减速器零件建模及装配运动仿真

减速器零件建模及装配运动仿真
减速器零件建模及装配运动仿真

建模与仿真

第1章建模与仿真的基本概念 参照P8例子,列举一个你相对熟悉的简单实际系统为例,采用非形式描述出来。 第2章建模方法论 1、什么是数学建模形式化的表示?试列举一例说明形式化表示与非形式化表示的区别。 模型的非形式描述是说明实际系统的本质,但不是详尽描述。是对模型进行深入研究的基础。主要由模型的实体、包括参变量的描述变量、实体间的相互关系及有必要阐述的假设组成。模型的非形式描述主要说明实体、描述变量、实体间的相互关系及假设等。 例子:环形罗宾服务模型的非形式描述: 实体 CPU,USR1,…,USR5 描述变量 CPU:Who,Now(现在是谁)----范围{1,2,…,5}; Who.Now=i表示USRi由CPU服务。 USR:Completion.State(完成情况)----范围[0,1];它表示USR完成整个程序任务的比例。参变量 X-----范围[0,1];它表示USRi每次完成程序的比率。 i 实体相互关系 (1)CPU 以固定速度依次为用户服务,即Who.Now为1,2,3,4,5,1,2…..循环运行。 X工作。假设:CPU对USR的服务时间固定,不(2)当Who.Now=I,CPU完成USRi余下的 i X决定。 依赖于USR的程序;USRi的进程是由各自的参变量 i 2、何谓“黑盒”“白盒”“灰盒”系统? “黑盒”系统是指系统内部结构和特性不清楚的系统。对于“黑盒”系统,如果允许直接进行实验测量并通过实验对假设模型加以验证和修正。对属于黑盒但又不允许直接实验观测的系统,则采用数据收集和统计归纳的方法来假设模型。 对于内部结构和特性清楚的系统,即白盒系统,可以利用已知的一些基本定律,经过分析和演绎导出系统模型。 3、模型有效性和模型可信性相同吗?有何不同? 模型的有效性可用实际系统数据和模型产生的数据之间的符合程度来度量。它分三个不同级别的模型有效:复制有效、预测有效和结构有效。不同级别的模型有效,存在不同的行为水平、状态结构水平和分解结构水平的系统描述。 模型的可信度指模型的真实程度。一个模型的可信度可分为: 在行为水平上的可信性,即模型是否重现真实系统的行为。 在状态结构水平上可信性,即模型能否与真实系统在状态上互相对应,通过这样的模型可以对未来的行为进行唯一的预测。 在分解结构水平上的可信性,即模型能否表示出真实系统内部的工作情况,而且是惟一表示出来。 不论对于哪一个可信性水平,可信性的考虑贯穿在整个建模阶段及以后各阶段,必须考虑以下几个方面: 1在演绎中的可信性。2在归纳中的可信性。3在目的方面的可信性。 4、基于计算机建模方法论与一般建模方法论有何不同?(P32) 经典的建模与仿真的主要研究思路,首先界定研究对象-实际系统的边界和建模目标,利用已有的数学建模工具和成果,建立相应的数学模型,并用计算装置进行仿真。这种经典的建

基于DELMIA的汽车装配线建模与仿真_容芷君

2011年 第12期 物流工程与管理 第33卷 总第210期 LOGISTICS ENGINEERING AND MANAGEMENT 【收稿日期】2011-11-22 *基金项目:国家自然科学基金(NO50805108);国家自然科学基金(NO51175388)。 【作者简介】容芷君(1974-),女,博士,武汉科技大学机械自动化学院,副教授。 周燕学(1987-),男,武汉科技大学机械自动化学院,学士。 物流技术 doi:10.3969/j.issn.1674-4993.2011.12.032 基于DELMIA的汽车装配线建模与仿真* □ 容芷君,周燕学,刘 悦 (武汉科技大学 机械自动化学院 工业工程系,湖北 武汉 430000) 【摘 要】汽车装配线直接决定了汽车生产的效率,因此,对汽车装配线进行建模与仿真,优化装配流程十分必要。基于DELMIA 的DPM(Digital Process for Manufacturing)模块,对汽车装配线的装配序列规划、装配干涉以及装配路径规划进行研究,按规划的工艺流程对总装线进行模拟仿真,分析装配线的平衡率,通过仿真结果验证该装配线的可达性、可行性以及装配线的人因工效性。文中研究工作对优化及改善汽车装配过程,缩短工艺规划时间,实现汽车装配线的流水化具有一定指导意义和应用价值。 【关键词】DELMIA;装配线;建模;仿真 【中图分类号】TH69 【文献标识码】 B 【文章编号】 1674-4993(2011)12-0075-03 Modeling and Simulation of Automobile Assembly Line Based on DELMIA  □ RONG Zhi-jun, ZHOU Yan-xue, LIU Yue (Wuhan University of Science and Technology Department of Industrial Engineering,Wuhan 430000,China) 【Abstract 】The automobile assembly line has important impact on the automobile production efficiency. Therefore it is important to implement modeling and simulation of the automobile assembly line and optimize the assembly process. Based on the DPM of DELIMA, the paper studies the assembly sequence plan, assembly interference and assembly route plan. The assembly line is modeled and simulated according to the planned assembly process and the balance rate of assembly line can be analyzed. The accessibility, feasibility and economic features of the assembly line is certified with the simulation results. This paper has certain guiding significance and application value in optimizing and improving automobile assembling, shortening the process planning time and implementing the automation of automobile assembly line. 【Key words 】DELMIA; assembly line; modeling; simulation 1 装配生产线建模与仿真 汽车装配线将人和机器有效结合起来,实现汽车零部件的自动装配,在汽车生产中扮演着重要的角色。汽车装配线直接决定了汽车的生产效率。随着汽车工业和零部件工业的发展,汽车装配线技术水平也有了较大的提高,围绕汽车装配线的研究一直是汽车工业发展的一个重要内容[1-2]。装配生产线的建模与仿真能把生产资源、产品工艺数据、装备等信息动态地结合起来,通过系统活动过程来模拟装配过程,从而分析和预测装配线的效能。虚拟装配系统是装配系统向多维信息化空间的一种映射,主要包括基本模型构建、装配序列规划、路径规划、干涉检查和装配仿真等关键技术[3-4]。建立虚拟装配系统的目的是:在计算机上利用已有的虚拟装配环境,在该装配环境下能够把用户指令和各种信息及时输入到系统中,也能把虚拟环境中的序列和路径规划结果、干涉检测结果、装配仿真结果等传输给用户,实现产品的最终装配。当前有许多数字化仿真软件能有效地帮助人们实现对生产装配线的建模仿真,如DELMIA,eM-Power,ProModel, Flexsim等[5-7]。其中DELMIA解决方案涵盖汽车领域的发动机、总装和白车身,航空领域的机身装配、维修维护,以及一般制造业的制造工艺。使用户利用数字实体模型完成产品生产制造工艺的全面设计和校验。DELMIA数字制造解决方案建立于一个开放式结构的产品、工艺与资源组合模型(PPR)上,此模型使得在整个研发过程中可以持续不断地进行产品的工艺生成和验证。通过3D协同工作,PPR能够有效地支持设计变更,让参与制造设计的多人中的每个人能随时随地掌握目前的产品(生产什么)、工艺与资源(如何生产)。基于PPR集成中枢的所有产品紧密无缝地集成在一起,涵盖了各种工艺的各个方面,使基于制造的专业知识能被提取出来,并让最佳的产业经验得以重复利用。 根据虚拟装配的特点以及虚拟装配系统关键技术,将装配仿真、可达性分析等作为虚拟装配的体系结构的重要环节。基于DELMIA的虚拟装配体系结构如图1所示。在该虚拟装配环境中完成虚拟装配建模、虚拟装配序列、路径规划和装配过程仿真、干涉碰撞检测、装配可达性分析等。

各种减速器说明书及装配图完整版

一、设计题目:二级直齿圆柱齿轮减速器 1.要求:拟定传动关系:由电动机、V带、减速器、联轴器、工作机构成。 2.工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。 3.知条件:运输带卷筒转速19/min r, 减速箱输出轴功率 4.25 P=马力, 二、传动装置总体设计: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均 匀,要求轴有较大的刚度。 3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设 置在高速级。其传动方案如下: 三、选择电机 1.计算电机所需功率d P:查手册第3页表1-7: η-带传动效率:0.96 1 η-每对轴承传动效率:0.99 2 η-圆柱齿轮的传动效率:0.96 3 η-联轴器的传动效率:0.993 4 η—卷筒的传动效率:0.96 5 说明: η-电机至工作机之间的传动装置的总效率:

2确定电机转速:查指导书第7页表1:取V带传动比i=2 4 二级圆柱齿轮减速器传动比i=840所以电动机转速的可选范围是: 符合这一范围的转速有:750、1000、1500、3000 根据电动机所需功率和转速查手册第155页表12-1有4种适用 的电动机型号,因此有4种传动比方案如下: 综合考虑电动机和传动装置的尺寸、重量、和带传动、减速器的传动比,可见第3种方案比较合适,因此选用电动机型号为Y132M1-6,其主要参数如下: 四确定传动装置的总传动比和分配传动比:

总传动比:96050.5319 n i n = ==总卷筒 分配传动比:取 3.05i =带 则1250.53/3.0516.49i i ?== ()121.31.5i i =取121.3i i =经计算2 3.56i =1 4.56i = 注:i 带为带轮传动比,1i 为高速级传动比,2i 为低速级传动比。 五 计算传动装置的运动和动力参数: 将传动装置各轴由高速到低速依次定为1轴、2轴、3轴、4轴 01122334,,,ηηηη——依次为电机与轴 1,轴1与轴2,轴2与轴3,轴3与 轴4之间的传动效率。 1. 各轴转速:1960 314.86/min 3.05 m n n r i == =带 2各轴输入功率:101 3.670.96 3.52d p p kW η=?=?= 3各轴输入转矩: 3.67 9550955036.5.960 d d w p T N m n ==? = 运动和动力参数结果如下表: 六 设计V 带和带轮: 1.设计V 带

减速器零件、装配全图

一、减速器的工作原理 减速机一般用于低转速大扭矩的传动设备,把电动机.内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。 减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。 减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。 一级圆柱齿轮减速器是通过装在箱体内的一对啮合齿轮的转动实现减速运动的。动力由电动机通过皮带轮传送到齿轮轴,然后通过两啮合齿轮(小齿轮带动大齿轮)传送到轴,从而实现减速之目的。 二、减速器的构造 减速器主要由传动零件(齿轮或蜗杆等)、轴、轴承、箱体及其附件所组成。现简要介绍一下减速器的构造。 1.齿轮、轴及轴承组合 小齿轮与高速轴制成一体,即采用齿轮轴结构。这种结构用于齿轮直径和轴的直径相差不大的场合。大齿轮装配在低速轴上,利用平键作周向固定。轴上零件利用轴肩、轴套和轴承盖作轴向固定。由于齿轮啮合时有轴向分力,

故两轴均采用一对圆锥滚子轴承支承,承受径向载荷和轴向载荷的复合作用。轴承采用润滑油润滑,为防止齿轮啮合的热油直接进入轴承,在轴承与小齿轮之间,位于轴承座孔的箱体内壁处设有档油环。为防止在轴外伸段与轴承透盖接合处箱内润滑剂漏失以及外界灰尘、异物进入箱内,在轴承透盖中装有密封元件。图中采用接触式唇形密封圈,适用于环境多尘的场合。 2.箱体 箱体是减速器的重要组成部件。它是传动零件的基座,应具有足够的强 度和刚度。箱体通常用灰铸铁铸造,对于受冲击载荷的重型减速器也可采用铸钢箱体。单件生产的减速器,为了简化工艺,降低成本,可采用钢板焊接箱体。 箱体是由灰铸铁铸造的。为了便于轴系部件的安装和拆卸,箱体制成沿 轴心线水平剖分式。上箱盖和下箱座用普通螺栓联接成一整体。轴承座的联接螺栓应尽量靠近轴承座孔,而轴承座旁的凸台应具有足够的承托面,以便放置联接螺栓,并保证旋紧螺栓时需要的扳手空间。为了保证箱体具有足够的刚度,在轴承座附近加有加强肋。为了保证减速器安置在基座上的稳定性,并尽可能减少箱体底座平面的机械加工面积,箱体底座一般不采用完整的平面,图中减速器下箱底座面是采用两块矩形加工基面。 3.减速器的附件 为了保证减速器的正常工作,除了对齿轮、轴、轴承组合和箱体的结构 设计应给予足够重视外,还应考虑到为减速器润滑油池注油、排油、检查油面高度、拆装时上下箱体的精确定位、吊运等辅助零部件的合理选择和设计。 1)观察孔及其盖板 为了检查传动零件的啮合情况、接触斑点、侧隙,并向箱体内注入润滑油,应在箱体的上部适当位置设置观察孔。观察孔设在上箱顶盖能够直接观察到齿轮啮合部位的地方。平时,观察孔的盖板用螺钉固定在箱盖上。图中检查孔为长方形,其大小应允许将手伸入箱内以便检查齿轮啮合情况。 2)通气器 减速器工作时,箱体内温度升高,气体膨胀,压力增大。为使箱内受热 膨胀的空气能自由地排出以保证箱体内外压力平衡,不致使润滑油沿分箱面和轴伸出段或其他缝隙渗漏,通常在箱体顶部装设通气器。采用的通气器是具有垂直、水平相通气孔的通气螺塞。通气螺塞旋紧在检查孔盖板的螺孔中。

建模与仿真习题集

1. 以下关于神经元功能的表述中错误的是(A) A.时变特性 B.输出与输入之间有固定的时滞,取决于突触延搁 C.神经元有一定的阈值,并表现适应性 D.时间和空间加和 2.根据心肌缺血的严重程度和梗塞心肌的电气特性,可以将梗塞心肌分为三种类型,以下哪一个错误(B) A.坏死型心肌 B.病理型心肌 C.损伤型心肌 D.缺血型心肌 3.皮肤的散热可分为生理散热和物理散热,生理散热可分为血管运动和汗腺活动。 4.体温控制规律(即控制系统定律)的表达式为R—R0=—k(Ty—Ts). 5.已知呼出气体的容量Ve等于吸入气体的容量V1减去耗氧量Vo2加上二氧化碳的产生量Vco2;耗氧量等于吸入气体的氧容量减去呼出气体的氧容量(Fio2,Feo2分别表示吸入,呼出气体中的O2浓度的百分数);CO2产出量等于呼出气体的CO2容量减去吸入气体的CO2容量(Fico2,Feco2分别为吸入,呼出气体中的CO2浓度的百分比,吸入气体中的CO2可忽略不计),求耗氧率?

解: Ve=V1--Vo2+Vco2 耗氧量 Vo2=Fio2 *V1--Feo2 *Ve CO2产出量 Vco2=Feco2 *Ve 联立以上三式,对时间求导,得 把V1代入耗氧量公式,求的耗氧率 1.以下不是系统概念特性的是(D) A.整体性 B.抽象性 C.模型性 D.具体性 2.人们将人体视为有三个不同层次的同心圆柱体,由里向外分别为体核,肌肉脂肪组织,皮肤,其中热容量最大的是(A) A.体核 B.肌肉脂肪组织 C.皮肤 3.写出体温控制规律(R-R0=-k(Ty-Ts)) 4生理系统建模中常用的工程方法(用频域法解线性微分方程)(系统辨识)(方式分析) 5.下图为电路的频域表示,其中各参数都采用了频域表示,求V0(t)

装配过程仿真技术小结

2 1.2装配过程仿真技术 当今世界,基于信息和知识的产品正在高速发展,这要求制造企业以最短的产品开发时间(Time)、最优的产品质量(Quality)、最低的成本(Cost)和价格及最佳的务(Service)-"TQCS"来赢得用户和市场[5]。而实现这一目标的方法,就是将系统科学、计算机科学、虚拟现实、人工智能等技术与制造技术相结合,形成全新概念的现代先进制造技术即虚拟制造。 近年来,许多国家进行了虚拟制造领域的研究与应用,特别是关于虚拟装配的研究与应用引起了人们的广泛关注。国外统计,目前制造业应用虚拟装配技术节约了25%的研制经费,并缩短了研制周期。英国Tecnomatix技术有限公司开发的计算机辅助生产工程(CAPE)产品涉及到了设计、优化、制造可行性评价等技术;华盛顿州立大学开发的虚拟装配设计环境(V ADE)允许对系统进行计划、评估和改变,并将CAD系统与沉浸式的虚拟环境紧密结合在一起[6]。这些充分证明了以获取知识为核心的现代设计方法,特别是并行设计和虚拟设计与制造技术己得到了长足的发展。 虚拟现实技术在并行工程中的应用即虚拟装配(Virtual Assembly,V A)等作为一种强有力的计算机辅助工具,适应了并行工程及其发展的需要,必将对传统制造业进行一次新的变革。 虚拟装配是虚拟制造的关键组成部分,它利用计算机工具,通过分析、预测产品模型,对产品进行数据描述和可视化,做出与装配有关的工程决策,而不需要实物产品模型作支持。它从根本上改变了传统的产品设计、制造模式,在实际产品生产之前,首先在虚拟制造环境中完成虚拟产品原型代替实际产品进行试验,对其性能和可装配性等进行评价,从而达到全局最优,缩短产品设计与制造周期,降低产品开发成本,提高产品快速响应市场变化的能力。 虚拟装配是许多技术的综合利用,例如可视化技术、仿真技术、决策理论、装配和制造过程的研究等等。仿真是实现虚拟装配的主要手段。 近年来,由于信息技术的发展,特别是高性能海量并行处理技术、可视化技术、分布处理技术、多媒体技术和虚拟现实技术的发展,使得建立人-机-环境一体化的分布的多维信息交互的仿真模型和仿真环境成为可能,仿真因此形成一些新的发展方向,如可视化仿真(visual simulation,VS)、多媒体仿真(multimedia simulation,MS)和虚拟现实仿真(virtual reality simulation,VRS)等。这3种仿真呈递进关系:可视化仿真强调可视的、灵活的仿真分析环境;多媒体仿真除可视化以外还强调多样化的多媒体集成,如音像的合成效果等;虚拟现实仿真则强调投入感、沉浸感和多维信息的人机交互性。 虚拟制造的最终实现就是要利用各种不同层次的仿真手段来模拟优化产品设计制造的过程,以达到一次设计成功的目的。仿真的基本步骤为:研究系统→收集数据→建立系统模型→确定仿真算法→建 立仿真模型→运行仿真模型→输出结果并分析。 1.2.1装配过程仿真的概念和特征 产品制造过程仿真,可归纳为制造系统仿真和加工过程仿真。虚拟制造系统中的产品开发涉及到产品建模仿真、设计过程规划仿真、设计思维过程和设计交互行为仿真等,以便对设计结果进行评价,实现设计过程早期反馈,减少或避免产品设计错误。加工过程仿真,包括切削过程仿真、装配过程仿真,检验过程仿真以及焊接、压力加工、铸造仿真等。目前上述两类仿真过程是独立发展起来的,

减速器装配图大齿轮零件图和输出轴零件图

第1章初始参数及其设计要求保证机构件强度前提下,注意外形美观,各部分比例协调。初始参数:功率P=,总传动比i=5

第2章 电动机 电动机的选择 根据粉碎机的工作条件及生产要求,在电动机能够满足使用要求的前提下,尽可能选用价格较低的电动机,以降低制造成本。由于额定功率相同的电动机,如果转速越低,则尺寸越大,价格越贵。粉碎机所需要的功率为kw P 8.2=,故选用Y 系列(Y100L2-4)型三相笼型异步电动机。 Y 系列三相笼型异步电动机是按照国际电工委员会(IEO )标准设计的,具有国际互换性的特点。其中Y 系列(Y100L2-4)电动机为全封闭的自扇冷式笼型三相异步电动机,具有防灰尘、铁屑或其它杂务物侵入电动机内部之特点,B 级绝缘,工作环境不超过+40℃,相对温度不超过95%,海拔高度不超过1000m,额定电压为380V,频率50HZ,适用于无特殊要求的机械上,如农业机械。 Y 系列三相笼型异步电动具有效率高、启动转矩大、且提高了防护等级为IP54、提高了绝缘等级、噪音低、结构合理产品先进、应用很广泛。其主要技术参数如下: 型号:42100-L Y 同步转速:min /1500r 额定功率:kw P 3= 满载转速:min /1420r 堵转转矩/额定转矩:)/(2.2m N T n ? 最大转矩/额定转矩:)/(2.2m N T n ? 质量:kg 3.4 极数:4极 机座中心高:mm 100 该电动机采用立式安装,机座不带底脚,端盖与凸缘,轴伸向下。

电机机座的选择 表2-1机座带底脚、端盖无凸缘Y系列电动机的安装及外型尺寸(mm)

第3章 传动比及其相关参数计算 传动比及其相关参数的分配 根据设计要求,电动机型号为Y100L2-4,功率P=3kw ,转速n=1420r/min 。输出端转速为n=300r/min 。 总传动比: 73.4300 14401 === n n i ; (3-1) 分配传动比:取3=D i ; 齿轮减速器: 58.13 73 .4=== D L i i i ; (3-2) 高速传动比: 5.158.14.14.112=?==L i i ; (3-3) 低速传动比: 05.15 .158 .11223=== i i i L 。 (3-2) 运动参数计算 3.2.1 各轴转速 电机输出轴: min /1420r n n D == 轴I : min /33.4733 1420 1r i n n D === (3-4) 轴II : min /6.3155 .133.4731212r i n n === (3-4) 轴III :

系统建模与仿真(2)

第九讲系统建模与仿真(2) 四、仿真 1. 仿真(模拟)(Simulation)概念 1)定义 利用模型复现实际系统中发生的本质过程, 并通过对系统模型的实验来研究存在的或设计中的系统. 2)分类 物理仿真:即实物仿真, 如风洞 计算机仿真(数学仿真): 模拟数字混合 半实物仿真: 控制器(实物)+计算机上实现的控制对象 3)建模、仿真与计算机 建模与仿真的五个组成部分(实际系统、试验框架、基本模型、集总模型、计算机模型)

实际系统:行为描述(可观测变量、不可观测变量) 试验框架:假设或条件集合,同模型有效性之间相关 基本模型:在试验框架下,解释实际系统的行为 集总模型:基本模型的简化 计算机:复杂(仿真) 4)基本要素 ●对仿真问题的描述 ●行为产生器 ●模型行为及其处理 5)仿真的发展阶段 ●模型驱动的仿真 ●含实物的仿真 ●人在回路中的仿真 6)仿真的发展趋势 ●面向对象仿真 ●定性仿真 ●智能仿真 ●分布交互仿真 ●可视化仿真 ●多媒体仿真 ●虚拟现实仿真 ●Internet网上仿真

7)仿真的对象 ●系统过于复杂(如存在过多的随机因素),难以采用解析法求解 时,通过仿真可得到系统的动态特征。 ●系统实际运行费用过高或无法作实际运行时,借助仿真可以得到 系统的有关参数。 优化设计、安全性和经济性、预测、完善系统模型、重复实验 8)仿真的一般过程 9)仿真的分类

●物理仿真,模拟机仿真,数字仿真,数字机与模拟机混合仿 真,仿真器仿真 ●连续和离散系统仿真 ●静态和动态系统仿真 ●稳态和终态仿真 ●确定性和随机性仿真 10)仿真的输出类型 ●确定型和随机型 ●连续观测值和离散观测值 ●连续分布和离散分布观测值 ●一元和多元输出 ●稳态型仿真和终止型仿真输出 11)仿真的局限性 1) 往往只能得到特解,而得不到通解 2) 结果往往是间接的,而不是直接的 12)仿真的技术工具 连续系统仿真:DYNAMO, CSMP 离散事件系统仿真:GPSS, SIMSCRIPT, SIMULA, GPSS-F 混合仿真:GASP-IV

建模与仿真

实验设计(论文)报告 课题名称:单一生产线建模与仿真 学校: 系别: 班级: 姓名: 学号: 日期: 2011年 4 月 16 日

摘要:针对传统数值方法难以求解复杂排队系统模型的问题,采用新一代面向对象的Simio仿真软件进行建模和仿真分析。采用Simio 软件构建序列表和运输器的仿真模型,认识关于SOURCE,SERVER,SINK 等对象的更多建模知识,对基于部件类型的处理时间及单个发生器和多种处理类型进行设定,然后对模型进行统计分析,并对系统的方案进行思考和改进。分析结果表明,利用Simio软件可方便地对各领域的模型及其相关问题进行建模仿真,具有较大的应用潜力。 关键词:实体序列表;运输器;处理时间;发生器

目录 一.序言 1.1 Simio系统仿真背景 1.2 系统建模与仿真现状分析 1.3 本课题的研究意义 二.Simio系统仿真的模型 2.1 模型的选择 2.2 建立模型 2.2.1系统模型 2.2.2建立模型的步骤 三.仿真的运行与调整 3.1 仿真的运行 3.2 仿真的调整 3.2.1 能力选择调整 3.2.2 参数选择的调整 四.结论分析 五.建议

一、序言 1.1背景 Simio是由一个极富行业经验的团队所创造的。本软件的缔造者C. Dennis Pegden博士拥有30年以上的仿真经验,是公认的行业领军人物。当前在仿真软件市场份额上领先的SLAM和Arena就是在他的领导下研发的。团队的其他成员的背后同样也闪耀着一连串仿真行业突破性进展的光芒。正是这样一个团队,现在聚集到一起,集中他们的全部智慧以及总计超过100年的仿真经验为你创造出了下一代的仿真工具,也许是最好的仿真工具Simio。 作为仿真工具的革命性进展,Simio完全是从零开始开发的。它采用了继“面向事件”和“面向过程”之后的“面向对象”的建模方法,并支持这三种建模方法的无缝衔接。Simio还同时支持离散和连续系统建模,以及基于“智能主体”(Agent-Based)的大规模应用。这些不同的建模范式可以在同一个模型中自由地揉合。 1.2 Simio系统建模与仿真现状分析 当前,仿真技术已经成为分析、研究各种复杂系统的重要工具,它广泛应用于工程领域和非工程领域。仿真可定义为:在全部时间内,通过对系统的动态模型性能的观测来求解问题的技术。对复杂物流系统进行仿真,起目的是通过仿真了解物料运输、存储动态过程的各种统计、动态性能。但由于现代生产物流系统具有突出的离散性、随机性的特点,因此人们希望通过对生产物流系统的计算机辅助设计及仿真

制造系统建模与仿真在工业工程中的应用 0713020

制造系统建模与仿真在工业工程中的应用0713020 工业工程刘鹏 [摘要]介绍了企业发展和建模的必要性和必然性,分析了制造系统的建模与仿真在优化企业资源中的作用及意义,详细地论述了制造系统的建模与仿真在优化企业资源中的具体应用。 关键词:制造系统;建模与仿真;企业优化;仿真应用 系统建模与仿真技术的含义 系统建模与仿真技术是以相似原理、模型理论、系统技术、信息技术以及建模与仿真应用领域的有关专业技术为基础,以计算机系统、与应用相关的物理效应设备及仿真器为工具,利用模型参与已有或设想的系统进行研究、分析、设计、加工生产、试验、运行、评估、维护、和报废(全生命周期)活动的一门多学科的综合性技术。 仿真科学和技术的通用性和战略性 仿真的通用性表现在一切基础学科(如物理、化学、天文?)都可以通过仿真来研究;并可以极大地提高研究的安全性。仿真的战略性表现在一切复杂巨系统的研究都离不开仿真技术,可以说研究复杂巨系统采用仿真技术是唯一的途径。正如宋健院士所说:“系统仿真是科学实验的利器。 国内仿真技术发展 在我国仿真技术经过半个多世纪的发展,已经从军工走向国民经济。已经从工程走向非工程;已经从确定的小系统走向不确定的复杂巨系统。最初的仿真技术只是用计算机来求解方程,为了实时性,大

都采用电子模拟计算机。现在的仿真技术已经融合了信息技术、网络技术、系统技术、控制技术和高性能的计算技术,以完全崭新的面貌出现在我们的面前。 现在,摆在我们仿真工作者面前的任务是:在虚拟世界与真实世界之间架起一座桥梁;通过仿真技术构筑起一个平台,来勾画出创新型国家的轮廓,例如,国家正投入几个亿,来建设国家级研究经济模型的仿真实验室。 仿真技术,一方面反映了我国仿真技术和仿真技术应用发展的现状,另一方面,又对我国仿真技术今后的发展方向产生了指导作用。近年来,我国仿真技术及其应用的发展是十分迅猛的。仿真技术的发展,使人感到震惊。研究天文、地理、宇宙进化论等等,要依靠仿真,几乎没有哪个领域能离开仿真技术。凡是能写成方程的都要进行仿真。故应鼓励仿真界的科技人员发挥聪明才智,搞好仿真技术。 仿真技术的广度、深度、高度的提高,正反映了我国仿真技术和应用的发展。例如,“面向复杂性地理问题的虚拟研讨厅体系研究”,“复杂系统建模中的几个问题”等都是有代表性的好文章,反映了我国仿真技术已经在军事和国民经济的一些复杂巨系统研究建设中发挥越来越重要的作用。 1、制造系统的建模与仿真在优化企业资源中的作用及意义 计算机仿真技术作为一门高新技术,其方法学建立在计算机能力的基础之上。随着计算机技术的发展,仿真技术也得到迅速的发展,其应用领域及其作用也越来越大。尤其在航空、航天、国防及其他大

装配模型的分析与仿真

装配模型的分析与仿真 作者:Siemens PLM Software 在装配过程中,零件之间有多种相互作用,从简单接触到摩擦再到拉力/压力/扭矩作用等,另外,装配零件的方式和方法也有很多,可以使用紧固件(如螺栓、螺柱、螺钉和销等)进行连接,也可采用点焊、铆接以及胶接连接等方式。 数学模型可以非常清晰明了地表现出零部件的各种轮廓特性,这将有助于用户更容易地了解复杂的装配模型中,多个零件如何被装配到一起,还有不同零件之间如何相互作用。 建模是装配仿真中最关键的步骤之一,因为这意味着迅速确定所有零件的位置并准确定义任何两个接触零件之间相互作用。之后,自动检测工具在仿真系统的前/后处理过程中发挥作用,如Femap,它是一种确定哪些零件接触并提供所有接触情况的可视化工具。这里的“可视化”可以表现出面与面的接触,也可以表现零部件与零部件的接触与配合关系。通过参照一个合适的属性定义,Femap可以将各种连接方式最终简化表示为一般线性接触或胶接,这个简化过程可以在执行接触检测时自动完成,或在现有定义可被轻松编辑和更改的情况下再进行添加。此外,新的接触可从零开始手动定义。接触状况可被应用到网格化之前的几何模型上,也适用于实心零件或空心壳体零件本身。 图1 一般的连接网格模型

图2 NX Nastran的胶接模型 线性接触 对于表面接触问题的数模化,苛刻的解决方案一般要求以一种非线性方法来表现接触和其他潜在的非线性问题,比如较大的变形问题和随环境条件而可能非线性变化的材料属性问题。但是,如果表面接触可以被控制在某个限定范围之内(很小的挠度和“线性”材料),那么“线性接触”就是一种在保证仿真结果准确性基础之上的绝对更加简单的解决方案。 举例来说,NX Nastran求解器中面与面的接触计算就采用了线性静止分析的技术方案,并使用同样的技术方法来搜索并检测装配接触面之间的相互作用。因此,用户可以采用NX Nastran进行伴有摩擦阻力的滑动分析这样的复杂运动仿真。 胶接连接 胶接的方式可被用来装配零件,不论这些零件是同一种材料还是异种材料,只要这些零部件共享同一个连接界面即可。 NX Nastran 的胶接功能采用一种创新的方法来重新定义其连接面的网格,因此,连接面的载荷分布及传递可以被尽可能准确地计算出来。这种方法使仿真分析的结果获得了明显的改善,也产生了更平滑的零件轮廓,尤其是在连接面上。NX Nastran的这种胶接功能适用于准确性要求非常高的模型仿真分析中。

一级圆柱齿轮减速器装配图的画法(含装配图)

一、仔细分析,对所画对象做到心中有数 在画装配图之前,要对现有资料进行整理和分析,进一步搞清装配体的用途、性能、结构特点以及各组成部分的相互位置和装配关系,对其它完整形状做到心中有数。 二、确定表达方案 根据装配图的视图选择原则,确定表达方案。 对该减速器其表达方案可考虑为: 主视图应符合其工作位置,重点表达外形,同时对右边螺栓连接及放油螺塞连接采用局部剖视,这样不但表达了这两处的装配连接关系,同时对箱体右边和下边壁厚进行了表达,而且油面高度及大齿轮的浸油情况也一目了然;左边可对销钉连接及油标结构进行局部剖视,表达出这两处的装配连接关系;上边可对透气装置采用局部剖视,表达出各零件的装配连接关系及该结构的工作情况。 俯视图采用沿结合剖切的画法,将内部的装配关系以及零件之间的相互位置清晰地表达出来,同时也表达出齿轮的啮合情况、回油槽的形状以及轴承的润滑情况。 左视图可采用外形图或局部视图,主要表达外形。可以考虑在其上作局部剖视,表达出安装孔的内部结构,以便于标注安装尺寸。 另外,还可用局部视图表达出螺栓台的形状。 建议用A1图幅,1:1比例绘制。 画装配图时应搞清装配体上各个结构及零件的装配关系,下面介绍该减速器的有关结构: 1、两轴系结构由于采用直齿圆柱齿轮,不受轴向力,因此两轴均由滚动轴承支承。轴向位置由端盖确定,而端盖嵌入箱体上对应槽中,两槽对应轴上装有八个零件,如图2-3所示,其尺寸96等于各零件尺寸之和。为了避免积累误差过大,保证装配要求,轴上各装有一个调整环,装配时修磨该环的厚度g使其总间隙达到要求0.1±0.02。因此,几台减速器之间零件不要互换,测绘过程中各组零件切勿放乱。

建模与仿真的方法

建模 建立概念关系、数学或计算机模型的过程,又称模型化,就是为了理解事物而对事物做出的一种抽象,是对事物的一种描述系统的因果关系或相互关系的过程都属于建模,所以实现这一过程的手段和方法也是多种多样的。 仿真 利用模型复现实际系统中发生的本质过程,并通过对系统模型的实验来研究存在的或设计中的系统,又称模拟。即模型随时间变化的实现方法。这里所指的模型包括物理的和数学的,静态的和动态的,连续的和离散的各种模型。广义而言, 仿真是采用建模和物理的方法对客观事物进行抽象、映射、描述和复现。 建模与仿真的方法: 1时间序列预测法 时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。

2定性仿真方法 基于建立模型框架,对于参数采取定性处理(从一定性的约束集和一个初始状态出发预测系统未来行为)的方法. 3归纳推理方法 基于黑箱概念,假设对系统结构一无所知,只从系统的行为一级进行建模与仿真,根据系统观测数据,生成系统定性行为模型,用于预测系统行为. 4系统动力学方法 基于信息反馈及系统稳定性的概念,认为物理系统中的动力学性质及反馈控制过程在复杂系统中同样存在。系统动力学仿真的主要目的是研究系统的变化趋势,而不注重数据的精确性。 5频域建模方法 频域建模方法就是从s域的传递函数G(s),根据相似原理得到与它匹配的z域传递函数G(z),从而导出其差分模型。 6图解建模 图解建模法是一种采用点和线组成的、用以描述系统的图形或称图的建模方法。图模型属于结构模型,可以用于描述自然界和人类社会中的大量事物和事物之间的关系。在建模中采用图论作为工具。按图的性质进行分析,为研究各种系统特别是复杂系统提供了一种有效的方法。 7灰色理论法 它是一门研究信息部分清楚、部分不清楚并带有不确定性现

基于知识的装配过程仿真建模方法研究

基于知识的装配过程仿真建模方法研究! 严晓光$!)!徐国学$!武帅$ "$O华中科技大学机械科学与工程学院!武汉*.&&Z*%)O武汉开目信息技术有限责任公司!武汉*.&)).# 摘要!针对装配环节具有高度的复杂性’实现装配过程的仿真模拟要求很强的智能性的特点!提出了一种基于知识的装配过程仿真的建模方法"该方法将工程设计中的装配知识运用到三维装配模型的建模过程中!用装配知识指导’约束和驱动装配模型!以确保装配知识与装配模型融合!体现和维护设计意图!实现装配知识的共享与重用!扩大装配知识的作用范围" 关键词!虚拟装配#知识模型#仿真 中图分类号!’(.\$++文献标识码!,++文章编号!$&&$-.//$")&&0#$$-$\)-* L#2#(0.")*J);#4%*B J#&");)+722#-845$%-’4(&%)*C(2#;)*9*):4#;B# c,2f C=57?=67$!)!f11!4?=C$ $$O!D455J5I"9D4=6C D=J!D C96D9dW67C699E C67!F?=b456716C N9E8C B K5I!D C96D9d’9D465J57K! >?4=6*.&&Z*!#4C6=#)O[=C A?H6I5E A=B C56’9D465J57K U B MO!>?4=6*.&)).!#4C6=% 782&0(.&&H6D568C M9E=B C56I5E B4=B=889A GJ K LE5D988C8N9E K D5A LJ C D=B9M=6M E9=J C b C67=889A GJ K LE5D9888C A?J=B C56E9Q?C E984C74 C6B9J J C796D9!=A5M9J C67A9B45M5I=889A GJ K8C A?J=B C56G=89M56P65@J9M79@=8LE9896B9MO’4C8A9B45M?B C J C b98=889A GJ K P65@J9M79 M?E C67B49.MC A968C56=J A5M9J C67LE5D988!7?C MC67!E98B E=C6C67=6M ME C N C67B49=889A GJ K A5M9J GK=889A GJ K P65@J9M79B5968?E9B49 C6B97E=B C56G9B@996=889A GJ9P65@J9M79=6M=889A GJ K A5M9J!E9=J C b98=6M A=C6B=C68B49M98C76C6B96B C56!=D B?=J C b98B4984=E9=6M E9?R 8985I=889A GJ K P65@J9M79!=6M964=6D98B49D5N9E=795I B49P65@J9M79O 9#5:)0;2&S C E B?=J=889A GJ K#[65@J9M79A5M9J C67#!C A?J=B C56 !"引言 #,T的深化应用以及知识工程的发展!提出了在面向装配的#,T造型设计中有效地利用企业的装配知识!通过计算机对零部件装配过程的仿真模拟!检查产品零部件之间的装配关系!从而对其进行可装配性评价!使整个产品全局最优!提高产品市场响应能力等要求"但是!由于装配环节具有高度的复杂性!实现装配过程仿真模拟要求很强的智能性!目前在虚拟制造领域成为相对薄弱的一环!成为制约制造技术提高的瓶颈"装配过程中的各种分析模型很难从数学模型直接自动衍生!模型间数据的一致性也难以保证!这些就造成了目前虚拟装配缺乏知识性’智能性的局面" 本文主要讨论基于知识的三维装配仿真系统的建模问题!通过在建模过程中用装配知识来指导’约束和驱动装配模型!从而实现装配知识与装配模型的融合以及装配知识的共享与重用" #"基于知识的装配仿真建模 基于知识的系统的意义在于建立面向产品的几何和非几何特征模型!使设计者在设计过程中能得到产品领域知识的帮助!把更多的注意力集中在增强产品的设计和创新能力!提高产品功能及性能" 产品装配建模是面向装配的设计的重要环节!其关键问题之一在于如何在计算机内有效地表达装配体内在和外在的关系"装配模型的优劣直接影响到设计系统后续工作的效率!故而建立一个集成度高’信息完善的装配模型具有重要的意义" 在基于知识改造传统#,T系统方面!国外的研究与应用比较成熟!国内也开展了相关研究"这些研究工作能够利用设计知识对设计进行一定程度指导!提高了设计效率!但设计知识的表达方式单一$主要是产生式规则%!在此基础上建立的参数化装配过程仿真技术对装配知识的表达不够充分"并且由于装配知识单独存储在知识库中!装配模型本身不携带知识信息!而且装配知识只作用于某个特定装配模型!不同装配模型间的知识是孤立和封闭的!知识的开放性比较弱!难以进行共享和重用"即使对于同类装配!也要对每个装配模型分别进行大量重复性工作!而这对企业总结装配经验’提高装配水平是不利的"另外!由于知识库和模型分离!模型与装配知识不能统一管理!装配知识的融合不够!导致模型信息不够完备!不利于知识的快速求解与驱动" 针对上述装配过程仿真系统建模中装配知识与装配模型之间所存在的一些问题!本文提出了基于知识的装配仿真建模方法!即将工程设计中的装配知识运用到三维设计模型$包括零件和装配%建模过程中!用装配知识来指导’约束和驱动装配模型!确保装配知识与三维建模的融合!最大限度地体现与维护设计 * =P< *$机床与液压%)&&0O25O$$ !基金项目!国家+/0.,高科技研究发展计划资助项目$)&&.,,*$$&$$和)&&.,,*$$&*)% 万方数据

蜗杆减速器及其零件图和装配图(完整) - 副本

前言 在本学期临近期末的近半个月时间里,学校组织工科学院的学生开展了锻炼学生动手和动脑能力的课程设计。在这段时间里,把学到的理论知识用于实践。 课程设计每学期都有,但是这次和我以往做的不一样的地方:单独一个人完成一组设计数据。这就更能让学生的能力得到锻炼。但是在有限的时间里完成对于现阶段的我们来说比较庞大的“工作”来说,虽然能够按时间完成,但是相信设计过程中的不足之处还有多。希望老师能够指正。总的感想与总结有一下几点: 1.通过了3周的课程设计使我从各个方面都受到了机械设计的 训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。 2.由于在设计方面我们没有经验,理论知识学的不牢固,在设计 中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准 3.在设计的过程中,培养了我综合应用机械设计课程及其他课程 的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。 最后,衷心感谢老师的指导和同学给予的帮助,才能让我的这次设计顺利按时完成。

目录 一.传动装置总体设计 (4) 二.电动机的选择 (4) 三.运动参数计算 (6) 四.蜗轮蜗杆的传动设计 (7) 五.蜗杆、蜗轮的基本尺寸设计 (13) 六.蜗轮轴的尺寸设计与校核 (15) 七.减速器箱体的结构设计 (18) 八.减速器其他零件的选择 (21) 九.减速器附件的选择 (23) 十.减速器的润滑 (25)

相关文档
最新文档