附加相依,以便信号合成时重新实现同步。根据微分电路实现相位超前、积分电路实现相位滞后的理论,因此,采用微伏和积分来实现移相。 4.信号合成方案分析 方波信号经过波形变换和移相后,其输出幅度将有不同程度的衰减,合成前需要将各成分的信号幅度调整到规定比例,才能合成为新的合成信号。本课题采用反向比利运算电路实现幅度调整,采用反向加法运算实现信号合成。 5.信号检测和显示方案分析 信号检测和显示部分采用MSP430单片机,由于信号最高频率仅50KHz,采用高速运放

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

信号波形合成实验电路设计毕业设计论文

毕业设计说明书毕业设计题目信号波形合成实验电路

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

语音信号处理试验教程

语音信号处理试验 实验一:语音信号时域分析 实验目的: (1)录制两段语音信号,内容是“语音信号处理”,分男女声。 (2)对语音信号进行采样,观察采样后语音信号的时域波形。 实验步骤: 1、使用window自带录音工具录制声音片段 使用windows自带录音机录制语音文件,进行数字信号的采集。启动录音机。录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。将录制好文件保存,记录保存路径。男生女生各录一段保存为test1.wav和test2.wav。 图1基于PC机语音信号采集过程。 2、读取语音信号 在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。通过使用wavread函数,理解采样、采样频率、采样位数等概念! Wavread函数调用格式: y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。

[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。 y=wavread(file,N),读取前N点的采样值放在向量y中。 y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。 3、编程获取语音信号的抽样频率和采样位数。 语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。在M文件中分别输入以下程序,可以分两次输入便于观察。 [y1,fs1,nbits1]=wavread('test1.wav') [y2,fs2,nbits2]=wavread('test2.wav') 结果如下图所示 根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。 4、语音信号的时域分析 语音信号的时域分析就是分析和提取语音信号的时域参数。进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。语音信

语音信号处理实验报告11

实验一 语音信号的时域分析 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握语音信号短时能量和短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 语音是一时变的、非平稳的随机过程,但由于一段时间内(10-30ms)人的声带和声道形状的相对稳定性,可认为其特征是不变的,因而语音的短时谱具有相对稳定性。在语音分析中可以利用短时谱的这种平稳性,将语音信号分帧。 10~30ms 相对平稳,分析帧长一般为20ms 。 语音信号的分帧是通过可移动的有限长度窗口进行加权的方法来实现的。几种典型的窗函数有:矩形窗、汉明窗、哈宁窗、布莱克曼窗。 语音信号的能量分析是基于语音信号能量随时间有相当大的变化,特别是清音段的能量一般比浊音段的小得多。定义短时平均能量 [][]∑∑+-=∞-∞=-=-= n N n m m n m n w m x m n w m x E 122)()()()( 下图说明了短时能量序列的计算方法,其中窗口采用的是直角窗。 过零就是信号通过零值。对于连续语音信号,可以考察其时域波形通过时间轴的情况。而对于离散时间信号,如果相邻的取样值改变符号则称为过零。由此可以计算过零数,过零数就是样本改变符号的次数。单位时间内的过零数称为平

均过零数。 语音信号x (n )的短时平均过零数定义为 ()[]()[]()()[]()[]() n w n x n x m n w m x m x Z m n *--=---= ∑∞ -∞=1sgn sgn 1sgn sgn 式中,[]?sgn 是符号函数,即 ()[]()()()()???<-≥=01 01sgn n x n x n x 短时平均过零数可应用于语音信号分析中。发浊音时,尽管声道有若干个共振峰,但由于声门波引起了谱的高频跌落,所以其语音能量约集中干3kHz 以下。而发清音时.多数能量出现在较高频率上。既然高频率意味着高的平均过零数,低频率意味着低的平均过零数,那么可以认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数。然而这种高低仅是相对而言,没有精确的数值关系。 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的

相关文档
最新文档