管道水力学计算公式

管道水力学计算公式
管道水力学计算公式

常见的管道水力学计算公式

Chezy 公式

Chezy 公式一般用得比较少,但它是其它公式的基础,包括Manning 公式。Chezy 公式表示为:

Q?

?

=

?

S

C

R

A

这里:

Q ——断面水流量(m3/s)

C ——Chezy糙率系数(m1/2/s)

A ——断面面积(m2)

R ——水力半径(m)

S ——水力坡度(m/m)

根据需要也可以变换为其它表示方法。

Hazen-Williams公式

Hazen-Williams 公式是压力管道最常用的水头损失计算公式,该公式表达为:

54

63

..0S

.0

?

?

=

Q?

?

R

k

A

C

这里:

Q ——断面水流量(m3/s)

C ——Hazen-Williams糙率系数(无量纲)

A ——断面面积(m2)

R ——水力半径(m)

S ——水力坡度(m/m)

k ——常数,采用国际单位时为0.85

根据需要也可以变换为其它表示方法。

Darcy-Weisbach 公式

由于Darcy-Weisbach 是通过理论总结得到的公式,故也称为理论公式。Darcy-Weisbach 被用于许多要求计算精度较高的工程中。Darcy-Weisbach 公式表达为:

g v d l f h f 22

?=

这里:

h f ——沿程水头损失(mm 3/s )

f ——Darcy-Weisbach 水头损失系数(无量纲)

l ——管道长度(m )

d ——管道内径(mm )

v ——管道流速(m/s )

g ——重力加速度(m/s 2)

根据需要也可以变换为其它表示方法。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

水力学基本概念

目录 绪论:1 第一章:水静力学1 第二章:液体运动的流束理论3 第三章:液流形态及水头损失3 第四章:有压管中的恒定流5 第五章:明渠恒定均匀流5 第六章:明渠恒定非均匀流6 第七章:水跃7 第八章:堰流及闸空出流8 第九章:泄水建筑物下游的水流衔接与消能9第十一章:明渠非恒定流10 第十二章:液体运动的流场理论10 第十三章:边界层理论11 第十四章:恒定平面势流11 第十五章:渗流12 第十六章:河渠挟沙水流理论基础12 第十七章:高速水流12 绪论:

1 水力学定义:水力学是研究液体处于平衡状态和机械运动状态下的力学规律,并探讨利用这些规律解决工程实际问题的一门学科。b5E2RGbCAP 2 理想液体:易流动的,绝对不可压缩,不能膨胀,没有粘滞性,也没有表面张力特性的连续介质。 3 粘滞性:当液体处在运动状态时,若液体质点之间存在着相对运动,则质点见要产生内摩擦力抵抗其相对运动,这种性质称为液体的粘滞性。可视为液体抗剪切变形的特性。<没有考虑粘滞性是理想液体和实际液体的最主要差别)p1EanqFDPw 4 动力粘度:简称粘度,面积为1m2并相距1m的两层流体,以1m/s做相对运动所产生的内摩擦力。 5 连续介质:假设液体是一种连续充满其所占空间毫无空隙的连续体。 6 研究水力学的三种基本方法:理论分析,科学实验,数值计算。第一章:水静力学 要点:<1)静水压强、压强的量测及表示方法;<2)等压面的应用;<3)压力体及曲面上静水总压力的计算方法。DXDiTa9E3d 7 静水压强的两个特性:1)静水压强的方向与受压面垂直并指向受压面2)任一点静水压强的大小和受压面方向无关,或者说作用于同一点上各方向的静水压强大小相等。RTCrpUDGiT 8 等压面:1)在平衡液体中等压面即是等势面2)等压面与质量力正交3)等压面不能相交4)绝对静止等压面是水平面5)两种互不

上计算水力学课的心得

上计算水力学课的心得 水利水电学院水力学及河流动力学 胥慧1030201016 摘要:首先通过计算水力学这门课程的学习,联想到不规则的平面图形面积的求解;还简要说明了从中学到的内容,着重说明了离散的有关问题;最后阐述了自己对这门课程的几点意见。 关键词:面积,区域离散,控制方程离散,意见 1、不规则图形面积求解 上计算水力学这门课程时,我突然想起小时候学过对于一个边界形状不规则的平面图形面积问题的求解方法。当时是先把那个不规则的平面图形誊画在一个透明的玻璃板上,再把一张事先做好的1cm×1cm方格纸铺在玻璃板下边,先记录一下不规则图形里显示完整的小方格数目,对于不完整的小方格,正好满半个格算的两个算一个格,大于半个格计一个格,不满半个格的舍去,这样相加在一起就是这个不规则的几何图形的近似面积。同样的办法,再分别用0.5cm×0.5cm 的方格纸和0.1cm×0.1cm的方格纸对不规则图形面积进行计算。结果不言而喻,必然是用0.1cm×0.1cm的方格纸得到的近似解更接近真实解。通过缩短方格纸的边长,来实现接近真实解的方法。用类比的方法学习了计算水力学这门课。2、学到的内容 在以前的学习中我了解到,描述流体流动及传热等物理问题的基本方程为偏微分方程,想要得它们的解析解或者近似解析解,在绝大多数情况下都是非常困难的,甚至是不可能的,就拿我们熟知的Navier-Stokes方程来说,现在能得到的解析的特解也就70个左右。通过学习计算水力学这么课程,我知道对这些问题进行研究,可以借助于现在已经相当成熟的代数方程组求解方法,对于这种方法简单来说就是将连续的偏微分方程组及其定解条件按照某种方法遵循特定的规则在计算区域的离散网格上转化为代数方程组,以得到连续系统的离散数值逼

最新水力学常用计算公式文件.doc

1、明渠均匀流计算公式: Q=Aν=AC Ri 1 n y R (一般计算公式)C= 1 n R 1 6 C= (称曼宁公式)2、渡槽进口尺寸(明渠均匀流) Q=bh 2gZ 0 z:渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=0.8~0.9 b:渡槽的宽度(米) h:渡槽的过水深度(米) φ:流速系数φ=0.8~0.95 3、倒虹吸计算公式: Q=mA2gz (m 3/秒) 4、跌水计算公式:

跌水水力计算公式:Q=εmB 3/2 2gH , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B—进口宽度(米);m—流量系数 5、流量计算公式: Q=Aν 式中Q——通过某一断面的流量,m 3/s; ν——通过该断面的流速,m/h 2 A——过水断面的面积,m 。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 3 (1)淹没出流:Q=εσMBH2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3

(2)实用堰出流:Q=εMBH 2 1

3 =侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 3 Q=εσMBH2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 (2)孔口自由出流计算公式为 Q=MωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q=μA2gH =流量系数×放水孔口断面面积×2gH 2)、有压管流

水力学答案

水力学练习题及参考答案 一、是非题(正确的划“√”,错误的划“×) 1、理想液体就是不考虑粘滞性的实际不存在的理想化的液体。(√) 2、图中矩形面板所受静水总压力的作用点与受压面的形心点O重合。(×) 3、园管中层流的雷诺数必然大于3000。(×) 4、明槽水流的急流和缓流是用Fr判别的,当Fr>1为急流。(√) 5、水流总是从压强大的地方向压强小的地方流动。(×) 6、水流总是从流速大的地方向流速小的地方流动。(×) 6、达西定律适用于所有的渗流。(×) 7、闸孔出流的流量与闸前水头的1/2次方成正比。(√) 8、渐变流过水断面上各点的测压管水头都相同。(√) 9、粘滞性是引起液流运动能量损失的根本原因。(√) 10、直立平板静水总压力的作用点就是平板的形心。(×) 11、层流的沿程水头损失系数仅与雷诺数有关。(√) 12、陡坡上出现均匀流必为急流,缓坡上出现均匀流必为缓流。(√) 13、在作用水头相同的条件下,孔口的流量系数比等直径的管嘴流量系数大。(×) 14、两条明渠的断面形状、尺寸、糙率和通过的流量完全相等,但底坡不同,因此它们 的正常水深不等。(√) 15、直立平板静水总压力的作用点与平板的形心不重合。(√) 16、水力粗糙管道是表示管道的边壁比较粗糙。(×) 17、水头损失可以区分为沿程水头损失和局部水头损失。(√) 18、牛顿内摩擦定律适用于所有的液体。(×) 19、静止液体中同一点各方向的静水压强数值相等。(√) 20、明渠过流断面上各点的流速都是相等的。(×) 22、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50 kPa。(√) 24、满宁公式只能适用于紊流阻力平方区。(√) 25、水深相同的静止水面一定是等压面。(√) 26、恒定流一定是均匀流,层流也一定是均匀流。(×) 27、紊流光滑区的沿程水头损失系数仅与雷诺数有关。(√) 28、陡坡上可以出现均匀的缓流。(×) 29、满宁公式只能适用于紊流阻力平方区。(√) 30、当明渠均匀流水深大于临界水深,该水流一定是急流。(×)

第三章第3章给水排水管网水力学基础

第3章给水排水管网水力学基础 3.1 基本概念 3.2 管渠水头损失计算 3.3 非满流管渠水力计算 3.4 管道的水力等效简化 3.1基本概念 3.1.1管道内水流特征 Re=ρvd/μ 3.1基本概念 3.1.2有压流与无压流 有压流:水体沿流程整个周界与固体壁面接触,而无自由液面(压力流、管流) 无压流:水体沿流程一部分周界与固体壁面接触,其余与空气接触,具有自由液面(重力流、明渠流) 3.1基本概念 3.1.3恒定流与非恒定流 恒定流:水体在运动过程中,其各点的流速与压力不随时间而变化,而与空间位置有关的流动称为恒定流非恒定流:水体在运动过程中,其流速与压力不与空间位

置有关,还随时间的而变化的流动称为非恒定流3.1基本概念 3.1.4均匀流与非均匀流 均匀流:水体在运动过程中,其各点的流速与方向沿流程不变的流动称为均匀流 非均匀流:水体在运动过程中,其各点的流速与方向沿流程变化的流动称为非均匀流 3.1基本概念 3.1.5水流的水头与水头损失 水头:指的是单位质量的流体所具有的能量除以重力加速度,一般用h或H表示,常用单位为米(m) 3.1基本概念 3.1.5水流的水头与水头损失 水头损失:流体克服阻力所消耗的机械能

3.2管渠水头损失计算 3.2.1沿程水头损失计算 管渠的沿程水头损失常用谢才公式计算 对于圆管满流,沿程水头损失可用达西公式计算 沿程阻力系数 λλ228 (m) 2C g g v D l h f == R 为过水断面的里半径,及过水断面面积除以湿周,圆管满 流时R=0.25D 流体在非圆形直管内流动时,其阻力损失也可按照上述公式计算,但应将D 以当量直径de 来代替 3.2管渠水头损失计算 (m) l R C v il h 22 f ==Ri C v =

(参考)水力学计算说明书

水力学实训设计计算书 指导老师:柴华 前言 水力学是一门重要的技术基础课,它以水为主要对象研究流体运动的规律以及流体与边界的相互作用,是高等学校许多理工科专业的必修课。 在自然界中,与流体运动关联的力学问题是很普遍的,所以水力学和流体力学在许多工程领域有着广泛的应用。水利工程、土建工程、机械工程、环境工程、热能工程、化学工程、港口、船舶与海洋工程等专业都将水力学或流体力学作为必修课之一。 水力学课程的理论性强,同时又有明确的工程应用背景。它是连接前期基础课程和后续专业课程的桥梁。课程教学的主要任务是使学生掌握水力学的基本概念、基本理论和解决水力学问题的基本方法,具备一定的实验技能,为后续课程的学习打好基础,培养分析和解决工程实际中有关水力学问题的能力。水是与我们关系最密切的物质,人类的繁衍生息、社会的进化发展都是与水“唇齿相依、休戚相关”的。综观所有人类文

明,几乎都是伴着河、海而生的

通过学习和实训,应用水力学知识,为以后的生活做下完美的铺垫。

任务二:分析溢洪道水平段和陡坡段的水面曲线形式,考虑高速水流掺气所增加的水深,算出陡坡段边墙高。边墙高按设计洪水流量校核;绘制陡坡纵剖面上的水面线。 任务三:绘制正常水位到汛前限制水位~相对开度~下泄流量的关系曲线;绘制汛前限制水位以上的水库水位~下泄流量的关系曲线。 任务四:溢洪道消力池深、池长计算:或挑距长度、冲刷坑深度和后坡校核计算 任务二:分析溢洪道水平段和陡坡段的水面曲线形式,考虑高速水流掺气所增加的水深,算出陡坡段边墙高。边墙高按设计洪水流量校核;绘制陡坡纵剖面上的水面线。 1.根据100年一遇洪水设计,已知驼峰堰上游水位25.20,堰顶高程18.70,堰底高程为17.45, 计算下游收缩断面水深h C, P=18.70-17.45=1.25m H=25.20-18.70=6.5m P/H=1.25÷6.5=0.19<0.8 为自由出流 m=0.32+0.171(P/H)^0.657 =0.442 设H =H,由资料可知溢洪道共两孔,每孔净宽10米,闸墩头为圆形,敦厚2米,边墩围半圆形,混凝土糙率为0.014.故查表可得: ζ 0=0.45 ζ k =0.7 ε=1-0.2(ζk+(n-1)ζ0)×H0/nb=0.92 H =(q/(εm(2g)^0.5))^2/3=6.77m E0=P+H0=6.77+1.25=8.02m 查表的:流速系数ψ=0.94

塔的水力学计算手册

塔的水力学计算手册

1.目的与适用范围 (1) 2.塔设备特性 (1) 3.名词术语和定义 (1) 4.浮阀/筛孔板式塔盘的设计 (1) 5.填料塔的设计 (1)

1.目的与适用范围 为提高工艺工程师的设计质量,推广计算机应用而编写本手册。 本手册是针对气液传质塔设备中的普遍性问题而编写。对于某些具体塔设备的数据(比如:某生产流程中针对某塔设备的板效率而采用的计算关联式,或者对于某吸收填料塔的传质单元高度或等板高度而采用的具体计算公式)则未予收入。本设计手册以应用为主,主要是指导性的计算方法和步骤,并配合相应的计算程序,具体公式及理论推阐可参考有关文献。 2.塔设备特性 作为气(汽)、液两相传质用的塔设备,首先必须能使气(汽)、液两相得到充分的接触,以得到较高的传质分离效率。 此外,塔设备还应具有以下一些特点: (1)当气(汽)、液处理量过大(超过设计值)时,仍不致于发生大量的雾 沫挟带或液泛等影响正常操作的现象。 (2)当操作波动(设计值的50%~120%)较大时,仍能维持在较高的传 质效率下稳定操作,并具有长期连续操作所必须具备的可靠性。 (3)塔压力降尽量小。 (4)结构简单、耗材少、制造和安装容易。 (5)耐腐蚀、不易堵塞。 (6)塔内的滞留液量要小。 3.名词术语和定义 3.1 塔径(tower diameter),D T 塔筒体内壁直径,见图3.1-(a)。 3.2 板间距(tray spacing),H T 塔内相邻两层塔盘间的距离,见图3.1-(a)。 3.3 降液管(downcomer),DC 各层塔盘之间专供液相流体通过的组件,单溢流型塔盘为侧降液管,双溢流型塔盘有侧降液管和中央降液管,三或多溢流型塔盘有侧降液管、偏侧降液管、偏中央降液管及中央降液管。 3.4 降液管顶部宽度(DC top width),Wd 弓形降液管面积的弦高。掠堰另有算法,见图3.1-(a),-(b)。 3.5 降液管底间隙(DC clearance),ho 降液管底部边缘至塔盘(或受液盘)之间的距离,见图3.1-(a)。 3.6 溢流堰高度(weir height),hw 降液管顶部边缘高出塔板的距离,见图3.1-(a)。 3.7 总的塔盘横截面积(total tower cross-section area),A T

水力学常用计算公式精选文档

水力学常用计算公式精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1、明渠均匀流计算公式: Q=A ν=AC Ri C=n 1R y (一般计算公式)C=n 1 R 61 (称曼宁公式) 2、渡槽进口尺寸(明渠均匀流) z :渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=~ b :渡槽的宽度(米) h :渡槽的过水深度(米) φ:流速系数φ=~ 3、倒虹吸计算公式: Q=mA z g 2(m 3/秒) 4、跌水计算公式: 5、流量计算公式: Q=A ν 式中Q ——通过某一断面的流量,m 3/s ; ν——通过该断面的流速,m /h A ——过水断面的面积,m 2。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 (1)淹没出流:Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)实用堰出流:Q=εMBH 2 3 gZ 2bh Q =跌水水力计算公式:Q =εmB 2 /30g 2H , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B —进口宽度(米);m —流量系数

=侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)孔口自由出流计算公式为 Q=M ωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q=μA 02gH =流量系数×放水孔口断面面积×02gH 2)、有压管流 Q =μA 02gH =流量系数×放水孔口断面面积×02gH 8、测流堰的流量计算——薄壁堰测流的计算 1)三角形薄壁测流堰,其中θ=90°,即 自由出流:Q =2 5或Q =(2-15) 淹没出流:Q =(25 )σ(2-16) 淹没系数:σ=2)13.0( 756.0--H h n +(2-17) 2)梯形薄壁测流堰,其中θ应满足tan θ=4 1 ,以及b >3H ,即 自由出流:Q =g 22 3=2 3(2-18)

工艺专业塔器水力学计算设计导则

1 塔器设计概述 1.1 石油化工装置中塔器占有很大的比重。几乎每种工艺流程都存在蒸馏或吸收等分离单元过程,因此塔器设计至关重要。往往塔器设计的优劣,决定着装置的先进性和经济性,必须给予重视。 1.2 塔器设计与工艺流程设计有着非常密切的关系,亦即塔器的选型和水力学计算与工艺流程的设计计算是结合在一起的。有时塔器设计影响着分离流程和操作条件的选择。例如减小蒸馏塔的回流比,能降低能耗,但塔板数增加,对塔器讲就是减小塔径和增加塔高,其中必有一个最经济条件的选择。又如真空塔或对釜温有要求的蒸馏塔均对压降要求较严,需要选择压降低的板式塔或填料塔,在塔器水力学计算后,压降数据要返回工艺作釜温核算。 1.3 一般工艺流程基本确定后,进行塔器的选型、设计等工作。塔器设计涉及到工艺、化学工程、设备、仪表、配管等专业。化学工程专业的任务及与各专业间关系另有说明。见化学工程专业工作手册H-P0101-96、H-P0301-96。 1.4 随着石油化工和科技的迅猛发展,蒸馏塔从一般的一股进料、二股产品的常规塔发展为多股进料、多侧线,有中间换热的复杂塔。要求塔的生产能力大、效率高、塔板数多,即大塔径、多程数、高效、低压降等,对塔器设计提出了更高的要求,并推动了塔器设计工作的发展。 1.5 近年来电子计算机的普及和发展,为工艺与塔器设计提供了有力的工具。我们可应用PROCESS或PRO/Ⅱ等工艺流程模拟软件进行计算,得到塔的最大和最小汽液负荷、密度等数据,以便进行分段的塔的水力学计算,使工艺和塔的水力学计算能同步进行,并作多方案比较,求得最佳设计。 1.6 设计中主要考虑的问题 1.6.1 确定工艺流程(尤其是分离流程) 通过工艺流程模拟电算,选定最佳切割方案,其中包括多股进料、侧线采出、进料状态和位置等方面的选择。 1.6.2 塔压的设定

流体力学计算题

水银 题1图 高程为9.14m 时压力表G 的读数。 题型一:曲面上静水总压力的计算问题(注:千万注意方向,绘出压力体) 1、AB 曲面为一圆柱形的四分之一,半径R=0.2m ,宽度(垂直纸面)B=0.8m ,水深H=1.2m ,液体密度3 /850m kg =ρ,AB 曲面左侧受到液体压力。求作用在AB 曲面上的水平分力和铅直分力。(10分) 解:(1)水平分力: RB R H g A h P z c x ?- ==)2 (ργ…….(3分) N 1.14668.02.0)2 2 .02.1(8.9850=??- ??=,方向向右(2分)。 (2)铅直分力:绘如图所示的压力体,则 B R R R H g V P z ??? ? ????+-==4)(2πργ……….(3分) 1.15428.04 2.014.32.0)2.02.1(8.98502=???? ? ?????+?-??=,方向向下(2分) 。 l d Q h G B A 空 气 石 油 甘 油 7.623.66 1.52 9.14m 1 1

2.有一圆滚门,长度l=10m ,直径D=4.2m ,上游水深H1=4.2m ,下游水深H2=2.1m ,求作用于圆滚门上的水平和铅直分压力。 解题思路:(1)水平分力: l H H p p p x )(2 12 22121-=-=γ 方向水平向右。 (2)作压力体,如图,则 l D Al V p z 4 432 πγγγ? === 方向垂直向上。 3.如图示,一半球形闸门,已知球门的半径m R 1= ,上下游水位差m H 1= ,试求闸门受到的水平分力和竖直分力的 大小和方向。 解: (1)水平分力: ()2R R H A h P c πγγ?+===左,2R R A h P c πγγ?='=右 右左P P P x -= kN R H 79.30114.31807.92=???=?=πγ, 方向水平向右。 (2)垂直分力: V P z γ=,由于左、右两侧液体对曲面所形成的压力体均为半球面,且两侧方向相反,因而垂直方向总的压力为0。 4、密闭盛水容器,已知h 1=60cm,h 2=100cm ,水银测压计读值cm h 25=?。试求半径R=0.5m 的半球盖AB 所受总压力的水平分力和铅垂分力。

水力学题(完整资料).doc

【最新整理,下载后即可编辑】 ⒈在倾角θ=30°的斜面上有一厚度为δ=0.5 mm的油层。一底面积A=0.15m2,重G=25N的物体沿油面向下作等速滑动,如图所示。求物体的滑动速度u 。设油层的流速按线性分布,油的动力粘度μ=0.011 N·s/ m2。 2.有一与水平面成倾斜角α=60°的自动翻版闸门,如图所示。当上游水深超过h1= 2.5m,下游水深h2= 0.5m时,闸门便自动开启。求翻板闸门铰链的位置l值。(不计摩擦力和闸门自重) 3.有一水电站的水轮机装置,如图所示。已知尾水管起始断面1的直径d=1 m ,断面1与下游河道水面高差h=5 m。当通过水轮机的流量Q=1.5 m3/s 时,尾水管(包括出口)水头损失h =

1.5m 。求断面1的动水压强。 4.某渠道在引水途中要穿过一条铁路,于路基下修建圆形断面涵洞一座,如图所示,已知涵洞设计流量(即渠道流量)Q=1 m3/s ,涵洞上下游允许水位差z =0.3 m ,涵洞水头损失 1h ω =1.4722v g (v 为洞内流速)。涵洞上下游渠道流速极小。求涵洞 直径d 。 5.图示一从水库引水灌溉的虹吸管,管径d=10 cm ,管中心线的最高点B 高出水库水面2 m 。管段AB (包括进口)的水头损 失AB h ω=3.522v g ,管段BC 的水头损失BC h ω=1.522v g (v 为管中流速)。 若限制管道最大真空高度不超过6 m 水柱,问:(1)虹吸管引水流量量有无限制?如有,最大值为多少?(2)水库水面至虹吸管出口的高差h 有无限制?如有,最大值为多少? B

6.有一大水箱,水箱面积很大,下接一管道,如图所示。已知大管和收缩段管径分别为d 1=5 cm 和d 2=4 cm ,水箱水面与管道出口中心点的高度差H =1 m 。如不计水头损失,问容器A 中的水是否会沿管B 上升?如上升,上升高度h 为若干? 7.有一从水箱引水的管道如图所示。等直径管段ABC 的直径d 1=20 cm ,收缩段CD 末端直径d 2=10 cm ,图中高差h=5 m ,H =25 m 。从渐变流断面A 至管道最高点B ,以及管段BC ,CD 的水头损失分别为AB h ω=222v g ,BC h ω=0.822v g ,CD h ω=0.222v g (v 为管段ABC 中的流速)。求通过管道的流量及断面B 中心点的动水压强。 A

水力学中常用的基本计算方法-推荐下载

水力学中常用的基本计算方法 水力学中经常会遇到一些高次方程,微分方程的求解问题。多年来,求解复杂高次方程的基本方法便是试算法,或查图表法,对于简单的微分方程尚可以用积分求解,而边界条件较为复杂的微分方程的求解就存在着较大的困难,但随着计算数学的发展及计算机的广泛使用,一门新的水力学分支《计 算水力学》应运而生,但用计算机解决水力学问题,还需 要了解一些一般的计算方法。在水力学课程中常用的有以下 几种,现分述于后。 一、高次方程式的求解方法: (一)二分法 1、二分法的基本内容:在区间[X1,X2]上有一单调连续函 数F(x)=0,则可绘出F(x)~X关系曲线。如果在两端点处函数值异号即F(x1)·F(x2)<0,(见图(一)),则方 程F(x)=0,在区间[X1,X2]之间有实根存在,其根的范围 大致如下:取 22 1 3x x x + = 1°若F(x2)·F(x3)>0, 则解ξ∈[X1,X3] 2°若F(x2)·F(x3)<0, 则解ξ∈[X3,X2] 3°若F(x2)·F(x3)=0, 则解ξ=X3 对情况1°,可以令x2=x3,重复计算。 对情况2°,可以令x1=x3,重复计算。

当规定误差ε之后,只要|x 1-x 2|≤ε,则x 1(或x 2)就 是方程F(x)=0的根。 显然,二分法的理论依据就是高等数学中的连续函数介 值定理。 它的优点是思路清晰,计算简单,其收敛速度与公比为 的等比级数相同;它的局限性在于只能求实根,而不能求 2 1 重根。 2、二分法的程序框图(以求解明渠均匀流正常水深为 例) 最后必须说明,二分法要求x 2值必须足够大,要保证 F 1·F 2<0,否则计算得不到正确结果。为了避免x 2值不够大, 产生计算错误,在程序中加入了判别条件F 1·F 2>0。也可以给 定x J 及步长△x ,让计算机选择x 2(x 2=x 1+△x)。 (二)牛顿法, 1、牛顿法的基本内容:设有连续函数F(x)=0,则可以绘 出F(x)~x 关系曲线,选取初值x o ,过点(x o ·F(x o ))作一切 线,其斜率为辅F '(x o ),切线与x 轴的交点是x 1, 则有: ) ()('1o o o x F x F x x - =再过(x 1,F(x 1)作切线,如此类推得到牛顿法的一个迭代序列: x n+l =x n -F(x n )/F '(x n ),令x n =x n +1,重复计算,直至满足给定 的精度要求,即|x n+1-x n |≤,从而得到方程F(x)=0的根。 牛顿法具有平方收敛速度,比较快,但计算工作量大,每 次运算除计算函数值外,还要计算微商值。对于牛顿法来讲,

水力学常用计算公式

1、明渠均匀流计算公式: Q=Aν=AC Ri C=n 1Ry (一般计算公式)C=n 1 R 61 (称曼宁公式) 2、渡槽进口尺寸(明渠均匀流) gZ 2bh Q = z :渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=0。8~0。9 b:渡槽的宽度(米) h :渡槽的过水深度(米) φ:流速系数φ=0。8~0.95 3、倒虹吸计算公式: Q =mA z g 2(m 3/秒) 4、跌水计算公式: 跌水水力计算公式:Q =εmB 2 /30g 2H , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B —进口宽度(米);m —流量系数 5、流量计算公式: Q=Aν 式中Q —-通过某一断面的流量,m 3/s; ν——通过该断面的流速,m/h A —-过水断面的面积,m2。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 (1)淹没出流:Q=εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)实用堰出流:Q=εMBH 2 3

=侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)孔口自由出流计算公式为 Q=MωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q =μA02gH =流量系数×放水孔口断面面积×02gH 2)、有压管流 Q =μA 02gH =流量系数×放水孔口断面面积×02gH 8、测流堰的流量计算—-薄壁堰测流的计算 1)三角形薄壁测流堰,其中θ=90°,即 自由出流:Q =1。4H 2 5或Q=1.343H 2.47(2—15) 淹没出流:Q=(1。4H 25)σ(2-16) 淹没系数:σ=2)13.0( 756.0--H h n +0.145(2-17) 2)梯形薄壁测流堰,其中θ应满足t anθ= 4 1 ,以及b >3H,即 自由出流:Q =0.42b g 2H 2 3=1.86bH 2 3(2—18)

水力学计算题型

计算题类型 一、 点压强计算 1. 一封闭水箱自由液面上的绝对气体压强2 ' 0/25m kN p =, m h m h 2,421== ,求A 、B 两点的相对压强? (1) 涉及到的概念:等压面、等压面是水平面的条件、静压强基本方程。 (2) 解题思路:① 找等压面② 找已知点压强 ③利用静压强基本方程推求。 二、 静水总压力计算 1. 如图示,一平板闸门,两侧有水,左侧水深为3 m ,右侧水深为2 m ,求作用在单宽闸门上的静水总压力及作用点。 (1) 涉及到的概念:相对压强分布图、总压力:A gh P c ρ= (2) 压心: A y I y y c c C D + = (3) 解题思路:① 求出各分力 ② 合成求总压力作用点 ③ 注意,是力 的平衡还是力矩平衡

4. 如图示,一弧形闸门,其宽度 b=6m ,圆心角0 30=φ,半径m R 5.2=,闸门轴与水面齐平。求水对闸门的总压力及总压力对轴的力矩? (1) 涉及到的概念:水平分力 x c x A gh P ρ= 垂直分力 gV P z ρ= ,压立体图。 (2) 解题思路: ① 画压力体图 ② 画投影面压强分布图 ② 求解水平分力、垂直分力、总压力 2 2z x p P P += 、 总压力作用线 x z P P arctan =α 三、运动学 1 . 已知平面流动,2 22,2y x a u xy u y x -+==,a 为常数,试判断 该液流是 (1)是恒定流还是非恒定流? (2)是否满足不可压缩流体连续性微分方程,(流动是否存在)? (3)是均匀流还是非均匀流? (4)是有旋流还是无旋流? (一)涉及到的概念: 质点加速度表达式:z u u y u u x u u t u a x z x y x x x x ??+??+??+??= 恒定流( 0=??t u )非恒定流 ( 0≠??t u ) 恒定流 0=??+??+??=z u u y u u x u u a x z x y x x x ,0 ==z y a a 不可压缩流体连续性微分方程: 0=??+ ??+ ??z u y u x u z y x

水力学试题(计算题).

水力学试题(计算题) 0.6 如图所示有一0.8×0.2m的平板在油面上作水平运动,已知运动速度μ=1m/s,平板与固定边界的距离δ=1mm,油的动力粘滞系数为1.15N.S/m2,由平板所带动的油的速度成直线分布,试求平板所受的阻力。 题0.6 0.7 (1)容积为4m3的水,当压强增加了5个大气压时容积减少1升,试求该水的体积弹性系数K。 (2)又为使水的体积相对压缩1/1000,需要增大多少压强? 1.23 如图示,闸门AB宽1.2m,铰在A点,压力表G的读数为-14700N/m2,在右侧箱中油的容重γ0=8.33KN/m2,问在B点加多大的水平力才能使闸门AB 平衡? 题1.23 2.21 贮水器内水面保持恒定,底部接一铅垂直管输水,直管直径d1=100mm,末端收缩管嘴出口直径d2=50mm,若不计水头损失,求直管中A、B两断面的压强水头。

题2.21 2.22 设有一股自喷咀以速度V0喷射出来的水流,冲击在一个与水流方向成α角的固定平面壁上,当水流冲击到平面壁后,分成两股水流流出冲击区,若不计重量,(流动在一个水平面上),并忽略水流沿平面壁流动时的摩阻力,试推证沿着射流方向施加于平面壁上的压力P=ρ.Q.V0sin2α,并求出Q1与Q2各为多少? 题2.22 2.23 水平放置的水电站压力钢管分岔段,用混凝土支座固定,已知主管直径D = 3.0m,两个分岔管直径d=2.0m,转角α=1200,主管末断压强p=294KN/m2,通过总流量Q=35m3/s,两分岔管的流量相等,动水压强相等,损失不计,试求水对支座的总推力为若干? 题2.23 2.24 射流自喷嘴中水平射出,冲击在一块与射流方向垂直的正方形平板上,平

计算水力学基础

计算水力学基础 李占松编著 郑州大学水利与环境学院

内容简介 本讲义是编者根据多年的教学实践,并参考《微机计算水力学》(杨景芳编著,大连理工大学出版社出版,1991年5月第1版)等类似教材,取其精华,编写而成的。目的是使读者掌握通过计算机解水力学问题的方法,为解决更复杂的实际工程问题打下牢固的计算基础。书中内容包括:数值计算基础,偏微分方程式的差分解法,有限单元法;用这些方法解有压管流、明渠流、闸孔出流、堰流、消能、地下水的渗流及平面势流等计算问题。讲义中的用FORTRAN77算法语言编写的计算程序,几乎包括了全部水力学的主要计算问题。另外,结合讲授对象的实际情况,也提供了用VB算法语言编写的计算程序。 VB程序编程人员的话 为了更好地促进水利水电工程建筑专业的同学学好《微机计算水力学》这门学科,编程员借暑假休息的时间,利用我们专业目前所学的VB中的算法语言部分对水力学常见的计算题型编制成常用程序。希望大家能借此资料更好地学习《微机计算水力学》这门课程。本程序着重程序的可读性,不苛求程序的过分技巧。对水力学中常用的计算题型,用我们现在所学的VB语言编制而成。由于编程员能力有限,程序中缺点和错误在所难免,望老师和同学及时给予批评指正。 VB程序编程人员:黄渝桂曹命凯

前言 ----计算水力学的形成与发展 计算水力学作为一门新学科,形成于20世纪60年代中期。水力学问题中有比较复杂的紊流、分离、气穴、水击等流动现象,并存在各种界面形式,如自由水面、分层流、交界面等。 由各种流动现象而建立的数学模型(由微分方程表示的定解问题),例如连续方程、动量方程等组成的控制微分方程组,多具有非线性和非恒定性,只有少数特定条件下的问题,可根据求解问题的特性对方程和边界条件作相应简化,而得到其解析解。因此长期以来,水力学的发展只得主要藉助于物理模型试验。 随着电子计算机和现代计算技术的发展,数值计算已逐渐成为一个重要的研究手段,发展至今,已广泛应用与水利、航运、海洋、流体机械与流体工程等各种技术科学领域。 计算水力学的特点是适应性强、应用面广。首先流动问题的控制方程一般是非线性的,自变量多,计算域的几何形状任意,边界条件复杂,对这些无法求得解析解的问题,用数值解则能很好的满足工程需要;其次可利用计算机进行各种数值试验,例如,可选择不同的流动参数进行试验,可进行物理方程中各项的有效性和敏感性试验,以便进行各种近似处理等。它不受物理模型试验模型律的限制,比较省时省钱,有较多的灵活性。 但数值计算一是依赖于基本方程的可靠性,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差;二是它不像物理模型试验一开始就能给出流动现象并定性地描述,却往往需要由原体观测或物理实验提供某些流动参数,并对建立的数学模型验证;三是程序的编制及资料的收集、整理与正确利用,在很大程度上依赖于经验与技巧。 所以计算水力学有自己的原理方法和特点,数值计算与理论分析观测和试验相互联系、促进又不能相互代替,已成为目前解决复杂水流问题的主要手段之一,尤其是在研究流动过程物理机制时,更需要三者有机结合而互相取长补短。 近三、四十年来,计算水力学有很大的发展,替代了经典水力学中的一些近似计算法和图解法。例如水面曲线计算;管网和渠系的过水或输沙(排污)能力的计算;有水轮机负荷改变时水力震荡系统的稳定性计算研究;流体机械过流部件的流道计算以及优化设计,还有洪水波、河口潮流计算,以及各种流动条件下,不同排放形式的污染物混合计算等。 上世纪70年代中期已从针对个别工程问题建立的单一数学模型,开始建立对整个流域洪泛区已建或规划中的水利水电工程进行系统模拟的系统模型。理论课题的研究中,对扩散问题、传热问题、边界层问题、漩涡运动、紊流等问题的研究也有了很大的发展,并已开始计算非恒定的三维紊流问题。 由于离散的基本原理不同,计算水力学可分为两个分支:一是有限差分法,在此基础上发展的有有限分析法;二是有限单元法,在此基础上提出了边界元法和混合元法,另外还有迎风有限元法等。

水力学画图与计算教学文案

水力学画图与计算

五、作图题(在题图上绘出正确答案) 1.定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同) (5分) 2、定性绘出图示管道(短管)的总水头线和测压管水头线。 3、定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同, 末端有一跌坎) (5分)

6、 上水平分力的压强分布图和垂直分力的压力体图。 7、定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同 ) 六、根据题目要求解答下列各题 1、图示圆弧形闸门AB(1/4圆), A 点以上的水深H =1.2m ,闸门宽 B =4m ,圆弧形闸门半径R =1m ,水面均为大气压强。确定圆弧形闸门AB 上作用的静水总压力及作用方向。 解:水平分力 P x =p c ×A x =74.48kN 铅垂分力 P y =γ×V=85.65kN, 静水总压力 P 2= P x 2+ P y 2, P=113.50kN, tan = P y /P x =1.15 ∴ =49° 合力作用线通过圆弧形闸门的圆心。 2、图示一跨河倒虹吸圆管,管径d =0.8m ,长 l =50 m ,两个 30。 折角、进口和出口的局部水头损失系数分别为 ζ1=0.2,ζ2=0.5,ζ3=1.0,沿程水头损失系数λ=0.024,上下游水位差 H =3m 。若上下游流速水头忽略不计, 程 g v R l h H w 2)4(2 ∑+==ξλ 计算圆管道断面的水力半径和局部水头损失系数 9.10.15.022.0 , m 2.04/=++?==== ∑ξχ d A R 将参数代入上式计算,可以求解得到 /s m 091.2 , m /s 16.4 3===∴ vA Q v 即倒虹吸管内通过的流量为2.091m 3/s 。

水力学画图与计算

五、作图题(在题图上绘出正确答案) 1.定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同) (5分) 2、定性绘出图示管道(短管)的总水头线和测压管水头线。 3、定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同,末端有一跌坎) (5分) 4、定性绘出图示曲面ABC上水平方向的分力 和铅垂方向压力体。(5分)

6AB 上水平分力的压强分布图和垂直分力的压力体图。 A B 7、定性绘出图示棱柱形明渠的水面曲线,并注明曲线名称。(各渠段均充分长,各段糙率相同) K K i < i 1 k i >i 2 k 六、根据题目要求解答下列各题 1、图示圆弧形闸门AB(1/4圆), A 点以上的水深H =1.2m ,闸门宽B =4m ,圆弧形闸门半径R =1m ,水面均为大气压强。确定圆弧形闸门AB 上作用的静水总压力及作用方向。 解:水平分力 P x =p c ×A x = 铅垂分力 P y =γ×V=, 静水总压力 P 2 = P x 2 + P y 2, P=, tan = P y /P x = ∴ =49° 合力作用线通过圆弧形闸门的圆心。 2、图示一跨河倒虹吸圆管,管径d =0.8m ,长 l =50 m ,两个 30。 折角、进口和出口的局部水头损失系数分别为 ζ1=,ζ2=,ζ3=,沿程水头损失系数λ=,上下游水位差 H =3m 。若上下游流速水头忽略不计,求通过倒虹吸管的流量Q 。 H R O B R 测压管水头 总水头线 v 0=0 v 0=0

解: 按短管计算,取下游水面为基准面,对上下游渠道内的计算断面建立能量方程 g v R l h H w 2) 4(2 ∑+==ξλ 计算圆管道断面的水力半径和局部水头损失系数 9.10.15.022.0 , m 2.04/=++?==== ∑ξχ d A R 将参数代入上式计算,可以求解得到 /s m 091.2 , m /s 16.4 3===∴ vA Q v 即倒虹吸管内通过的流量为2.091m 3 /s 。 3、某水平管路直径d 1=7.5cm ,末端连接一渐缩喷嘴通大气(如题图),喷嘴出口直径d 2=2.0cm 。用压力表测得管路与喷嘴接头处的压强p =49kN m 2 ,管路内流速v 1=0.706m/s 。求水流对喷嘴的水平作用力F (可 取动量校正系数为1) 解:列喷嘴进口断面1—1和喷嘴出口断面2—2的连续方程: 得喷嘴流量和出口流速为: s m 00314.03 11==A v Q s m 9.92 2== A Q v 对于喷嘴建立x 方向的动量方程 )(1211x x v v Q R A p -=-ρβ 8.187)(3233=--=v v Q A p R ρN 水流对喷嘴冲击力:F 与R , 等值反向。 4、有一矩形断面混凝土渡槽,糙率n =,底宽b =1.5m ,槽长L =120m 。进口处槽底高程Z 1=52.16m , 出口槽底高程Z 2=52.04m ,当槽中均匀流水深h 0=1.7m 时,试求渡槽底坡i 和通过的流量Q 。 解: i=(Z 1-Z 2)/L = 55.2==bh A m 2 d 1 v 1 P x 2 2 1 1 R

相关文档
最新文档