数学建模过河

数学建模过河
数学建模过河

一、模型假设

由题中条件可解,不需假设其他外界条件

二、模型构成

记人、猫、鸡、米的数量分别为1x 、2x 、3x 、4x ,第k 次渡河前此岸的人、猫、鸡、米的数量分别为k S =(1x ,2x ,3x ,4x ),则彼岸的人、猫、鸡、米的数量分别为k S ’=(1-1x 、1-2x 、1-3x 、1-4x )

由题中条件得在安全渡河条件下的允许状态合集

S ={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0)}

及其相对应的S ’。不难验证,S 对此岸和彼岸都是安全的。

第k 次渡河时穿上的人、猫、鸡、米的数量分别为1u 、2u 、3u 、4u ,决策方案即为乘船方案k d =(1u ,2u ,3u ,4u ),允许决策合集为

D ={(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)}

因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船由彼岸驶回此岸,所以状态k S 随决策k d 变化的规律是

()k

d k k s k s 11-+=+ 求决策k d ∈D (k=1,2,...,n ),使状态k s ∈S 按照上式,由初始状态1s =(1,1,1,1)经有限步n 到达状态1+n s =(0,0,0,0)。

三、模型求解

1.由于搭载对象总量较小,我们可以得出以下可行解:

2.若使用MATLAB编程

A向量定义为状态变量

B向量定义为运载变量

(1)xduhe.m文件:

clear;clc;

A=[1,1,1,1];

B=[1,0,1,0;1,1,0,0;1,0,0,1;1,0,0,0];

M=[1,1,1,0;0,0,0,1;1,1,0,1;0,0,1,0;1,0,1,1;0,1,0,0;1,0,1,0;0,1,0,1]; duhe(A,B,M,1);

(2)、duhe.m文件:

function duhe(L,B,M,s); [h,l]=size(L);

for k=s:h

for i=1:4

C=mod(L(k,:)+B(i,:),2);

if C==[0,0,0,0]

print(B(i,:),C,s);

fprintf('渡河成功\n\n');

break;

else if fuhe(C,M)==1

print(B(i,:),C,s);

S=[L;C];

if Panduan(S)==1

duhe(S,B,M,s+1);

else

fprintf('此渡河方案不可行\n\n'); end

end

end

end

End

(3)、fuhe.m文件:

function y=fuhe(C,M)

y=0;

for i=1:8

if(C==M(i,:))

y=1;

break;

end

end

(4)、Panduan.m文件:

function z=Panduan(S)

z=1;

[m,n]=size(S);

for p=1:m

for q=(p+1):m

if S(p,:)-S(q,:)==[0,0,0,0]

z=0;

break;

end

end

end

(5)、print.m文件:

function print(K,C,s)

fprintf('第%d次渡河:',s);

if K(1)==1

fprintf('人, ');

end

if K(2)==1

fprintf('猫, ');

end

if K(3)==1

fprintf('鸡, ');

end

if K(4)==1

fprintf('米, ');

end

if C(1)==0

fprintf('从左岸到达右岸\n');

else

fprintf('从右岸回到左岸\n');

End

四、模型分析

该问题的最优方案是:

①人先带鸡过河,然后人再回来,把米带过河,然后把鸡运回河岸,人再把猫带过河,最后人回来把鸡带过去。

②人先带鸡过河,然后人再回来,把猫带过河,然后把鸡运回河岸,人再把米带过河,最后人回来把鸡带过去。

数学建模试题(带答案)四

数学建模部分课后习题解答 1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间 距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为)(θg ,其中[] πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。 如果)0(与) 0(g f 不同时为零,不妨设.0)0(,0)0(=>g f 这时,将长方形ABCD 绕点

商人过河问题数学建模修订稿

商人过河问题数学建模 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

作业1、2: 商人过河 一、问题重述 问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。乘船渡河的方案由商人决定。商人们怎样才能安全过河? 问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。 二、问题分析 问题可以看做一个多步决策过程。每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。 三.问题假设 1. 过河途中不会出现不可抗力的自然因素。 2. 当随从人数大于商人数时,随从们不会改变杀人的计划。 3.船的质量很好,在多次满载的情况下也能正常运作。 4. 随从会听从商人的调度。 四、模型构成 x(k)~第k次渡河前此岸的商人数 x(k),y(k)=0,1,2,3,4; y(k)~第k次渡河前此岸的随从数 k=1,2,…..

s(k)=[ x(k), y(k)]~过程的状态 S~允许状态集合 S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3} u(k)~第k 次渡船上的商人数 u(k), v(k)=0,1,2; v(k)~ 第k 次渡船上的随从数 k=1,2….. d(k)=( u(k), v(k))~过程的决策 D~允许决策集合 D={u,vu+v=1,2,u,v=0,1,2} 状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律 求d(k) D(k=1,2,….n),使s(k) S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0) 数学模型: k+1k S =S +k k D (-1) (1) '4k k x x += (2) '4k k y y += (3) k.k x y ≥ (4) ''k k x y ≥ (5)

数学建模题型

1问题描述(问题与假设) 随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货决定.商人们怎样才能安全过河? 假设:1.过河途中不会出现不可抗力的自然因素。 2. 当随从人数大于商人数时,随从们不会改变杀人的计划。 3. 船的质量很好,在多次满载的情况下也能正常运作。 4. 随从会听从商人的调度。 2、问题模型与求解(公式、图、表、算法或代码等) 模型的建立: 由(4,4)到达(0,0) 数学模型: 纭产70 ⑴ 叫—J - 4 (2) 2 H y\ —■) (4) 模型分析: 由(2)( 3)( 5)可得 4 Xk 4 Yk 化简得Xk Yk 关键代码: clear clc n=3;m=3;h=2; .乘船渡河的方案由商人 x(k)~第k次渡河前此岸的商人数y(k)~第k次渡河前此岸的随从数s(k)=[ x(k), y(k)]~ 过程的状态 u(k)~第k次渡船上的商人数v(k)~第k次渡船上的随从数 d(k)=( u(k), v(k))~ 过程的决策 D={u,v u+v=1,2,u,v=0,1,2} 状态因决策而改变s(k+1)=s(k)+ 求d(k) D(k=1,2,….n),使s(k) x(k),y(k)=0,1,2,3,4; k=1,2,… S~允许状态集合 u(k), v(k)=0,1,2; k=1,2 ….. D~允许决策集合 -1)A k*d(k)~状态转移律 S 并按转移律s(k+1)=s(k)+(-1)Ak*d(k)

叮叮小文库 m0=0 ;n 0=0; tic LS=0; LD=0; for i=0: n for j=0:m if i>=j&n-i>=m-j|i==n |i==0 LS=LS+1; S(LS,:)=[i j]; end if i+j>0&i+j<=h&(i>=j|i==0) LD=LD+1; D(LD,:)=[i j]; end end end N=15; Q仁inf*on es(2*N,2*N); Q2=i nf*on es(2*N,2*N); t=1; le=1; q=[m n]; f0=0; while f0~=1 &t

人猫鸡米渡河问题的数学模型

重庆大学本科生数学模型作业报告人猫鸡米渡河问题的数学模型 组员:唐新 赵广志 < 指导教师:黄光辉

人猫鸡米渡河问题的数学模型 一、摘要: 本文主要对数学建模基础模型跟“商人过河”类似简单问题:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。试设计一个安全过河方案,建立数学模型,并使渡河次数尽量地少。模仿“商人过河”的模型设计出新的数学模型。 二、问题的重述 人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。试设计一个安全过河方案,并使渡河次数尽量地少。 关键词:人不在场时猫要吃鸡、鸡要吃米,船需人划,穷举法 三、模型假设 不考虑外界其他影响,只考虑问题所述的条件: 1、船除需要人划之外,至多能载猫、鸡、米三者之一 2、当人不在场时猫要吃鸡、鸡要吃米

四、符号说明

五、问题分析 安全过河问题可以看着是一个多部决策的过程。每作出一步决策,都必须保证船、人、猫、鸡、米能满足题设条件。否则,不仅难以实现过河的最优化,而且还容易出现事物的不安全性。因此,在保证安全的前提下,即猫、鸡在一起时,人要在场,鸡、米在一起时,人也要在场,用状态变量s 表示某一岸的状况,决策变量d 表示是乘车方案,我们容易得到s 和d 的关系,其中问题的转化要在允许变化范围内,确定每一步的决策关系,从而达到渡河的最优目标。 六、模型建立与求解 Ⅰ. 模型的建立: 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记 0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。记s 的反状态为()4321'1,1,1,1x x x x s ----=,允许状态集合为 ()()()()(){}0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1=S (1) 以及他们的5个反状态。 决策为乘船方案,记作()4321,,,u u u u d =,当i 在船上时记1=i u ,否则记 0=i u ,允许决策集合为 ()()()(){}0,0,0,1,1,0,0,1,0,1,0,1,0,0,1,1=D (2) 记第k 次渡河前此岸的状态为k s ,第k 次渡河的决策为k d ,则状态转移律为 ()k d k k s k s 11-+=+, (3)

数学建模题型

1、问题描述(问题与假设) 随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.乘船渡河的方案由商人决定.商人们怎样才能安全过河? 假设:1. 过河途中不会出现不可抗力的自然因素。 2. 当随从人数大于商人数时,随从们不会改变杀人的计划。 3.船的质量很好,在多次满载的情况下也能正常运作。 4. 随从会听从商人的调度。 2、问题模型与求解(公式、图、表、算法或代码等) 模型的建立: x(k)~第k 次渡河前此岸的商人数 x(k),y(k)=0,1,2,3,4; y(k)~第k 次渡河前此岸的随从数 k=1,2,….. s(k)=[ x(k), y(k)]~过程的状态 S~允许状态集合 u(k)~第k 次渡船上的商人数 u(k), v(k)=0,1,2; v(k)~ 第k 次渡船上的随从数 k=1,2….. d(k)=( u(k), v(k))~过程的决策 D~允许决策集合 D={u,v u+v=1,2,u,v=0,1,2} 状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律 求d(k)∈D(k=1,2,….n),使s(k) ∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k) 由(4,4)到达(0,0) 数学模型: 模型分析: 由(2)(3)(5)可得 Yk Xk -≥-44 化简得 Yk k ≤X 关键代码:

clear clc n=3;m=3;h=2; m0=0;n0=0; tic LS=0; LD=0; for i=0:n for j=0:m if i>=j&n-i>=m-j|i==n|i==0 LS=LS+1; S(LS,:)=[i j]; end if i+j>0&i+j<=h&(i>=j|i==0) LD=LD+1; D(LD,:)=[i j]; end end end N=15; Q1=inf*ones(2*N,2*N); Q2=inf*ones(2*N,2*N); t=1; le=1; q=[m n]; f0=0; while f0~=1&t

歇后语是中国劳动人民自古以来在生活实践中创造的一种特殊语言形式

歇后语是中国劳动人民自古以来在生活实践中创造的一种特殊语言形式,是一种短小、风趣、形象的语句。我们为大家提供了小学生歇后语大全,欢迎大家阅读! 1、八仙过海--------各显神通 2、泥菩萨过江——自身难保 3、蚕豆开花--------黑心 4、孔夫子搬家——净是书(输) 5、打破砂锅--------问到底 6、和尚打伞--------无法无天 7、虎落平阳--------被犬欺 8、画蛇添足--------多此一举 9、箭在弦上--------不得不发 10、井底青蛙--------目光短浅

11、大海捞针--------没处寻 12、竹篮打水--------一场空 13、打开天窗--------说亮话 14、船到桥头--------自会直 15、飞蛾扑火--------自取灭亡 16、百米赛跑--------分秒必争 17、拔苗助长--------急于求成 18、仇人相见--------分外眼红 19、芝麻开花--------节节高 20、新官上任--------三把火 21、瞎子点灯--------白费蜡 22、兔子尾巴--------长不了 23、偷鸡不成--------蚀把米 24、王婆卖瓜--------自卖自夸 25、老虎屁股--------摸不得

26、老虎拉车--------谁敢 27、老鼠过街--------人人喊打 28、麻雀虽小--------五脏俱全 29、墙上茅草--------随风两边倒 30、三十六计--------走为上计 31、塞翁失马--------焉知祸福 32、韩信点兵——多多益善 33、丈二和尚--------摸不着头脑 34、有借有还--------再借不难 35、猫哭耗子--------假慈悲 36、饺子破皮--------露了馅 37、扁担挑水--------一心挂了两头 38、对牛弹琴--------白费劲 39、八仙聚会--------神聊

基于商人过河游戏的数学建模-最新教育文档

基于商人过河游戏的数学建模 1提出问题 文献[1]给出一个智力游戏:“三名商人各带一个随从渡河,一只小船只能容纳二人,由他们自己划行。随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。但是如何乘船的大权掌握在商人们手中。商人怎样才能安全渡河呢?”此类智力问题当然可以通过一番思考,拼凑出一个可行的方案来。文献[1]中通过图解法给出了解答,但是当商人数与随从数发生变化,船能容纳的人数不是二人时,图解法就会变得繁复而难以解决问题。 因此,将上述游戏改为n名商人各带一个随从过河,船每次至多运p个人,至少要有一个人划船,由他们自己划行。随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。 但是如何乘船的大权掌握在商人们手中。商人怎样才能安全渡河的问题。 除此之外,考虑了随着船载人数的增多,以及商人与仆人的对数增多到多少时,会影响商人的安全渡河的问题。 2问题分析 由于这个虚拟的游戏已经理想化了,所以不必再作假设。我们希望能找出这类问题的规律性,建立数学模型,并通过计算机编程进行求解。安全渡河游戏可以看做是一个多步决策过程,分步优化,船由此岸驶向彼岸或由彼岸驶回此岸的每一步,都要对船上的商人和随从做出决策,在保证商人安全的前提下,在无限步内使全部人员过河。用状态表示某一岸的人员状况,决策表示船上的人员情况,可以找出状态随决策变化的规律。问题转化为在状态的允许范围内,确定每一步的决策,最后获取一个全局最优方案的决策方案,达到渡河的目标。 除此以外,我们还要找出,随着船载人数的增加,商人与仆人对数达到多少时,会影响到商人不能安全过河。这里要对船载人数进行限制,因为船载人数过多时,此智力游戏会变得相当繁复,就会失去作为游戏的本来意义。 3模型构成

山东高考基本能力答案

1、人带猫、鸡、米过河,船除需要人划外,至少能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡,鸡要吃米。试设计一个安全过河方案,并使渡船次数尽量减少。 答案: 1 带鸡过去空手回来 2 带猫过去带鸡回来 3 带米过去空手回来 4 带鸡过去 2有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家,每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香蕉? 25根。先背50根到25米处,这时,吃了25根,还有25根,放下。回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。再拿起地上的25根,一共50根,继续往家走,一共25米 3、李大妈去超市买毛衣,售货员是她邻居,告诉她一件毛衣62元。李大妈买了一件回家了。第二天她又来到超市,售货员向她介绍:新来了一种78元的毛衣质量很好,建议她买。李大妈决定买三件。售货员算过账后说:“你应该给我234元,但是昨天你买了一件62元的毛衣,如果想换,你就先给我52元钱,明天再将那件62元的毛衣和120元钱给我就行了。”李大妈回到家对4件毛衣经过比较,决定买二件62元的和一件78元的。第三天,售货员又收了李大妈88元钱。在整个过程中李大妈真是被搞糊涂了,售货员的账算得对吗? 这样想:李大妈几次共交钱:62+52+88=202(元) 三件毛衣的价钱:62+62+78=202(元) 因此,李大妈既没占便宜,也没吃亏。 4、太阳落下西山坡,鸭儿嘎嘎要进窝。四分之一岸前走,一半的一半随水波;身后还跟八只鸭,我家鸭子共几多? 16啊,一半的一半就是四分之一,有两个四分之一都没跟着你走就是有一半没有跟着你一半跟着你,他说有8只跟着你,八只是一半,全部就是16只. 5、一个数,去掉百分号后比原数增加了0.4455,原数是多少? 0.4455/(100-1)=0.0045 0.0045*100%=0.45% 6、小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲? 20只,包括手指甲和脚指甲 7、.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么? 因为他付给售货员40元,所以只找给他2元 8、一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?

商人过河问题数学建模

作业1、2: 商人过河 一、问题重述 问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。乘船渡河的方案由商人决定。商人们怎样才能安全过河? 问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。 二、问题分析 问题可以看做一个多步决策过程。每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。 三.问题假设 1. 过河途中不会出现不可抗力的自然因素。 2. 当随从人数大于商人数时,随从们不会改变杀人的计划。 3.船的质量很好,在多次满载的情况下也能正常运作。 4. 随从会听从商人的调度。 四、模型构成 x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4; y(k)~第k次渡河前此岸的随从数k=1,2,….. s(k)=[ x(k), y(k)]~过程的状态S~允许状态集合 S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3} u(k)~第k次渡船上的商人数u(k), v(k)=0,1,2; v(k)~ 第k次渡船上的随从数k=1,2…..

d(k)=( u(k), v(k))~过程的决策 D~允许决策集合 D={u,v |u+v=1,2,u,v=0,1,2} 状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律 求d(k) ∈D(k=1,2,….n),使s(k) ∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0) 数学模型: k+1k S =S +k k D (-1) (1) '4k k x x += (2) '4k k y y += (3) k.k x y ≥ (4) ''k k x y ≥ (5) 模型分析: 由(2)(3)(5)可得 44k k x y -≥- 化简得 k k x y ≤

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模 商人过河

数学建模课程作业 论文题目: 对商人过河问题的研究 指导教师:黄光辉 小组成员:黄志宇(20156260)车辆工程04班 牛凯春(20151927)电气工程05班 文逸楚(20150382)工商管理02

一、问题重述 3名商人带3名随从乘一条小船过河,小船每次只能承载至多两人。随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。乘船渡河的方案由商人决定,商人们如何才能安全渡河呢? 二、问题分析 本题针对商人们能否安全过河问题,需要选择一种合理的过河方案。对该问题可视为一个多步决策模型,通过对每一次过河的方案的筛选优化,最终得到商人们全部安全过到河对岸的最优决策方案。对于每一次的过河过程都看成一个随机决策状态量,商人们能够安全到达彼岸或此岸我们可以看成目标决策允许的状态量,通过对允许的状态量的层层筛选,从而得到过河的目标。 三、模型假设 1.过河途中不会出现不可抗力的自然因素。 2.当随从人数大于商人数时,随从们不会改变杀人的计划。 3.船的质量很好,在多次满载的情况下也能正常运作。 4.随从会听从商人的调度,所有人都到达河对岸。 四、符号说明 第k次渡河前此岸的商人数 第k次渡河前此岸的随从数 过程的状态向量 允许状态集合 第k次渡船上的商人数 第k次渡船上的随从数 决策向量 允许决策集合

x y 3322110s 1s n +1d 1d 11五、模型建立 本题为多步决策模型,每一次过河都是状态量的转移过程。 用二维向量表示过程的状态,其中分别表示对应时刻此岸的商人,仆人数以及船的行进方向,其中则允许状态集合: = 又将二维向量定义为决策,则允许的决策合集为: 因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船从彼岸驶向此岸,所以状态随决策的变化规律是 该式称为状态转移律。 求决策,使,并按照转移律,由经过有限步n 到达状态 六、模型求解 本模型使用MATLAB 软件编程,通过穷举法获得决策方案如下(完整matlab 程序详见附录): 初始状态: 可用图片表示为:X0= 3 3状态为: S = 3 13 23 03 11 12 20 20 30 10 20 0决策为: D = 02

人猫鸡米过河问题

人猫鸡米过河问题 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

摘要:本文主要对数学建模基础模型跟“商人过河”类似简单问题:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。试设计一个过河方案,建立数学模型,并使渡河次数尽量地少?模仿“商人过河”的模型设计出新的数学模型。 问题的重述: 人带着猫、鸡、米过河,船触需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。试设计一个安全过河方案,并使渡河次数尽量地少。 模型假设 不考虑外界其他影响,只考虑问题所述的条件。 符号说明 i=1人 i=2猫 i=3鸡 i=4米 Xi=1在此岸 xi=0在对岸 S=(x1,x2,x3,x4)此岸状态 S’=(1-x1,1-x2,1-x3,1-x4)对岸状态 d=(u1,u2,u3,u4)乘船方案 ui=1 i在船上时 ui=0 i不在船上 Sk第k次渡河前此岸的状态 dk第k次渡河的决策 问题分析

安全过河问题可以看着是一个多部决策的过程。每作出一步决策,都必须保证船、人、猫、鸡、米能满足题设条件。否则,不仅难以实现过河的最优化,而且还容易出现事物的不安全性。因此,在保证安全的前提下,即猫、鸡在一起时,人要在场,鸡、米在一起时,人也要在场,用状态变量s 表示某一岸的状况,决策变量d 表示是乘车方案,我们容易得到s 和d 的关系,其中问题的转化要在允许变化范围内,确定每一步的决策关系,从而达到渡河的最优目标。 模型建立与求解 Ⅰ. 模型的建立: 人、猫、鸡、米分别记为i=(1,2,3,4),当i 在此岸时记xi=1,否则记xi=0,则此岸的状态可用S=(x1,x2,x3,x4)表示。记s 的反状态为S’=(1-x1,1-x2,1-x3,1-x4,允许状态集合为 S={(1,1,1,1,)(1,1,1,0)(1,1,0,1)(1,0,1,1)(1,0,1,0)} (1) 以及他们的5个反状态。 决策为乘船方案,记作d=(u1,u2,u3,u4),当i 在船上时记ui=1,否则记ui=0,允许决策集合为 D={(1,1,0,0)(1,0,1,0)(1,0,0,1)(1,0,0,0)} (2) 记第k 次渡河前此岸的状态为k s ,第k 次渡河的决策为k d ,则状态转移律为 (3) 设计安全过河方案归结为求决策序列,,,,21D d d d n ∈ ,使状态S s k ∈按状态转移律由初始状态s1=(1,1,1,1,)经n 步达到sn+1=(0,0,0,0)。 Ⅱ. 模型的求解: 从而我们得到一个可行的方案如下:

数学建模商人过河__论文

组长:王鹏道110714 组员:任利伟110713、孙祎110706 小组成员负责情况: 王鹏道:选择论文题目、设计论文版面字体、分配成员任务、总结任利伟:一、问题提出、关键、分析。二、模型假设、三、模型建立孙祎:四、模型求解、五、模型的检验、拓展及延伸 2014年11月24日 摘要 为了求解3个商人和3个随从的过河问题,用数学分析方法,建立数学模型,并且加以求解,展示动态规划思想的应用步骤。最后利用计算机蝙程进行求解,获得过河问题的完整求解过程;有效地求解类似多步决策问题的作用。 关键词:多步决策计算机求解状态转移律图解法

一、 问题的提出 随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货,但是乘船渡河的方案由商人决定.商人们怎样才能安全过河? 二、 问题的关键 解决的关键集中在商人和随从的数量上,以及小船的容量上,该问题就是考虑过河步骤的安排和数量上。各个步骤对应的状态及决策的表示法也是关键。 三、 问题的分析 在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。由于船上人数限制,这需要多步决策过程,必须考虑每一步船上的人员。动态规划法正是求解多步决策的有效方法。它要求把解的问题一层一层地分解成一级一级、规模逐步缩小的子问题。直到可以直接求出其解的子问题为止。分解成所有子问题按层次关系构成一棵子问题树.树根是原问题。原问题的解依赖于子问题树中所有子问题的解。 四、 模型假设 记第k 次过河前A 岸的商人数为X K , 随从数为Y K k=1,2,? X K ,Y K =0,1,2,3,将二维向量S K =(X K ,Y K )定义为状态.把满足安全渡河条件下的状态集合称为允许状态集合。记作S 。则 S={(X K ,Y K )|(X K =0,Y K =0,1,2,3),(X K =3,Y K =0,1,2,3),(X K =Y K =1)(X K =Y K =2)} 记第k 次过河船上的商人数为U K 随从数为V K 将二维向量D K =(U K ,V K )定义为决策.由小船的容量可知允许决策集合(记作D)为 D={(U K ,V K )|U K +V K =l,2}={(O,1);(O,2);(1,O);(1,1);(2,O)} 五、 模型建立: 动态规划法正是求解多步决策的有效方法。它要求把解的问题一层一层地分解成一级一级、规模逐步缩小的子问题。直到可以直接求出其解的子问题为止。分解成所有子问题按层次关系构成一棵子问题树.树根是原问题。原问题的解依赖于子问题树中所有子问题的解。

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

商人过河matlab程序以及解析

数学建模作业 班级:数学131 姓名:丁延辉 学号:13190122 (二)商人过河Matlab代码 三个商人三个随从 z=zeros(30,3); %z为由(a,b,c)的列向量组成的3行30列数组,初始化为0矩阵,a,b,c代表此刻此岸的商人,仆人数量以及船的运行状态,c=1表示即将向彼岸运行 m=zeros(1,20); %m为一维行向量,初始化为1矩阵,用于在后面的程序中判断第k次选择的乘船方案 d=[0,1,1;0,2,1;1,0,1;1,1,1;2,0,1]; %共有5种可以选择的乘船方案,最后面一列全为1,即用于在后面表示使得z(k,3)的取值保持随着k的奇偶性保持着0-1变换. z(1,:)=[3,3,1]; %初始状态为[3,3,1] k=1; m(k)=1; %第一次默认的乘船方案为决策1——d(1) flag=1; %用于在后面判断是否成功找到方案 answer=0; %用于在后面判断是否找到

答案 while k>0 %保持k>0 if m(k)>5 flag=0; break; end p=0; z(k+1,:)=z(k,:)+(-1)^k*d(m(k),:); %每一次的运算规则都是z(k+1)=z(k)-(-1)^k*d(m(k),:),d(m(k),:)表示决策方案 a=z(k+1,1); %将当前情况的矩阵数值复制给a商人,b仆人 b=z(k+1,2); c=z(k+1,3); if (a==3&&(b==0||b==1||b==2||b==3))||(a==1&&b==1)||(a==2&&b==2 )||(a==0&&(b==0||b==1||b==2||b==3)) %判断(a,b)是否符合限定情况 for j=1:k %判断是否此岸a,b,c与之前有重复,如果是,结束此次循环,重新选择乘船方案 if a==z(j,1)&&b==z(j,2)&&c==z(j,3) if m(k)~=5 %决策方案只有5种,所以m(k)<=5,

商人安全过河问题

讨论资金积累、国民收入与人口增长的关系 班级:2009级数学与应用数学 黄全(组长): P092314746 邱亚彪: P091712712 谢志成:P091712679 央金:P091715381 罗国庭:P091712739

讨论资金积累、国民收入与人口增长的关系 摘要 如何保证人口增长对国民收入影响的正效应和国民平均收入持续性增长,一直是全国人民所共同关注的问题。本文对资金积累、国民收入和人口增长三者之间的关系进行讨论,通过导数结合三者之间存在的基本规律,建立相应的微分方程,利用微分方程法给出方程,由matlab解得资金积累、国民收入与人口增长的关系。通过掌握该关系,确定资金积累的增长率大于人口增长率时国民收入才会增长,从而更好地调整人口出身率、控制人口的数量和人口质量,保证我国人口增长与国民收入增长之间的适当的比例关系,使得国民平均持续性增长,促进社会经济的迅速发展,提高人民的生活质量,为整个社会的长远战略需求做贡献。 关键字:资金积累状态转移律图解法微分方程决策

一、 问题重述 讨论资金积累、国民收入与人口增长的关系 (1)若国民平均收入x 与按人口平均资金积累y 成正比,说明仅当总资金积累 的相对增长率k 大于人口的相对增长率r 时,国民平均收入才是增长的. (2)作出k(x)和r(x)的示意图,说明二曲线交点是平衡点,讨论它的稳定性。 (3)分析人口激增会引起什么后果 二、符号说明 1x : t 时刻总资金累积量,2x :t 时刻人口数量, 3x :国民平均收入量 ,k :总资金的相对增长率 r :人口的相对增长率 三 、模型的假设 在一定时期后,增长的人口数量为::22x rx '=; 总资金的增长量为:11x kx '= ; 四、问题的分析 在社会主义发展的初级阶段,国民收入是指一定时期(通常为1年)内,物质生产部门劳动者新创造的价值,它是物质资料生产进一步发展和人口再生产条件改善的物质基础。在其他条件已定的情况下,国民收入总量愈多,人均消费基金和积累基金也越多,从而有利于人们生活的改善和技术装备水平的提高,也有利于人口数量的控制和人口质量的提高。人口增长从 3个方面影响国民收入的增减: ① 人口或劳动者数量的多少; ② 每个劳动者技术装备水平的高低; ③ 劳动者节省消耗和管理才能的大小。 国民收入又分为资金的累积和消费,累积资金=国民收入错误!未找到引用源。消费资金,而消费资金=基本消费资金错误!未找到引用源。人口发展速度。因此, 为增加人均国民收入,增强一国的经济实力和提高人民生活水平,要在大力发展经济、增加生产的基础上合理地调节人口增长。

数学建模习题答案

数学建模部分课后习题解答 中国地质大学 能源学院 华文静 1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度就是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情 况),即从数学角度来瞧,地面就是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间距 与椅腿的长度而言,地面就是相对平坦的。因为在地面上椅脚间距与椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使就是连续变化的),此时三只脚就是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法就是不能解决问题的。于就是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形就是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于就是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚就是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置就是θ的函数,因此,椅脚与地面的竖直距离也就是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都就是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 就是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 与B,D 对换了。因此,记A,B 两脚与地面竖直距离之与为)(θf ,C,D 两脚之与为)(θg ,其中[] πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。 如果)0(与) 0(g f 不同时为零,不妨设.0)0(,0)0(=>g f 这时,将长方形ABCD 绕点O

商人过河优化模型

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):西京学院 参赛队员(打印并签名) :1. 邹高永 2. 张大伟 3. 钱晓东 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

商人过河 摘要 本文针对商人安全渡河的问题,采用多步决策的过程建立数学模型,求解得到了在随从没有杀人越货的情况下的渡河方案。 对于本题而言,在3名商人、3名随从、船的最大容量为2的情况下,首先定义了渡河前此岸的状态,并设安全渡河条件下的状态集定义为允许状态集合,接着得到渡河方案的允许决策集合,然后得到状态随渡河方案变化的规律,最后利用平面坐标分析法,并利用计算机进行了仿真,得到了一种商人安全渡河的方案。 但是,本文不仅仅是为了拼凑出一个可行方案,而是希望能找到求解这类问题的规律性,并建立数学模型,用以解决更为广泛的问题。基于此目的,利用了dijkstra算法,得到最短路径的最优解。但同时由于该算法遍历计算的节点很多,所以效率低,而且当有多个最短距离时,不能够将所有符合条件的情况逐一列出。 最后,从这类问题解得趣味性、合理性进行了深入讨论,得到了“传教士与野蛮人渡河”,“印度夫妻渡河”等问题通用的模型,并将其进行了推广。这也是本文的一大特色。 关键词渡河问题状态集合决策集合平面坐标dijkstra算法

相关文档
最新文档