高浓度ss(悬浮物)废水处理

高浓度ss(悬浮物)废水处理
高浓度ss(悬浮物)废水处理

高浓度ss(悬浮物)废水处理

一.高浓度ss(悬浮物)废水处理

悬浮固体(SS)指水中呈悬浮状态的固体,一般指用滤纸过滤水样,将滤后截留物在105℃温度中干燥恒重后的固体重量。

高浓度SS废水主要来源于造纸废水、印染废水、养猪场废水、粪便污水、化肥厂废水、制药厂废水等。废水中固体悬浮物的测定方法主要有稀释与接种法、酚二磺酸分光光度法、重量法,其中比较常用的是重量法。

二.处理方法

1.其实关于SS的污水处理方法就那么几种,只是在处理的过程中个人对处理方法的理解不同,运用不同,所产生的结果就不一样。污水处理当中用到的净水剂不同,效果更是千差万别。

2.我们所采用的污水处理工艺是:在全部的经过预处理之后,我们采用高效复合净水剂和泥水分离一体机设备,对处理后SS仍未达标的废水进行应急处理,可有效去除污水中SS,降低污水色度。

工艺流程如下:

“高浓度SS污(废)水处理工艺”

经过这套工艺(化学法当中的混凝法)和所使用的高效复合净水剂处理出来的水,SS 的含量能够达到污水处理后的排放标准。

在这个过程当中还应用到一个设备:PCBR生物反应器,

PCBR是以多孔性陶瓷担体作为核心的新型生物处理系统,将传统的厌氧好氧工艺结合在一起,污水处理的工程装置大大简化,节约了构造物的建造和运营费用。多孔介质PCBR 在污水的作用下迅速挂膜,微生物在膜上迅速生成,其所具有的特性有离子交换性、吸附性、化学转化性、催化性等加速污染物与其反应,对于BOD、COD、SS以及氨氮等污染物质去除具有显著的效果。

以下是PCBR生物反应器的图片:

为什么说我们能达到排放标准呢?

我们有自己的科研队伍,和北京大学环境工程研究所有合作关系,实验室设在北京大学。我们有任何一家做净水剂的企业所没有的优势:

当你有意向让我们替你处理问题的时候,我们先拿到你的样水或者数据,去实验室做实验。做完实验之后给你出一份可行的污水处理方案,这个在污水处理行业是绝无仅有的,这也是空前的,因为它是量身定做的。大量的实践证明了该工艺能够达到良好的净水效果,处理后的废水可以实现稳定地达标排放。

可以这样说,我们的经营理念和别人是不一样的,我们不把自己研发的净水剂当成一种产品来卖,我们把它定位成一种服务。售后的问题在产品出发前就已经解决了。

以下是我们做过的一个造纸厂污水处理水质的前后对比:

造纸厂专用净水剂应用案例(https://www.360docs.net/doc/d111032457.html,/anli/55.html)里面是详细的案例介绍。

以下是服务流程

三.高效复合净水剂

1.简介

高效复合净水剂SS型是北京科益创新环境技术有限公司和北京大学环境工程研究所联合开发的专门针对高浓度SS污(废)水进行处理的新型净水药剂。该净水剂中无机组分和有机组分以共价键结合,具有良好的稳定性,不仅能去除水中胶体颗粒物(如水源水和污水中的浊度、有机物、细菌、病毒等)、磷、氟、砷等,还可以高效去除传统絮凝剂难以去除的分子量小于500的溶解性污染物(如双氯芬酸、尼氟灭酸、PFOA等)。该净水剂最佳投药范围较宽,除浊脱色效果良好,可广泛应用于给水净化、废水处理中的除浊、脱色、固液分离等过程,尤其对高浓度SS污(废)水具有很强的净化作用。

2.特点

净水剂中的无机组分与有机组分以共价键复合,而不是传统复合絮凝剂中通过配位或静电作用松散的结合,从而保证了净水剂在水中具有很高的稳定性,这种结构是此净水剂区别于其他絮凝剂的最大特点。该净水剂可充分发挥无机絮凝剂和有机絮凝剂的优点,显著的提高了絮凝效果,从而大大提高了絮凝能力,具有快速、高效的絮凝效果,尤其对废水中的高浓度SS具有很强的去除能力。

3.优点

①、对细小颗粒、小分子有机物去除能力强,尤其对SS具有很好的去除能力。

②、无机组分与有机组分以共价键复合,净化剂的稳定性高。

③、分子量大,最佳投药范围广。

④、沉降速度快,污泥量少,易于脱水。

⑤、操作工艺简单。

5.应用范围

高效复合净水剂是一种新型水处理药剂,其使用范围广,pH值适应性大,对于多种废水具有良好的净化效果。尤其对经过前处理后SS仍不达标的废水,能够实现最低成本、最简工序和快速治理,实现达标排放。产品的应用领域主要包括:

1、高浓度SS废水的净化处理。

2、反渗透膜浓缩液的处理。

3、高浓度垃圾渗滤液处理。

4、化肥厂污水处理。

5、电子、医药、化工、发电、食品、印染及涂装等行业的污水治理。

6、城市污水、生活污水和有机废水处理

高效复合净水剂和传统净水剂的对比:

高效复合净水剂-SS型(https://www.360docs.net/doc/d111032457.html,/chanpin/46.html)里面是这个净水剂的详细介绍。

常见工业废水的处理方法

常见工业废水的处理方法 常见工业废水的处理方法 摘要主要介绍几种现代常用的工业废水处理方法 关键词:工业废水、处理 1.造纸厂废水处理 2019 年中国造纸工业纸浆消耗总量为5 992 万t ,其中废纸浆为3 380 万t ,占总 浆量的 56. 4 %[1 ] ,废纸回收持续增长,使废纸造纸生产废水成了近年来工业废水处理的热 点之一。 1.1 废水来源与污染物成分 经分析,废水中的主要污染物包括半纤维素、木质素及其衍生物、细小纤维、无机填料、油墨、染料等污染物。木质素及其衍生生物、半纤维素、油墨等是形成COD 及BOD 的主要成分;细小纤维、无机填料等主要形成SS ;而色度主要来自油墨和染料等。 1.2废纸造纸生产废水的处理[2] 废纸造纸生产废水的预处理的主要目的:在于回收废水中的纤维、降低生化系统负荷。一般厂家均在车间内部对白水进行纸浆回收,下面介绍的预处理主要是混合废水的厂外处理,主要包括纸浆回收、物化处理及生化处理。 1.3 纸浆回收 常用设备有斜筛、重力自流式筛网过滤机、普通旋转过滤机、反切单向流旋转过滤机等,常用的为斜筛。近年来出现多圆盘回收混合废水纤维。多圆盘运行费用低、基本不需 加药、回收纤维质量高、出水悬浮物含量低( SS 1.4 物化处理 物化预处理常用的有气浮法和沉淀法。气浮法主要为机械法和溶气法。机械法以涡凹 气浮为代表,溶气气浮以普通溶气气浮和浅层气浮为代表。 1.5生化处理 生化处理是废纸造纸生产废水处理的关键部分“, 厌氧+ 好氧”工艺具有耐冲击负荷、COD 去除率高、动力消耗低、运行费用低等优点,被广泛采用。厌氧处理一般采用水解酸 化或完全厌氧反应器(UASB、IC、PAFR 等) 。好氧处理一般采用活性污泥法、接触氧化法

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

高盐废水处理方法及案例

高盐废水是指含盐量超过总含盐量1%的含盐废水,包括高盐生活废水和高盐工业废水,其主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂等,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生很大危害。 为了使高盐废水达标排放,目前常用MVR 蒸发或三效蒸发器达到目的,具体表现为:含盐废水进入蒸发装置,经过蒸发冷凝的浓缩结晶过程,分离为淡化水和浓缩晶浆废液,无机盐和部分有机物可结晶分离出来作为固废处理,淡化水可返回生产系统替代软化水加以利用。但实际应用中由于高盐废水中的有机物含量高,经常出现蒸发器堵塞、蒸盐效率低、蒸盐颜色深等问题,给企业的稳定运行造成困扰。 高盐废水吸附工艺,对蒸盐前的废水进行预处理,将废水中绝大部分的有机物吸附去除,提高后续蒸发系统运行的稳定性,并降低蒸盐的色度,固盐由危废变为固废,减少企业生产的运行费用,给高盐废水治理提供了一个有效的解决办法。 将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的有机物吸附在材料表面,使出水COD 明显减低。吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。 吸附法的优点 1.深度去除废水中的有机物,降低吸附出水的COD 及色度,可保证出水蒸盐为白色,提高后续蒸发系统的稳定性; 吸附塔 过滤器 高盐废水 后续蒸发 氧化后返回生化系统 脱附液

2.采用特种改性的吸附材料,吸附容量大,设备投资少,运行费用低; 3.工艺流程简单,可实现全程自动化操作,操作维护方便。 4.可实现多层布置,占地面积小,安装周期短。 案例介绍 本新建高盐废水吸附处理设施,总设计废水处理规模为100m3/d,废水为厂内混合高盐废水,废水颜色深,蒸发为棕色,固废处理费用高。海普对该废水进行了定制化的工艺设计,废水设计指标如下表。 表1 废水设计参数表 指标水量(m3/d)颜色(mg/L) 吸附进水100 棕红色 吸附出水~100 淡黄色 出水蒸盐白色 图2 原水(左)、出水(右)外观图

废水中悬浮物(SS)的测定

废水中悬浮物(SS)的测定 悬浮物是指不能通过过滤器的固体物。测定方法有滤纸法和石棉坩埚法,由于滤孔大小对测定结果又很大影响,两种方法测定结果有出入,在报告结果时,应注明测定方法。石棉坩埚法通常用于测定含酸或碱浓度较高的水样的悬浮物。 一、测定方法: 用0.45μm滤膜过滤水样,留在滤膜上并于103~105℃烘至恒重的固体,经103~105℃烘干后得到SS含量。 二、仪器 1、烘箱 2、分析天平 3、干燥器 4、滤膜,孔径为0.45μm、直径45~60mm。 5、玻璃漏斗 6、真空泵 7、称量瓶,内径为30-50mm 8、无齿扁嘴镊子 9、蒸馏水或同等纯度的水 三、测定步骤 1、用无齿扁嘴镊子将滤膜放在称量瓶中,打开瓶盖,移入烘箱中于103~105℃烘干2h,取出,置于干燥器内冷却至室温,称其重量。反复烘干、冷却、称量,直至恒重(两次称量相差不超过0.5mg) 2、去除悬浮物后振荡水样,量取充分混合均匀的试样100mL 抽吸过滤。使水分全部通过滤膜。再以每次10mL 蒸馏水连续洗涤3~5次。如样品中含有油脂,用10mL 石油醚分2次淋洗残渣。

3、停止吸滤后,小心取下载有SS的滤膜放在原恒重的称量瓶内,移入烘箱中于103~105℃下烘干2h后移入干燥器中,使冷却到室温,称其重量,反复烘干、冷却、称量,直至恒重为止。 四、废水中悬浮物浓度计算: 悬浮固体(mg/L)= [(A-B)×1000×1000]/V 式中:A——悬浮固体+滤膜及称量瓶重(g) B——滤膜及称量瓶重(g) V——水样体积(mL) 五、注意事项: 1、树叶、木棒、水草等杂质应从水样中除去。 2、废水粘度高时,可加2~4倍蒸馏水稀释,震荡均匀,待沉淀物下降后再过滤。

高含盐、氨氮、COD_化工废水处理[1]

江苏莱茵河医药化工材料有限公司 年产200吨4,4-二氨基苯酰替苯胺、200吨N-(乙氧基羰基苯基)-N’-甲基-N’-苯甲脒、150吨3,4’-二氨基二苯醚、300吨双(2, 2, 6, 6-四甲基-4-哌啶基)癸二酸酯、100吨4-叔丁基-4’-甲氧基二苯酰甲烷、50吨3,3’-双(对甲苯磺酰氨基羰基氨基)二苯甲酸-1,5-(3-氧代戊酯)、50吨4,4’-双(对甲苯磺酰氨基羰基氨基)二苯甲烷、100吨4-氨基-N-甲基苯甲酰胺、100吨1,3-双(4-氨基苯氧基)苯、200吨对硝基苯甲酰胺、120吨2-(4-氨基苯基)-5-氨基苯并咪唑技改项目 废水处理工艺 项 目 方 案 及 报 价 书 江苏穆玉耳环境工程有限公司 二○一○年六月

目录 一、公司简介 (1) 二、项目概况 (1) 三、项目基本资料 (1) 四、方案设计 (1) 4.1 工艺选择说明 (2) 4.2 工艺说明 (2) 4.3污水处理设备技术性能参数及说明 (3) 1、高含盐、高含有机物废水收集池(前置格栅井) (3) 2、三效蒸发器 (4) 3、蒸发集水池 (4) 4、铁碳微电解池 (5) 5、水质水量的调节——调节池 (6) 6、混凝沉降器 (6) 7、酸化水解池(上流式兼氧滤池) (7) 8、接触氧化池 (8) 9、斜管沉淀池 (9) 10、清水池 (9) 11、污泥浓缩池 (10) 12、机房 (10) 五、设备配置及报价 (10)

5.1 土建费用概算 (10) 5.2 主要机电设备及器材概算 (11) 5.3 工程总概算 (12) 附表:进水水质及园区污水处理厂水质接受标准 (13)

高含盐废水处理方法

高含盐废水处理方法 生物处理是目前废水处理最常用的方法之一,它具有应用范围广、适应性强等特点。化工废水如染料、农药、医药中间体等含盐较高的废水则给生物处理带来一定的难度。这类废水含盐较高,污染严重,必须处理才能排放。况且,此类废水成分复杂,不具备回收价值,采用其他处理方法成本较高,因此生物处理仍是首选的方法。无机盐类在微生物生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。但盐浓度过高,会对微生物的生长产生抑制作用,主要抑制原因在于①盐浓度过高时渗透压高,使微生物细胞脱水引起细胞原生质分离; ②高含盐情况下因盐析作用而使脱氢酶活性降低;③高氯离子浓度对细菌有毒害作用;④由水的密度增加,活性污泥容易上浮流失。为此,高含盐废水的生物处理需要进行稀释,通常在低浓度下(盐浓度小于1%)运行,造成水资源的浪费,处理设施庞大、投资增加,运行费用提高。随着水资源的日趋紧张,国家出台的保护水资源各项法规和收费的实施,给高含盐废水处理的企业带来了负担。 许多研究表明,生物方法可以处理高含盐废水。但由低盐到高盐,微生物有一个适应期。从淡水环境到高盐环境时,由于盐的变化可能引起微生物代谢途径的改变,菌种选择的结果使适应高盐的菌种较少,只有当微生物经培养驯化后,才能产生适应高盐的菌种,以耐受一定的盐浓度。 我们曾对含CaCl2和NaCl的废水生物处理进行过专门研究,取得了较好的结果,以下介绍高含盐废水生物处理的研究和经验。 1 污泥的来源与驯化 盐1%以下能很好生长的微生物为非好盐微生物,而在1%~2%以上均能生存增殖的微生物为耐盐微生物。高含盐废水生物处理关键是要驯化出耐盐微生物。 我们分别选用普通污水处理厂的活性污泥和高含盐废水排放沟边土壤中耐盐微生物进行试验将普通污泥倒入含CaCl21%左右的曝气池中,经过半个月驯化,镜检微生物菌胶团结 构紧密,原生动物有钟虫、豆形虫、浮游虫等,多而活跃。经逐步驯化至耐盐为3%。将含盐废水排放的沟边土壤与废水混合搅拌后,取悬浮液倒入曝气池,镜检菌胶团结构良好,色泽透明有大量的豆形虫,非常活跃。用实际工业废水在不同盐浓度下经过3个月试验,两种方法培养的微生物试验结果分别见表1和表2。

实验1 废水悬浮固体和浊度的测定

实验一废水悬浮固体和浊度的测定 一、实验目的和要求 掌握悬浮固体和浊度的测定方法。 实验前复习第二章残渣和浊度的有关内容。 二、悬浮固体的测定 (一)、原理 悬浮固体系指剩留在滤料上并于103—105℃烘至恒重的固体。测定的方法是将水样通过滤料后,烘干固体残留物及滤料,将所称重量减去滤料重量,即为悬浮固体(总不可滤残渣)。 (二)、仪器 1.烘箱。 2.分析天平。 3.干燥器。 4.孔径为0.45μm滤膜及相应的滤器或中速定量滤纸。 5.玻璃漏斗。 6.内径为30—50mm称量瓶。 (三)、测定步骤 1.将滤膜放在称量瓶中,打开瓶盖,在103—105℃烘干2h,取出冷却后盖好瓶盖称重,直至恒重(两次称量相差不超过0.0005g)。 2.去除漂浮物后振荡水样,量取均匀适量水样(使悬浮物大于2.5mg),通过上面称至恒重的滤膜过滤;用蒸馏水洗残渣3—5次。如样品中含油脂,用10mL石油醚分两次淋洗残渣。 3.小心取下滤膜,放入原称量瓶内,在103—105℃烘箱中,打开瓶盖烘2h,冷却后盖好盖称重,直至恒重为止。 (四)、计算 式中:A——悬浮固体+滤膜及称量瓶重(g); B——滤膜及称量瓶重(g); V——水样体积(mL)。 (五)、注意事项: 1.树叶、木棒、水草等杂质应先从水中除去。 2.废水粘度高时,可加2—4倍蒸馏水稀释,振荡均匀,待沉淀物下降后再过滤。 3.也可采用石棉坩埚进行过滤。

三、浊度 (一)、原理 浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉砂、微细有机物、无机物、浮游动物和其他微生物等悬浮物和胶体物都可使水样呈现浊度。水的浊度大小不仅和水中存在颗粒物含量有关,而且和其粒径大小、形状、颗粒表面对光散射特性有密切关系。 将水样和硅藻土(或白陶土)配制的浊度标准液进行比较。相当于1mg一定粘度的硅藻土(白陶土)在1000mL水中所产生的浊度,称为1度。 (二)、仪器 1.100mL具塞比色管。 2.1L容量瓶。 3.750mL具塞无色玻璃瓶,玻璃质量和直径均需一致。 4.1L量筒。 (三)、试剂 浊度标准液 1、称取10g通过0.1mm筛孔(150目)的硅藻土,于研钵中加入少许蒸馏水调成糊状并研细,移至1000mL量筒中,加水至刻度。充分搅拌,静置24h,用虹吸法仔细将上层800mL悬浮液移至第二个1000mL量筒中。向第二个量筒内加水至1000mL,充分搅拌后再静置24h。 虹吸出上层含较细颗粒的800mL悬浮液,弃去。下部沉积物加水稀释至1000mL。充分搅拌后贮于具塞玻璃瓶中,作为浑浊度原液。其中含硅藻土颗粒直径大约为400μm左右。 取上述悬浊液50mL置于已恒重的蒸发皿中,在水浴上蒸干。于105℃烘箱内烘2h,置干燥器中冷却30min,称重。重复以上操作,即,烘1h,冷却,称重,直至恒重。求出每毫升悬浊液中含硅藻土的重量(mg)。 2、吸取含250mg硅藻土的悬浊液,置于1000mL容量瓶中,加水至刻度,摇匀。此溶液浊度为250度。 3、吸取浊度为250度的标准液100mL置于250mL容量瓶中,用水稀释至标线,此溶液浊度为100度的标准液。 于上述原液和各标准液中加入1g氯化汞,以防菌类生长。 (四)、测定步骤 1.浊度低于10度的水样 (1)吸取浊度为100度的标准液0、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0及10.0mL于100mL比色管中,加水稀释至标线,混匀。其浊度依次为0、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0度的标准液。 (2)取100mL摇匀水样置于100mL比色管中,与浊度标准液进行比较。可在黑色底板上,由上往下垂直观察。

常见的几种工业污水处理技术

常见的几种工业污水处理技术 时间:2009-03-11 16:16来源:作者: 关键词:工业污水处理,污水处理 常见工业污水处理技术介绍 1 企业,主要分布在电子、塑胶、电镀、五金、印刷、食品、印染等行业。从污水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的污水和食品、印染、印刷及生活污水等以有机类污染物为主的污水是处理的 常见工业污水处理技术介绍 1 企业,主要分布在电子、塑胶、电镀、五金、印刷、食品、印染等行业。从污水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的污水和食品、印染、印刷及生活污水等以有机类污染物为主的污水是处理的重点。本文主要介绍几种比较典型的工业污水的处理技术。一、表面处理污水 1.磨光、抛光污水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,污水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 污水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂污水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,污水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理: 污水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放 该类污水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当污水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化污水 酸洗污水主要在对钢铁零件的酸洗除锈过程中产生,污水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理: 污水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放 磷化污水又叫皮膜污水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该

废水除氨氮工艺比较知识讲解

国内高浓度氨氮废水处理常见工艺 物化法 国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸 汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟 道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。 1.2.1.1空气吹脱法 空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓 度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。废水中的氨 氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。 NH4++ OH-→ NH3+ H2O 在吹脱过程中,废水pH值、水温、水力负荷及气水比对吹脱效果有较大影响。一般来说,pH值要提高至10.8~11.5,水温一般不能低于20℃,水力 负荷为2.5~5 m3/(m2·h),气水比为2500~5000 m3/m3,此时氨氮去除率 在80%~95%。 空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有 彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时, NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。 另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨 氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg?L-1以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法 蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。 蒸汽汽提法适用于处理连续排放的高浓度氨氮废水(浓度在1000 mg?L-1以上),操作条件易于控制。对于浓度在1000~30000 mg?L-1,甚至更高浓度的氨氮废水,采用该法可以经一次处理后,氨氮浓度达到15 mg?L-1(国家一级排放标准)以下。 蒸汽汽提脱氨技术因为是以蒸汽为脱氨介质,由于蒸汽价格较高(约200元/吨),因此蒸汽消耗就成为了该技术关键指标。传统蒸汽汽提脱氨技术蒸汽消耗达到300kg/吨废水以上,因此传统蒸汽汽提脱氨技术成本很高。随着近些年来技术的进步,一些在传统蒸汽汽提脱氨技术上研究开发的新型蒸汽汽提脱氨技术已经大大降低了蒸汽单耗,达到了30kg/吨废水,因此新型蒸汽汽提脱氨技术正在高浓度工业氨氮废水处理领域得到广泛地推广应用,为我国氨氮污染物减排起到了强有力的技术支撑作用。 1.2.1.3折点加氯法 折点加氯法是将氯气通入水中,当投入量达到某一值(点)时,水中游离氯含量最低而氨的浓度降为零,当投入量超过该点时,水中的游离氯就会增多。因此,该点称为折点,该状态下的氯化称为折点氯化。折点氯化去除氨的的机理为氯气与氨反应生成无害的氮气,氮气逸入大气。

高盐废水处理方案

在脱盐技术上最佳的方法无疑可以考虑膜法和渗透之类的方法,处理效果比较好,但同时造价和运行成本太高,处理成本会给企业造成很大的经济负担,膜污染和膜清洗的问题也比较复杂,对企业并不真正实用,所以不用考虑。所以采用生化工艺来处理。 当然生物的方法处理高盐废水肯定有一系列的问题,比如盐浓度过高会对微生物的生长产生极大的抑制作用。主要由于盐浓度过高时渗透压高使微生物细胞脱水引起细胞原生质分离,另外高含盐情况下因盐析作用而使脱氢酶活性降低,同时高氯离子浓度对细菌也有毒害作用。这些都是高盐废水利用生物方法处理的难点,但高盐废水通过预处理可以降低含盐量,再通过一些工艺提高废水的可生化性,同时再通过培养驯化,得到适应高盐浓度的菌种来处理废水。 方案分析: 1、减压蒸馏器:高盐废水降低含盐量的方法一个是稀释法,另外就是蒸馏脱盐的方法,由于是高盐废水,所以采用稀释法达到可生化的水质要耗用大量的水资源,这对企业来说是不合适的,所以不予采用,所以我们采用蒸馏脱盐的方法来降低废水的含盐量,但蒸馏的时候需要燃料,这也是成本,所以为降低成本考虑用减压蒸馏的方式,通过降低水的沸点来降低燃料的成本,通过最小的处理成本最大可能的达到脱盐的目的。 2、铁碳微电解池:在废水中加入铁屑和铁碳粉末组成腐蚀电池,电极反应生成的产物具有较高的化学活性,新产生的铁表面及反应中产生的大量的Fe2+和原子H具有高化学活性,能改变废水中许多有机物的结构和特性使有机物发生断链、开环等作用,反应生成的Fe2+参与溶液中的氧化还原反应,生成Fe3+,反应后期溶液pH 值升高,Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的污染物,从而增强对废水的净化效果,所以铁碳微电解法能有效地去除农药废水中的污染物,消减有机物的毒性,提高废水的可生化性。 3、调节池:含盐废水调节池考虑的主要因素是废水盐浓度的变化,应重点考虑水中盐浓度的变化和如何进行调整,如如何应付低含盐水量的减少或过高含盐来水的冲击。可以考虑在调节池进、出口设电导仪和电动阀,加强对盐浓度变化的监测和控制,通过生活污水和生产污水来调节使盐浓度的波动控制在后期的耐盐菌生理活性可承受的范围。 4、水解酸化池:当水中有机物为复杂结构时,通常采用水解酸化池,通过水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,可以将长链水解为短链、支链成直链、环状结构成直链或支链,这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式,另将生活污水加入到水解酸化池中, 能够确保微生物生长的有效碳源, 同时能降低废水的毒性,提高废水的可生化性。然后在通过接种和驯化两个阶段对水解酸化池进行调试,最后使水解酸化菌适应高盐废水的环境保持活性,并提高废水的可生化性,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、设计负荷、后级配套工艺等。

工业废水处理工艺

工业废水处理工艺 近年来,不断有新的方法和技术用于处理工业废水,但各有利弊。单纯的生物氧化法出水中含有一定量的难降解有机物,COD值偏高,不能完全达到排放标准。吸附法虽能较好地除去COD,但存在吸附剂的再生和二次污染的问题。催化氧化法虽能降解难以生物降解的有机物,但实际的工业应用中存在运行费用高等问题。本文介绍一些典型的工业废水处理工艺。 一、工业废水处理超导磁分离工艺 超导磁分离法与传统的化学法、生物法以及普通电磁体磁分离不同,不仅具有投资小、占地少、处理周期短、处理效果好等优点,还可达到普通电磁体3倍以上的磁场强度,从而提高磁分离能力,是未来极具潜在应用价值的技术。 一项超导磁体应用技术研究表明,采用超导高梯度磁分离技术可用于造纸、化工、医药工业废水的净化分离。与传统的超导磁分离技术只能分离矿物、煤、高岭土中磁性杂质不同,该技术通过预先加入改性的磁种子颗粒材料,从而分离工业废水中无磁性的有机、无机污染物,实现工业污水的达标排放。 工业废水如不达标排放,危害颇多。然而,目前使用的化学法和生物化学法存在投资大、运行成本高、反应时间长、占地面积大、效率低、能耗高等诸多问题。对于小型排污企业废水处理,这些问题则愈加突出,厂家若因建立污水处理设施投资过高,大多可能采取直排或偷排,给环境造成了更大危害。因此,开展新型、高效、低成本工业废水处理技术的研究显得重要而迫切。———技术解析——— 铁磁颗粒与污染物絮接 工业废水中一般皆为有机、无机污染物,由于这些污染物本身没有磁性,靠磁场产生的磁吸引力无法分离。研究人员设计并研制出制冷机直接冷却的超导磁体,磁场可达 3.92T。利用该超导磁体对造纸厂废水进行了磁分离处理。 实验采用预先在废水中加入经过表面等离子有机聚合改性的铁磁性颗粒并与污水中非磁性有害物质絮接,通过强磁场实现水中污染物的分离。实验结果表明,经磁分离处理的废水其COD值由起始的1780mg/L降到147mg/L,净化效果良好。 ———技术背景——— 磁分离的发展 磁分离是一种通过磁体提供的磁场吸力来实现物质分离的技术,属于物理分离法,是上世纪

高浓度氨氮废水处理工艺

高浓度氨氮废水处理工艺 目前,工业废水、垃圾渗滤液、城市污水等高浓度氨氮废水对水体造成的危害已成为全世界关注的环境问题。绝大部分含氨氮的废水在未经任何处理或处理不达标的情况下直接排入水体,导致水体污染及富营养化,进而影响土壤、空气等。常见的含氮化合物主要包括有机氮、氨氮、亚硝酸盐氮以及硝酸盐氮。其中氨氮是导致水体富营养化的主要污染物,其排放控制已成为目前水处理领域的重点和难点。 氨氮废水的处理方法有很多种,国内外学者针对该问题开展了大量研究。其中吹脱法是传统的高浓度氨氮废水处理方法,其设备占地面积小,操作灵活便捷,但也存在耗能大、处理成本高等缺点。成泽伟等采用超声波强化吹脱去除氨氮,去除率明显高于一般吹脱技术,且升幅超过50%。彭人勇等的研究也显示,超声波对吹脱的强化作用可以让氨氮去除率提升30%~40%。 沸石是含水多孔铝硅酸盐的总称,其晶体构造主要由(SiO)四面体组成,其中的部分Si4+为Al3+取代,导致负电荷过剩,故其结构中有碱金属(碱土金属)等平衡电荷的离子,同时沸石构架中存在较多的空腔和孔道。上述结构决定了沸石具有吸附、离子交换等性质,因此其对氨氮具有很强的选择性吸附能力。 本研究在超声吹脱工艺的基础上,利用改性沸石对超声吹脱后的高浓度氨氮废水进行超声强化吸附处理,考察了沸石粒度、吸附时间、沸石投加量、吸附温度、吸附超声功率等因素对处理效果的影响,以期为高浓度氨氮废水的处理提供参考。 一、实验部分 1.1材料和仪器 实验所处理废水为模拟高浓度氨氮废水,为NH4Cl和超纯水配制的NH4Cl溶液,氨氮质量浓度约为1200mg/L的,实验中以实测浓度为准。 吸附剂选用浙江省缙云县产天然沸石经复合改性后得到的改性沸石,密度2.16g/cm3,硬度3~4,硅铝比4.25~5.25,孔隙率30%~40%。 D-51型pH计:日本HORIBA有限公司;UV765型紫外-可见分光光度计:上海精密化学仪器有限公司;JJ50型精密电子天平:美国双杰兄弟(集团)有限公司;EVOMA15/LS15型扫描电子显微镜:北京欧波同有限公司。 1.2实验方法 1.2.1超声吹脱 实验装置如图1所示。超声波发生器通过将工频电转变为20kHz以上(一般为

技术:高盐度废水处理工艺

技术 | 高盐度废水处理工艺 高含盐废水的种类很多,石油、页岩气开采,电镀、制药、印染、发酵工业、海产品加工废水等都含有较高浓度的无机盐组分如Cl-等。生物处理方法是目前广泛采用的高盐废水处理方法,虽然高含盐废水中较高的盐度会影响生物处理的效果,但若采用其他的方法,如膜分离等技术则成本较高,所以生物处理仍是首选的处理方法。 盐度影响生物处理效果的主要原因在于:在生物处理方法中,主要是利用活性污泥或生物膜、颗粒污泥中微生物的新代谢来吸附降解废水中的污染物,而高盐度会引起高渗透压,使微生物细胞脱水,同时也会抑制微生物降解有机物的反应效率,从而影响生物处理方法的效果。因此,在处理高含盐废水时应当选择能够耐受高盐度影响的生物反应器。 迄今为止,已进行过盐度影响实验研究的生物反应器有膜生物反应器、移动床生物膜反应器、升流式厌氧污泥床(up-flowanaerobicsludgeblanket,UASB)反应器、上流式厌氧生物滤池反应器、EGSB反应器等,由于颗粒污泥在盐度负荷冲击下能够体现出更高的适应能力,UASB等能够培养出厌氧颗粒污泥的生物反应器得以在处理高含盐废水时有更多的应用研究,但同时从反应器处理效果和微生物角度分析研究较少。EGSB是在UASB基础上发展起来的第三代厌氧反应器,与UASB相比有更好的运行效果。本次研究利用模拟的高盐度废水,从盐度影响

下EGSB反应器的运行效果和厌氧颗粒污泥两个方面进行分析比较,并对厌氧颗粒污泥做高通量测序,以期为EGSB反应器应用于高含盐工业废水的实际处理提供参考的实验数据。 1、材料与方法 1.1实验装置 实验用EGSB反应器由圆筒形有机玻璃制成,总高1.4m,径0.12m,总容积为15.52L,有效容积为15.18L。回流口在距反应器底部1.19m的位置,三相分离器圆环挡板距离顶部0.16m,三相分离集气罩呈圆锥形,底部直径0.1m,顶部直径 0.03m,高0.08m,排气通道高0.07m,集气罩、排气通道和EGSB反应器上盖密闭。投加颗粒污泥于反应器中,进水和回流分别通过蠕动泵从反应器底部进入。颗粒污泥、沼气、废水三相在反应器中混合,随着水流上升至三相分离器,沼气进入集气罩,而大部分废水通过集气罩与挡板间的缝隙进入出水区,颗粒污泥由于重力作用,在遇到挡板和集气罩壁后,下降至污泥层,因此能很好地实现气、液、固的三相分离。 1.2实验用水

污水处理几种常见工艺比较

一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5) 缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。 3. A/O工艺的缺点 1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

高含盐废水处理工艺

高含盐废水处理工艺 一、Fenton或电—Fenton催化氧化预处理工艺 Fenton试剂含有H2O2和Fe2+,对废水中有机污染物具有很强的氧化力,且反应速度快,投资低,出水经沉淀净化后可实现预处理目的。 但Fenton或电-Fenton催化氧化工艺要求特定的反应条件:pH值2~4,而且产生较多含铁污泥,出水会有颜色。当含盐原水pH值偏低时使用较经济,否则“加酸降pH,加碱中和”的过程增加运行成本。COD浓度在10000mg/L左右尚好,如过高,就要多级氧化净化处理,Fenton工艺就无优势了。 二、双膜法预处理工艺 利用孔径在20~2000Ao(10-6.5-10-4.5cm)的半透膜进行超滤,可截留蛋白质、各类酶、细菌等胶体物质和大分子物质在浓缩液中,而水、溶剂、小分子和形成盐的离子则可通过膜,进入透过水中。由于透过水水量减少,而盐量没变,所以透过水含盐浓度增加。这时再用孔径在1~20Ao(10-7.5-10-6.5cm)的半透膜进行反渗透,无机盐、糖类、氨基酸、BOD、COD等被截留在浓缩液中,只有水和溶剂进入透过水中,盐在浓缩液中浓度进一步增加,送去蒸发结晶除盐。 双膜法除盐的优势在于大幅度降低了蒸发结晶除盐的水量,从而明显降低蒸发结晶除盐的运行成本和投资。但要注意以下问题: A.超滤前要调pH为中性、去硬度、去SS净化等; B.原水含盐量在5000mg/L以下,否则透过水量就太低了,脱盐率也降低; C.当含盐原水水量大时投资会很高; D.由于膜要经常水洗、酸洗、碱洗保护,膜的使用寿命也有限,运行成本也是比较高的; E.最大的问题是截留下的更高污染的浓缩液怎么办?如能提取有价物质或有大量可生化废水稀释一起处理还好,否则,如回用会增加污染积累;如焚烧,则投资和运行成本极高; F.对含盐量超过5000mg/L的废水可直接蒸发结晶除盐了,再用膜法没什么意义,但是

废水悬浮固体和浊度的测定

内河道检测治理项目

目录 一、项目简介 二、物理性质的检验 1、水温 2、颜色 3、ph 4、电导率 5、酸度 6、臭 7、总残渣 8、浊度 9、透明度 三、水样的预处理 1、测定氯化物 2、测定硫酸根 3、测定硝酸盐 4、测定亚硝酸盐 5、测定铵盐 6、测定钾、钠、钙、镁、铁、铜、铅、锌、锰、镉等 四、废水悬浮固体测定 五、水中总磷的测定(钼锑抗分光光度法) 六、水样CODcr的测定

七、水中溶解氧(DO)的测定 八、BOD5的测定

项目简介 此次项目是根据河道现状来制定的处理项目。首先对选取的河道进行项目估定,然后根据河道的地理特征,选取断面,进行采样。之后对所采取的样品进行处理和分析监测。最后根据检测到的结果,做出处理方案。

物理性质的检验 一、水温 水温是重要的水质物理指标,水中的溶解氧气体(溶解氧,二氧化碳)的溶解度,微生物的活动,甚至盐度、PH值等,都受水温影响。一般来说水温主要受气温和来源等因素影响。 水温是现场观测项目,随意在取样当天采用温度计法测量。将水温计沉入一定深度的水中,放置5分钟后,迅速提出水面并读取温度值,一般测两次取平均值。 二、颜色 水的颜色可分为真色,表色两种,真色是指去除悬浮物后水的颜色,没有去除悬浮物的水所具有的颜色称为表色,水的色度一般是指真色而言。 用稀释倍数法表示水的色度:将有色水样用无色水稀释,直至无色时,记录此时的稀释倍数,以此表示该水样的色度,并同时辅以用文字描述颜色性质,例如深兰色,棕黄色等。 测定: (1)取100~150ml水样置烧杯中,以白色瓷板为背景,观察描述其颜色种类。 (2)取水样5ml至于25ml比色管中,用蒸馏水稀释至25ml,管底部衬一白色瓷板,由上而下观察稀释后颜色,并与蒸馏水相比较。直至刚好看不出颜色,记录此时的稀释倍数。 三、ph

常见污水处理工艺介绍范文

常见污水处理工艺介绍 污水处理厂处理流程: 污水进入厂区先通过 1. 截流井(让厂能处理的污水进入厂区进行处理) 2. 粗格栅(打捞较大的渣滓) 3. 污水泵(提升污水的高度) 4. 细格栅(打捞较小的渣滓) 5. 沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除) 6. 生化池(采用活性污泥法去除污水里的 BOD5 SS 和以各种形式的氮或磷) 7. 终沉池(排除剩余污泥和回流污泥) 型滤池(进一步减少 SS,使岀水达到国家一级标准)进入紫外线 9. 消毒(杀灭水中的大肠杆菌) 10. 岀水 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 一级处理 ,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级 BOD —般可去除 30%左右,达不到排放标准。一级处理属于 二级处理的预处理。 二级处理 ,主要去除污水中呈胶体和溶解状态的有机污染物质 达 90%以上,使有机污染物达到排放标准。 三级处理 ,进一步处理难降解的有机物、氮和磷等能够导致的可溶性无机物等。主要方法 有生物脱氮除磷法,混凝沉淀法,砂滤法,,离子交换法和电渗分析法等。 整个过程为通过粗的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂 池,经过砂水分离的污水进入初次沉淀池,以上为一级处理 ( 即物理处理 ) ,初沉池的岀水进入 生物处理设备,有和生物膜法, ( 其中活性污泥法的反应器有,氧化沟等,生物膜法包括生物滤 池、生物转盘、和生物流化床 ) ,生物处理设备的岀水进入二次,二沉池的岀水经过消毒排放或 者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物除磷法,混凝沉淀法,砂 滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生 物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被 最后利用。 工艺选择 ( 1)按城市污水处理及污染防治技术政策推荐,日处理能力在 20 万立方米以上(不包括 20 万立方米 /日)的污水处理设施,一般采用常规活性污泥法。也可采用其他成熟技术;日处理能力在 10-20 万 立方米的污水处理设施,可选用常规活性污泥法、氧化沟法、 SBR 法和AB 法等成熟工艺;日处理能力在 10万立方米以下的污水处理设施,可选用氧化沟法、 SBR 法、水解好氧法、 AB 法和生物滤池法等技术,也可选用常规活性污泥法。 ( 2)按城市污水处理及污染防治技术政策要求,在对氮、磷污染物有控制要求的地区,应采用具备较 强的除磷脱氮功能的二级强化处理工艺。 日处理能力在 10 万立方米以上的污水处理设施, 一般选用 A/O 法、 A/A/O 法等技术。也可审慎选用其他的同效技术;日处理能力在 10 万立方米以下的污水处理设施, 处理的要求。经过一级处理的污水, (BOD , COD 物质),去除率可

SBR工艺处理高COD、高氨氮煤化工工业废水的研究

SBR工艺处理高COD、高氨氮煤化工工业废水的研究 摘要在采用SBR工艺处理煤化工工业废水时,通过考察研究废水的不同投加方式,跟踪分析了COD、NH3-N、NO2--N、NO3--N、PH、DO、碱度及碳源消耗。通过对比确定了最佳废水的投加方式达到了节约碱度、碳源消耗的目的,大大降低了运行成本。 关键词SBR;煤化工工艺废水;碱度;碳源 中图分类号X703 文献标识码 A 文章编号1673-9671-(2012)111-0178-02 SBR(Sequencing Batch Reactor Activated Sludge Process)是序批间歇式活性污泥法污水处理工艺的简称,是一种按照时间顺序改变活性污泥生长环境的污水处理技术,又称序批式活性污泥法,是一种比较成熟的污水处理工艺。它的主要特征是在时间上的有序和空间上的无序,各阶段的运行工况可以根据具体的污水性质和出水功能要求等灵活变化。SBR工艺一个运行周期中进水、反应、沉淀、出水和闲置5个基本工序都在一个设有曝气或搅拌的反应器内依次完成的。进水时间、曝气方式、搅拌时间可以根据具体的进水水质、污泥状况灵活改变。 笔者通过试验研究了在一个运行周期内分别采用不同的进水方式下PH、COD、NH3-N、NO2--N、NO3--N、DO的变化规律,通过对比确定了最佳废水的投加方式,达到了节约碱度消耗、减少外加碳源,降低处理成本的目的。 1 试验部分 1.1 废水的来源与水质 某煤化工工业,以煤为原料采用鲁奇气化工艺将煤加压气化为煤气,供企业和居民使用。在煤气洗涤过程中产生大量污水。污水水质见表1: 1.2 试验装置 试验装置由一组四个尺寸相同的SBR反应器组成,反应器为长55.5米、宽14米、有效水深5.6米。在反应器内装有微孔曝气器及潜水推流搅拌器;采用鼓风机曝气,离心泵进水,滗水器出水,进水由电磁流量计计量,整个系统由一套PLC自动程序控制装置操作运行。每一工作阶段,如进水、缺氧搅拌、曝气、沉淀和排水等工艺参数可根据需要设定。 1.3 分析项目及方法 进水和出水水样的分析项目及分析方法见表2。 2 试验结果与讨论 2.1 冲击性进水非限制性曝气方式 一次性快速向SBR反应池中加入200 m3原污水,好氧曝气去除有机物并进行硝化反应,硝化完成后投加甲醇进行反硝化,跟踪分析一个周期内水中残余COD、NH3-N、NO2--N、NO3--N、PH、DO变化情况见图1。 图1 由图1可以看出: 1)Do的变化规律:在进水阶段,因去除有机物的反应,异养菌的耗氧速率大于供氧速率,因此DO呈下降趋势。当COD接近其难去除浓度时,异养菌的耗氧速率迅速降低,供氧远远大于异养菌的耗氧速率,因此DO急剧上升,随着COD的降低及DO浓度的升高,异养菌因缺少底物而失去竞争力,系统内的硝化菌开始大量的进行新陈代谢。在氨氮去除的过程中,虽然自养菌的耗氧速率较

相关文档
最新文档